1
|
Kueh Tai F, Northcott GL, Beggs JR, Mortensen AN, Pattemore DE. Scarcity of pesticide data in New Zealand with a focus on neonicotinoids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179044. [PMID: 40054240 DOI: 10.1016/j.scitotenv.2025.179044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Since Europe's 2018 neonicotinoid ban on outdoor use of clothianidin, imidacloprid, and thiamethoxam, there has been growing political, scientific, and public interest in further understanding the impact of neonicotinoids on bees and the environment. Here, we assessed the trends in pesticide use in New Zealand, with a particular focus on neonicotinoids, to aid discussion on their use and associated risks. Obtaining data on annual trends in pesticide quantities is challenging, as there is no central collection of pesticide data across the agrichemical or regulatory sectors in New Zealand. Consequently, the true scale and frequency of pesticide usage, including neonicotinoids, remain largely unknown. The difference in neonicotinoid use patterns between New Zealand, where 45 % of forage brassicas (annual planting) and pastures (infrequent planting) are grown from neonicotinoid-treated seeds, and northern hemisphere countries, where 56 % to over 90 % of annual food crops rely on neonicotinoid-treated seeds, indicates a lower overall neonicotinoid use in New Zealand. This difference underscores the need for region-specific approaches to pesticide management and regulation. Although residues can persist and migrate in the soil, current regulations only consider the risk of foliar spray to protect honey bees, overlooking the potential risks to native bees, which primarily live underground, as well as wider lethal and sublethal impacts of residues on non-target organisms. The lack of publicly accessible pesticide data limits scientific research on non-target and environmental effects, and the absence of readily available substitutes for neonicotinoids is the key challenge to be overcome in order to better manage the impact of these pesticides on New Zealand ecosystems.
Collapse
Affiliation(s)
- Felicia Kueh Tai
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand.
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Jacqueline R Beggs
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Ashley N Mortensen
- The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand.
| | - David E Pattemore
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Hamilton 3214, New Zealand.
| |
Collapse
|
2
|
Cheng H, Wang Z, Yan X, Lin C, Chen Y, Ma L, Fu L, Dong X, Liu C. Predaceous and Phytophagous Pentatomidae Insects Exhibit Contrasting Susceptibilities to Imidacloprid. Int J Mol Sci 2025; 26:690. [PMID: 39859405 PMCID: PMC11766023 DOI: 10.3390/ijms26020690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, targets insect pests but also affects natural enemies. However, the effects of neonicotinoid insecticides on closely related insects remain unclear. We evaluated the harmful effects of imidacloprid on the phytophagous Halyomorpha halys and predaceous Arma chinensis. Bioassays revealed that imidacloprid was more toxic to H. halys than to A. chinensis and more harmful to the males than to the females of the two insects. A. chinensis adults recovered from imidacloprid-induced knockdown, as evidenced by restored respiratory rates, metabolic rates, and locomotion. Surviving A. chinensis showed reduced fecundity, suggesting a trade-off between detoxification and reproduction. Bioinformatics analysis of nicotinic acetylcholine receptors (nAChRs) and molecular docking simulations indicated a lower diversity of the nAChR gene family in A. chinensis than in H. halys, with weaker binding to imidacloprid, consistent with the relatively low toxicity of the insecticide in this species. This might account for the susceptibility differences to imidacloprid between the species. These findings underscore the efficacy of imidacloprid against H. halys and provide insights into the toxicities of neonicotinoids to target and non-target insects.
Collapse
Affiliation(s)
- Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (Z.W.); (C.L.); (L.F.)
| | - Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (Z.W.); (C.L.); (L.F.)
| | - Xiaoyu Yan
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (Z.W.); (C.L.); (L.F.)
| | - Yu Chen
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Le Ma
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (Z.W.); (C.L.); (L.F.)
| | - Xiaolin Dong
- Department of Entomology, Yangtze University, Jingzhou 434023, China; (X.Y.); (Y.C.); (L.M.); (X.D.)
