1
|
Wang YX, Liu QY, Du JY, Sha HQ, Su J, Sun Y, Mao JY, He XS. Landfill depths alter microbial community structure and ecological assembly by affecting δ 13C and organic matter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114881. [PMID: 40367547 DOI: 10.1016/j.wasman.2025.114881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Microorganisms are crucial for the degradation of organic matter during landfill. However, the processes of microbial community assembly and ecological niche in landfill are poorly understood. Here, the mechanisms underlying microbial assembly in landfill were investigated based on neutral theory, niche distribution and network analysis. The results showed that moisture and potassium in the landfilled wastes increased with depth, while organic matter and δ13C were significantly higher in the middle layer than in the surface and bottom layers (P < 0.05). The richness and diversity of bacteria were significantly greater in the surface layer compared to the middle and bottom layers (P < 0.05), with moisture content, organic matter, total nitrogen and δ15N significantly influencing bacterial community composition. Deterministic processes over stochastic processes were pronounced in the surface layer, with the latter accounting only for 3.8 %. As landfill depth increased, variations in organic matter composition led to a greater influence of stochastic processes (52.7 %), while deterministic processes accounted for only 5.8 %. The niche breadth of abundant taxa was narrower than conditionally rare or abundant taxa, with their distribution primarily regulated by waste δ13C (P < 0.05), indicating greater environmental sensitivity. The niche overlap of microbial communities was lower in the surface layer, with the proportion of groups with high niche overlap being 2.69 times and 1.69 times higher in the middle and bottom layers. This study provided the first analysis of microbial niche dynamics across landfill depths, revealing critical interactions between δ13C driven organic matter availability and stochastic assembly processes.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun-Yan Du
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, Guangxi, China
| | - Hao-Qun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing-Ying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, Guangxi, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Huang F, Lu Y, Li Z, Zhang C, Qiao X, Wu J. The impact of ecological pressure caused by toxic lignin metabolites on microbial function transformation during composting. Int J Biol Macromol 2025; 307:142021. [PMID: 40081701 DOI: 10.1016/j.ijbiomac.2025.142021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Environmental stress coexists with microbial interactions during composting, temperature was thought to be the main stress, the toxic stress caused by aromatic compounds was often overlooked. Herein, lignin and lignin degradation products (LDP) were used alone or in combination to culture the compost microbial community, which manually delineated 32 niches to explore the effects of toxic stress on microbe and their responses. Results showed that the toxicity of LDP significantly changed the distribution of microbial community. Then, microorganisms were divided into three groups: specialist showed high diversity and low abundance, responsible for the metabolism of toxic macromolecules, with detoxification effect. Generalist exhibited high abundance and diversity, which mainly changed metabolic byproducts to cellular energy and sustaining the survival of microorganisms. Accordingly, these characteristics were the survival strategies of microbial communities to harmonize the toxic stress in different ecological niche. While the results of the lignin metabolic catalog have confirmed the metabolic tendency of different microorganism in the metabolic module. Finally, this study help to further understand microbe survival strategies in aromatic pollutants composting, which may be possible to accelerate or alter the composting process by manipulating the microbial community.
Collapse
Affiliation(s)
- Fuli Huang
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Yun Lu
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Zonglin Li
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Chunhao Zhang
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Xingyu Qiao
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.