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (Z.W.); (C.L.); (L.F.)
| |
Collapse
|
3
|
Dewaele J, Barraud A, Hellström S, Paxton RJ, Michez D. A new exposure protocol adapted for wild bees reveals species-specific impacts of the sulfoximine insecticide sulfoxaflor. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:546-559. [PMID: 38649545 PMCID: PMC11252182 DOI: 10.1007/s10646-024-02750-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Wild bees are crucial pollinators of flowering plants and concerns are rising about their decline associated with pesticide use. Interspecific variation in wild bee response to pesticide exposure is expected to be related to variation in their morphology, physiology, and ecology, though there are still important knowledge gaps in its understanding. Pesticide risk assessments have largely focussed on the Western honey bee sensitivity considering it protective enough for wild bees. Recently, guidelines for Bombus terrestris and Osmia bicornis testing have been developed but are not yet implemented at a global scale in pesticide risk assessments. Here, we developed and tested a new simplified method of pesticide exposure on wild bee species collected from the field in Belgium. Enough specimens of nine species survived in a laboratory setting and were exposed to oral and topical acute doses of a sulfoximine insecticide. Our results confirm significant variability among wild bee species. We show that Osmia cornuta is more sensitive to sulfoxaflor than B. terrestris, whereas Bombus hypnorum is less sensitive. We propose hypotheses on the mechanisms explaining interspecific variations in sensitivity to pesticides. Future pesticide risk assessments of wild bees will require further refinement of protocols for their controlled housing and exposure.
Collapse
Affiliation(s)
- Justine Dewaele
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons (UMons), Place du Parc 20, 7000, Mons, Belgium.
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.
| | - Alexandre Barraud
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons (UMons), Place du Parc 20, 7000, Mons, Belgium
- Pollinis, 10 rue Saint-Marc, 75002, Paris, France
| | - Sara Hellström
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany
| | - Denis Michez
- Research Institute for Biosciences, Laboratory of Zoology, University of Mons (UMons), Place du Parc 20, 7000, Mons, Belgium
| |
Collapse
|
4
|
Henriques Martins CA, Azpiazu C, Bosch J, Burgio G, Dindo ML, Francati S, Sommaggio D, Sgolastra F. Different Sensitivity of Flower-Visiting Diptera to a Neonicotinoid Insecticide: Expanding the Base for a Multiple-Species Risk Assessment Approach. INSECTS 2024; 15:317. [PMID: 38786873 PMCID: PMC11122312 DOI: 10.3390/insects15050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Insects play an essential role as pollinators of wild flowers and crops. At the same time, pollinators in agricultural environments are commonly exposed to pesticides, compromising their survival and the provision of pollination services. Although pollinators include a wide range of species from several insect orders, information on pesticide sensitivity is mostly restricted to bees. In addition, the disparity of methodological procedures used for different insect groups hinders the comparison of toxicity data between bees and other pollinators. Dipterans are a highly diverse insect order that includes some important pollinators. Therefore, in this study, we assessed the sensitivity of two hoverflies (Sphaerophoria rueppellii, Eristalinus aeneus) and one tachinid fly (Exorista larvarum) to a neonicotinoid insecticide (Confidor®, imidacloprid) following a comparative approach. We adapted the standardized methodology of acute contact exposure in honey bees to build dose-response curves and calculate median lethal doses (LD50) for the three species. The methodology consisted in applying 1 µL of the test solution on the thorax of each insect. Sphaerophoria rueppelli was the most sensitive species (LD50 = 10.23 ng/insect), and E. aeneus (LD50 = 18,176 ng/insect) the least. We then compared our results with those available in the literature for other pollinator species using species sensitivity distribution (SSD). Based on the SSD curve, the 95th percentile of pollinator species would be protected by a safety factor of 100 times the Apis mellifera endpoint. Overall, dipterans were less sensitive to imidacloprid than most bee species. As opposed to most bee species, oviposition and fecundity of many dipteran species can be reliably assessed in the laboratory. We measured the number of eggs laid following exposure to different insecticide doses and assessed the potential trade-off between oviposition and survival through the sublethal sensitivity index (SSI). Exposure to imidacloprid had a significant effect on fecundity, and SSI values indicated that oviposition is a sensitive endpoint for the three dipteran species tested. Future studies should integrate this information related to population dynamics in simulation models for environmental risk assessment.