| |
Collapse
|
3
|
Wu N, Li Y, Liu Y, Feng Y, Fei W, Zheng T, Rong L, Luo N, Song Y, Wei W, Li P. Reductive dechlorination of 1,1,2-trichloroethane in groundwater by zero valent iron coupled with biostimulation under sulfate stress: Differences and potential mechanisms. ENVIRONMENTAL RESEARCH 2025; 277:121574. [PMID: 40209987 DOI: 10.1016/j.envres.2025.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Zero-valent iron (ZVI) coupled with biostimulation is recognized as one of the most promising and effective dechlorination methods for chlorinated hydrocarbons in groundwater. However, the heterogeneity of the aquifer environment may affect the dechlorination efficiency of the coupled systems, and the underlying mechanisms remain unclear. In this study, we systematically explored the effect and potential mechanism of sulfate (SO42-) on the removal of 1,1,2-trichloroethane (1,1,2-TCA) by the coupled ZVI and biostimulation. Results revealed that the coupled systems enhanced the degradation rate of 1,1,2-TCA by an order of magnitude compared with that of each individual treatment under SO42- stress. However, the complete dechlorination of the main product, vinyl chloride (VC), remains challenging in the absence of obligate organohalide respiration bacteria (OHRB). SO42- dynamically altered the sulfidation degree of ZVI and microbial interactions, leading to the disappearance of non-chlorinated products in the micron ZVI (mZVI) coupled system and decreased dechlorination efficiency with increasing SO42- concentration. In the nano ZVI (nZVI) coupled system, suitable SO42- concentrations promoted continuous VC degradation, likely due to the inherent high reactivity of the nanometer-size effect. Nevertheless, excessive SO42- reduced ZVI sulfidation, causing differences in dechlorination efficiency and extent trends between mZVI and nZVI coupled systems. These findings will provide scientific support for the optimal application scenarios and limitations of the coupled strategies, thereby facilitating the regulation of technology application according to actual aquifer environmental parameters to achieve low-cost environmental safety control.
Collapse
Affiliation(s)
- Naijin Wu
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Yi Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yizhou Liu
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yangfan Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Wenbo Fei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Tianwen Zheng
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Liming Rong
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Nan Luo
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yun Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Peizhong Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| |
Collapse
|
4
|
Liu QY, Wang YX, Sha HQ, Zhou HM, Sun Y, Su J, Mei Y, Dai X, He XS. The community succession mechanisms and interactive dynamics of microorganisms under high salinity and alkalinity conditions during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124881. [PMID: 40068504 DOI: 10.1016/j.jenvman.2025.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Microorganisms drive organic matter degradation and humification during composting. However, the mechanisms underlying microbial community succession and their interactions under saline-alkali stress are poorly understood. In this study, we investigated the microbial community assembly processes and microbial niche dynamics during composting in the high-saline-alkaline region. The niche breadth of the microbial community expanded from 5.8 to 15 and salt-alkali conditions alleviation prompted a shift in microbial community assembly towards stochastic processes. Alkalinity (R = 69.08%) and available phosphorus (AP) (R = 45.70%) are identified as the primary environmental stress factors. Salinity primarily impacted the niche breadth, while alkalinity predominantly determined the assembly processes of microorganisms. The degradation of organic matter in high-temperature environments enhanced the release of AP, altering the processes of microbial community assembly and driving niche differentiation within the microbial community. The abundant taxa actively responded to the changes in the environmental conditions, while the rare taxa maintained the community stability by expanding their ecological niches. The interactions between microorganisms are mainly based on synergism. The native microorganisms, such as Alcanivorax, Corynebacterium, and Rhodohalobacter, played a key role in promoting compost maturity. They tolerated the high-salinity and alkaline environments and also withstood high temperatures. This study revealed for the first time the succession mechanisms and interaction characteristics of microbial communities under salinity and temperature stress, providing theoretical guidance for microbial inoculation during the composting of high-saline and alkaline organic waste.
Collapse
Affiliation(s)
- Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu-Xin Wang
- The School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Hao-Qun Sha
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Ying Mei
- College of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot, 010000, China
| | - Xin Dai
- Nanjing Wondux Environmental Protection Technology Corp., Ltd., Nanjing, 211100, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Ministry of Ecology and Environment Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Xiao C, Wan K, Chen Y, Jin Y, Zhou F, Yu J, Chi R. Metagenomic Analysis Revealed the Changes in Antibiotic Resistance Genes and Heavy Metal Resistance Genes in Phosphate Tailings Compost. Microorganisms 2025; 13:768. [PMID: 40284605 PMCID: PMC12029510 DOI: 10.3390/microorganisms13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Phosphate tailings are usually rich in phosphorus and some other mineral nutrients, which is very suitable for composting. In this study, 60 days of composting using phosphate tailings, chicken manure, and straw resulted in a significant decrease in total nitrogen (TN) content from 1.75 ± 0.12 g/kg to 0.98 ± 0.23 g/kg (p < 0.01), with a nitrogen retention of 56%, an increase in water-soluble phosphorus (Ws-P) from 3.24 ± 0.14 mg/kg to 7.21 ± 0.09 mg/kg, and an increase in immediate potassium (AK) from 0.56 ± 0.21 mg/kg to 1.90 ± 0.11 mg/kg (p < 0.05). Metagenomic sequencing showed little changes in the diversity and abundance of microbial communities before and after composting, but changes in species composition and the abundance of archaea, bacteria, and fungi resulted in differences in community structure before and after composting. Composting contributed to a lower gene abundance of ARGs and MRGs. The addition of phosphate tailings combined the functions of chemical regulation and nutrient enrichment, and its synergistic effect significantly optimized the nutrient cycling in the composting system.
Collapse
Affiliation(s)
- Chunqiao Xiao
- Hubei Three Gorges Laboratory, Yichang 443007, China; (K.W.); (Y.C.); (R.C.)
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| | - Kai Wan
- Hubei Three Gorges Laboratory, Yichang 443007, China; (K.W.); (Y.C.); (R.C.)
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| | - Yan Chen
- Hubei Three Gorges Laboratory, Yichang 443007, China; (K.W.); (Y.C.); (R.C.)
| | - Yongtong Jin
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| | - Fang Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| | - Junxia Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang 443007, China; (K.W.); (Y.C.); (R.C.)
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; (Y.J.); (F.Z.); (J.Y.)
| |
Collapse
|
6
|
Wu M, Tao Y, Zeng Q, Pan Z, Zhang H, Yin Z, Li W, Liu Y, Li X, Qiu Z. Deciphering the driving mechanism of microbial community for rapid stabilization and lignocellulose degradation during waste semi-aerobic bioreactor landfilling with multifunctional microbial inoculum. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:88-103. [PMID: 39787670 DOI: 10.1016/j.wasman.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Owing to the massive refractory lignocellulose and leachate-organic loads, the stabilization of municipal solid waste (MSW) landfill is often prolonged, resulting in environmental burdens. Herein, various assembled multifunctional microbial inoculums (MMIs) were introduced into the semi-aerobic bioreactor landfill (SABL) to investigate the bioaugmentation impacts. Compared to control (CK) and other MMIs treatments (G1-G3), LD + LT + DM inoculation (G4) significantly increased volatile solids degradation (9.72-45.03 %), while reducing chemical oxygen demand (COD) content (10.34-51.85 %) and ammonia nitrogen concentration (80.71-90.95 %) in the leachate. G4 also exhibited significantly higher degradation of cellulose and hemicellulose, achieving 0.99 and 1.94 times higher efficiency than CK, respectively. Microbial analysis revealed that LD + LT + DM reshaped microbial communities composition of SABL, with most of the introduced microorganisms (Enterobacter, Sphingobacterium, Streptomyces, etc.) successfully colonizing, and stimulating indigenous functional microbes associated with organic matter decomposition. Additionally, microbial interactions were strengthened in G4, accompanied by the higher abundance of 11 biomarkers and enzymes involved in lignocellulose degradation and ammonia nitrogen conversion. Overall, LD + LT + DM maximized MMI function by reconstructing synergistic core microbes. These findings highlight the superiority of LD + LT + DM in simultaneously regulating the microbial composition of lignocellulose-rich waste landfills, expediting MSW decomposition, improving leachate treatment, and mitigating odor emissions, offering valuable insights for efficient MSW management.