Collapse
Affiliation(s)
- Cátia Ariana Henriques Martins
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Celeste Azpiazu
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
- Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jordi Bosch
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.A.); (J.B.)
| | - Giovanni Burgio
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Maria Luisa Dindo
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Santolo Francati
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| | - Daniele Sommaggio
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41121 Modena, Italy;
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, 40127 Bologna, Italy; (C.A.H.M.); (G.B.); (M.L.D.); (S.F.)
| |
Collapse
|
5
|
Jütte T, Wernecke A, Klaus F, Pistorius J, Dietzsch AC. Risk assessment requires several bee species to address species-specific sensitivity to insecticides at field-realistic concentrations. Sci Rep 2023; 13:22533. [PMID: 38110412 PMCID: PMC10728145 DOI: 10.1038/s41598-023-48818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In the European registration process, pesticides are currently mainly tested on the honey bee. Since sensitivity data for other bee species are lacking for the majority of xenobiotics, it is unclear if and to which extent this model species can adequately serve as surrogate for all wild bees. Here, we investigated the effects of field-realistic contact exposure to a pyrethroid insecticide, containing lambda-cyhalothrin, on seven bee species (Andrena vaga, Bombus terrestris, Colletes cunicularius, Osmia bicornis, Osmia cornuta, Megachile rotundata, Apis mellifera) with different life history characteristics in a series of laboratory trials over two years. Our results on sensitivity showed significant species-specific responses to the pesticide at a field-realistic application rate (i.e., 7.5 g a.s./ha). Species did not group into distinct classes of high and low mortality. Bumble bee and mason bee survival was the least affected by the insecticide, and M. rotundata survival was the most affected with all individuals dead 48 h after application. Apis mellifera showed medium mortality compared to the other bee species. Most sublethal effects, i.e. behavioral abnormalities, were observed within the first hours after application. In some of the solitary species, for example O. bicornis and A. vaga, a higher percentage of individuals performed some abnormal behavior for longer until the end of the observation period. While individual bee weight explained some of the observed mortality patterns, differences are likely linked to additional ecological, phylogenetic or toxicogenomic parameters as well. Our results support the idea that honey bee data can be substitute for some bee species' sensitivity and may justify the usage of safety factors. To adequately cover more sensitive species, a larger set of bee species should be considered for risk assessment.
Collapse
Affiliation(s)
- Tobias Jütte
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Anna Wernecke
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Felix Klaus
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Anke C Dietzsch
- Institute for Bee Protection, Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Braunschweig, Germany
| |
Collapse
|
6
|
Tadei R, Menezes-Oliveira VB, Silva CI, Mathias da Silva EC, Malaspina O. Sensitivity of the Neotropical Solitary Bee Centris analis F. (Hymenoptera, Apidae) to the Reference Insecticide Dimethoate for Pesticide Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2758-2767. [PMID: 37638658 DOI: 10.1002/etc.5738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Currently, only Apis mellifera is used in environmental regulation to evaluate the hazard of pesticides to pollinators. The low representativeness of pollinators and bee diversity in this approach may result in insufficient protection for the wild species. This scenario is intensified in tropical environments, where little is known about the effects of pesticides on solitary bees. We aimed to calculate the medium lethal dose (LD50) and medium lethal concentration (LC50) of the insecticide dimethoate in the Neotropical solitary bee Centris analis, a cavity-nesting, oil-collecting bee distributed from Brazil to Mexico. Males and females of C. analis were exposed orally to dimethoate for 48 h under laboratory conditions. Lethality was assessed every 24 h until 144 h after the beginning of the test. After the LD50 calculation, we compared the value with available LD50 values in the literature of other bee species using the species sensitivity distribution curve. In 48 h of exposure, males showed an LD50 value 1.33 times lower than females (32.78 and 43.84 ng active ingredient/bee, respectively). Centris analis was more sensitive to dimethoate than the model species A. mellifera and the solitary bee from temperate zones, Osmia lignaria. However, on a body weight basis, C. analis and A. mellifera had similar LD50 values. Ours is the first study that calculated an LD50 for a Neotropical solitary bee. Besides, the results are of crucial importance for a better understanding of the effects of pesticides on the tropical bee fauna and will help to improve the risk assessment of pesticides to bees under tropical conditions, giving attention to wild species, which are commonly neglected. Environ Toxicol Chem 2023;42:2758-2767. © 2023 SETAC.
Collapse
Affiliation(s)
- Rafaela Tadei
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
- Department of Environmental Sciences, Federal University of São Carlos, Sorocaba, Brazil
| | - Vanessa B Menezes-Oliveira
- Course Coordination on Environmental Engineering, Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Claudia I Silva
- Consultoria Inteligente em Serviços Ecossistêmicos, Sorocaba, Brazil
| | | | - Osmar Malaspina
- Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|