Collapse
Affiliation(s)
- Minghui Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yiqian Tao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China; Sichuan Environmental Protection Engineering Centre of Solid Waste Treatment & Disposal, Chengdu 610041, China
| | - Qilu Zeng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhengyong Pan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Han Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhiyan Yin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Wenjian Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yanxin Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
7
|
Li Y, Li R, Li Q, Zhao X, Zhao P, Yan P, Zhang S, Gu L, Xue J. Study on the synergistic mechanisms of fungal biodiversity and ecosystem multifunctionality across vegetation diversity gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178563. [PMID: 39837117 DOI: 10.1016/j.scitotenv.2025.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Ecosystem multifunctionality denotes the capacity of an ecosystem to deliver various functions and services concurrently, emphasizing the overall effectiveness of these functions. Although biodiversity is intrinsically linked to ecosystem multifunctionality, research on the determinants of changes in this relationship remains limited. This study focused on 147 research plots across various ecosystems in the Lüliang region. Through high-throughput sequencing and data modeling, it was revealed that there exists a significant positive correlation between soil fungal biodiversity and ecosystem multifunctionality (P < 0.05). Notably, this correlation was found to be influenced by specialists and vegetation diversity. The specific results supporting this finding are presented as follows: 1) By means of linear regression and the establishment of various models, it was indicated that specialists exert a more substantial influence on the fungal biodiversity-ecosystem multifunctionality (BEF) relationship compared to generalists. 2) Moving window analysis demonstrated that changes in vegetation diversity affected BEF relationships within fungal communities, leading to synergistic shifts. As vegetation diversity increased, co-occurrence networks generally simplified, and the positive fungal BEF correlation was somewhat decreased. This study enhances the comprehension of fungal BEF relationships in natural ecosystems and provides a foundation for the development of effective management and conservation strategies in response to global changes.
Collapse
Affiliation(s)
- Yujing Li
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Ruiyun Li
- Shanxi Lipu Innovation Technology Company Limited, Jinzhong 030619, China
| | - Qiao Li
- Shanxi Lipu Innovation Technology Company Limited, Jinzhong 030619, China
| | - Xiaodong Zhao
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Pengyu Zhao
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China.
| | - Pingmei Yan
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China; College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Shuhui Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Lihong Gu
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| | - Jinhua Xue
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
8
|
Du E, Mao N, Liu S, Zhang H, Fan M, Sun H, Zheng Y, Cheng Q, Wang C, Li P, Xie Y. Effects of different wet distillers' grains ratios on fermentation quality, nitrogen fractions and bacterial communities of total mixed ration silage. BMC Microbiol 2025; 25:31. [PMID: 39833720 PMCID: PMC11744952 DOI: 10.1186/s12866-025-03750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Wet distiller's grains (WDG) are rich in crude protein, yet challenging to preserve. Nevertheless, incorporating WDG into total mixed ration (TMR) silage holds promise for enhancing fermentation quality. This study investigated the effects of varying WDG proportions on nitrogen composition, fermentation quality, and microorganisms in TMR silage. METHODS Three TMR formulations were prepared: (1) 0% WDG (T0), (2) 15% WDG (T15), and (3) 30% WDG (T30) were ensiled for 7, 15, 30 and 60 days. RESULTS After 7 days of ensiling, butyric acid was detected in T0 and T15 groups, while T30 exhibited significantly lower levels (p < 0.05). Both T15 and T30 treatments led to improved V-scores of TMR silage. Non-protein nitrogen (NPN) production was slower in T30, with significant increases observed in NPN levels for T0 and T15 after 30 days (p < 0.05). However, the abundance of Clostridium was extremely low in the present study. Protein degradation and and butyric acid production may be attributed to Weissella. CONCLUSION The fermentation quality of TMR silage is always decreasing during storage, so its storage time should be minimized. Incorporating 30% WDG reduced abundance of Weissella, resulting in less protein degradation and better fermentation quality in TMR silage.
Collapse
Affiliation(s)
- Ermei Du
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Ning Mao
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Shihao Liu
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Hanyu Zhang
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Meiling Fan
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Hong Sun
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yulong Zheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Qiming Cheng
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Chunmei Wang
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Ping Li
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Yixiao Xie
- Collage of Animal Science, Guizhou University, Guiyang, Guizhou, China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
9
|
Wu H, Wang C, Zhou J, Cong H, Gao Y, Cai W, Feng S, Zhang C. Feedstock optimization with low carbon to nitrogen ratio during algal sludge aerobic composting: Quality and gaseous emissions. BIORESOURCE TECHNOLOGY 2025; 416:131811. [PMID: 39542056 DOI: 10.1016/j.biortech.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study investigated compost quality and gaseous emissions during the algal sludge composting. The experiment explored the feasibility of low initial carbon to nitrogen (C/N) ratio composting by using different volume ratios of algal sludge and spent mushroom substrates (1:1, 1:2, 1:3, and 1:4, corresponding to C/N ratios of 9.5, 12.3, 14.6, 16.0, respectively). The results showed that increasing the proportion of algal sludge in the initial material led to a longer maturation time and higher nitrogen losses but also enhanced the mineralization of organic nitrogen (converted to NH4+ and NO3-) and reduced carbon losses. The addition of carbon-rich bulking agents within a certain range improved the diversity and interactions of bacterial communities during algal sludge composting. In conclusion, considering the nitrogen and carbon lost, retained, and made available across the four treatments, treatment 3 (C/N = 14.6) appears to be the optimal choice for low C/N composting.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Chengkai Wang
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Jiahui Zhou
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China.
| | - Yu Gao
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China
| | - Wei Cai
- College of Environmental Science and Engineering, Yangzhou University, Huayang West Road #196, Yangzhou 225009, PR China
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China
| |
Collapse
|
10
|
Liu C, Li H, Ni JQ, Zhuo G, Zhang Q, Zheng Y, Zhen G. Synergistic effects of heterogeneous mature compost and aeration rate on humification and nitrogen fixing during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123743. [PMID: 39693993 DOI: 10.1016/j.jenvman.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase. The addition of SMC and increased aeration enhanced humus formation and nitrogen retention. SMC introduced more amide and polysaccharide compounds into the compost, promoting the Maillard humification pathway. Additionally, both SMC and high aeration inhibited denitrification: the SMC reduced the abundance of the nirK gene, while high aeration decreased the abundance of nosZ gene. Network analysis revealed that higher aeration enhanced fungal interactions but diminished bacterial interactions. Conversely, SMC addition bolstered both bacterial and fungal interactions. The final compost product with SMC addition showed a 11.56%-44.19% reduction in antibiotic resistance gene content compared with the control group, and heavy metal contents remained within safe application limits. The combination of high SMC addition and high aeration achieved optimal humification and nitrogen retention, underscoring its potential as a promising solution for kitchen waste composting.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Qingyi Zhang
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Liu X, Kong L, Tong L, Zackariah GSK, Zhu R, Li Z, Lv Y. Inoculation with effective microorganisms agent enhanced fungal diversity in the secondary fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123985. [PMID: 39752954 DOI: 10.1016/j.jenvman.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Microbial inoculations have emerged as a key approach to address the low natural microbial activity of traditional composting technologies. It is crucial for successfully promoting manure composting to understand the influences of microbial inoculations on fungal communities and its mechanisms. To investigate the effects of microbial inoculation on diversity characteristics, tropic mode, and co-occurrence network of fungal communities during composting, an aerobic composting experiment of chicken manure inoculated with microbial agents was performed. The results showed that microbial inoculations enhanced fungal richness and diversity during the secondary fermentation, promoted beneficial fungi, and restrained pathogenic microbes. Microbial inoculation facilitated saprophytic fungi and symbiotic fungi, augmented fungal network complexity and cooperation during the first fermentation, concurrently impeding fungal network complexity and cooperation during the secondary fermentation. These results provide technical guidance for composting process optimization and compost product quality improving, which was beneficial to promote soil quality and mitigating agricultural non-point source pollution.
Collapse
Affiliation(s)
- Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China; Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyu Kong
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lihong Tong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
| | - G S K Zackariah
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
| | - Yizhong Lv
- Department of Soil and Water Sciences, College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Li J, Huang Y, Wang J, Zhang Y, Chen Y. Vermiculite changed greenhouse gases emission and microbial community succession in vermicomposting: Particle size investigation. BIORESOURCE TECHNOLOGY 2025; 416:131769. [PMID: 39521185 DOI: 10.1016/j.biortech.2024.131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Greenhouse gas emissions during composting inevitably cause environmental pollution. This study investigated the effects of 10 % vermiculite of four particle sizes (<1.5 mm, 1.5-3 mm, 3-5.5 mm and 5.5-8 mm) on greenhouse gas emissions during vermicomposting of corn stover and cow dung. The results revealed that vermiculite reduced CH4 and N2O emissions but increased CO2 emissions. Vermiculite with a particle size of 3-5.5 mm presented the greatest environmental benefits, increasing cumulative CO2 emissions by 19 % and reducing CH4 and N2O emissions by 49 % and 62 %, respectively. A negative correlation was found between the specific surface area of vermiculite and cumulative greenhouse gas emissions (r = -0.7949). Furthermore, vermiculite intensified microbial interactions and accelerated microbial community succession. These results have important implications for understanding how vermiculite regulates greenhouse gas emissions and microbial mechanisms during the vermicomposting process.
Collapse
Affiliation(s)
- Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yingxin Huang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, MS 39567, United States
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
13
|
Zhang J, Zou YJ, Wang SL, Zhang WW, Chen QJ, Wang QY, Guan TK, Zhang JY, Zhao MR, Zhang GQ. The inoculation of Bacillus paralicheniformis and Streptomyces thermoviolaceus enhances the lignocellulose degradation and microbial communities during spent mushroom substrate composting. ENVIRONMENTAL RESEARCH 2024; 263:120157. [PMID: 39414111 DOI: 10.1016/j.envres.2024.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The burgeoning global mushroom industry has precipitated challenges related to the efficient and sustainable utilization of spent mushroom substrate (SMS). Composting is regarded as an efficient way for the ecological utilization of SMS. The addition of microbial inoculants can promote the composting process and improve the quality of compost products. This study introduced two bacterial inoculants, Bacillus paralicheniformis HL-05 (BP) and Streptomyces thermoviolaceus LC-10 (ST), into the composting process of SMS. The impact of these inoculants was evaluated through analyses of physicochemical properties, lignocellulose degradation, and high-throughput sequencing to elucidate their ecological roles and optimize the composting process. The results suggest that inoculation with BP and ST significantly prolonged the thermophilic stage by 2-3 days, representing an increase of 22.22-33.33%. Moreover, it boosted the degradation rates of cellulose, hemicellulose, and lignin by 18.37-29.77%, 35.74-50.43%, and 40.32-40.83%, respectively, compared to the control. Furthermore, inoculation rapidly altered the microbial community structure during the rapid temperature-rising stage and strengthened interconnections among composting microorganisms. The microbial inoculation substantially enhanced the proliferation of thermophilic lignocellulose-degrading microorganisms during the thermophilic stage, thereby facilitating the utilization of lignocellulose. This study proposes a novel and effective strategy for SMS composting using microbial inoculants.
Collapse
Affiliation(s)
- Jiao Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Ya-Jie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing, 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shun-Li Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Wei-Wei Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Qing-Jun Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Qiu-Ying Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Ti-Kun Guan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jia-Yan Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Min-Rui Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Guo-Qing Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China.
| |
Collapse
|
14
|
Shao Q, Dong C, Han Y, Zhang Y. Microbiota dynamics and source tracing during the growing, aging, and decomposing processes of Eucommia ulmoides leaves. Front Microbiol 2024; 15:1470450. [PMID: 39691911 PMCID: PMC11649662 DOI: 10.3389/fmicb.2024.1470450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Eucommia ulmoides, an important tree, faces serious threat to its growth from environmental stress, particularly climate change. Using plant microbes to enhance host adaptation to respond climate change challenges has been recognized as a viable and sustainable strategy. However, it is still unclear how the perennial tree microbiota varies across phenological stages and the links between respective changes in aboveground and belowground niches. Here, we sequenced 27 root and 27 leaf samples of E. ulmoides using 16S rRNA and ITS amplicon sequencing techniques. These samples were obtained from the three main phenological stages of leaves, including leaf growing, aging and decomposing stages. Results showed that the diversity, composition, and function of the leaf microbiota of E. ulmoides showed more obvious changes at three phenological time points compared to roots. Regarding alpha diversity, the root microbiota showed no difference across three sampling stages, while the leaf microbiota varied with sampling stages. Regarding beta diversity, the root microbiota clustered from different sampling stages, while the leaf microbiota exhibited distinct separation. Regarding composition and function, the dominant taxa and main functions of the root microbiota were the same in three sampling stages, while the leaf microbiota in the decomposing stage was obviously different from the remaining two stages. Additionally, taxa overlap and source-sink relationship existed between E. ulmoides microbiota. Specifically, the degree of overlap among root microbiota was higher than that of leaf microbiota in three sampling stages. The bidirectional source-sink relationship that existed between the root and leaf niches varied with sampling stage. During the leaf growing and aging stages, the proportion of microbial members migrating from roots to leaves was higher than the proportion of members migrating from leaves to roots. During the leaf decomposing stage, the migration characteristics of the fungal community between the root and leaf niches maintained the same as in the remaining two stages, but the proportion of bacterial members migrating from leaves to roots was significantly higher than that of members migrating from roots to leaves. Our findings provide crucial foundational information for utilizing E. ulmoides microbiota to benefit their host under climate change challenges.
Collapse
Affiliation(s)
- Qiuyu Shao
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province/Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province, Guizhou Education University, Guiyang, China
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Chunbo Dong
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanfeng Han
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yanwei Zhang
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province/Key Laboratory of Ecology and Management on Forest Fire in Higher Education Institutions of Guizhou Province, Guizhou Education University, Guiyang, China
| |
Collapse
|
15
|
Tidimalo C, Maximiliano O, Karen J, Lebre PH, Bernard O, Michelle G, Oagile D, Cowan DA. Microbial diversity in the arid and semi-arid soils of Botswana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70044. [PMID: 39535358 PMCID: PMC11558117 DOI: 10.1111/1758-2229.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
To date, little research has been conducted on the landscape-scale distribution of soil microbial communities and the factors driving their community structures in the drylands of Africa. We investigated the influence of landscape-scale variables on microbial community structure and diversity across different ecological zones in Botswana. We used amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacers (ITS) and a suite of environmental parameters to determine drivers of microbial community structure. Bacterial communities were dominated by Actinomycetota (21.1%), Pseudomonadota (15.9%), and Acidobacteriota (10.9%). The dominant fungal communities were Ascomycota (57.3%) and Basidiomycota (7.5%). Soil pH, mean annual precipitation, total organic carbon, and soil ions (calcium and magnesium) were the major predictors of microbial community diversity and structure. The co-occurrence patterns of bacterial and fungal communities were influenced by soil pH, with network-specific fungi-bacteria interactions observed. Potential keystone taxa were identified for communities in the different networks. Most of these interactions were between microbial families potentially involved in carbon cycling, suggesting functional redundancy in these soils. Our findings highlight the significance of soil pH in determining the landscape-scale structure of microbial communities in Botswana's dryland soils.
Collapse
Affiliation(s)
- Coetzee Tidimalo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Ortiz Maximiliano
- Clemson University Genomics & Bioinformatics FacilityClemson UniversitySouth CarolinaUSA
| | - Jordaan Karen
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | - Olivier Bernard
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Greve Michelle
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Dikinya Oagile
- Department of Environmental ScienceUniversity of BotswanaGaboroneBotswana
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
16
|
Zhang Q, Liu X, Peng S, Dong W, Chen Z. One-year monitoring of grass-type architectural waterscapes with long-term operation: Water quality and microorganism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124849. [PMID: 39214442 DOI: 10.1016/j.envpol.2024.124849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Grass-type architectural waterscapes (GAWs) utilize submerged plants to enhance self-purification ability and maintain a clear-water state. However, knowledge about their long-term water quality and microbial community dynamics remains limited. This study monitored the water quality, microbial community composition, and networks in two GAWs. GAW1 consisted solely Hydrilla verticillata with a water depth of 0.70 m, while GAW2 primarily contained Vallisneria natans, Microsorum pteropus, and Aquarius grisebachii with a water depth of 0.30 m. Results show that both water depth and submerged plant species play crucial roles in GAW establishment. The water depth of 0.7 m enabled Hydrilla verticillata to thrive underwater despite temperature variations, which demonstrated excellent nutrient uptake capacity. Thus, GAW1 exhibited superior self-purification ability, consistently meeting Class III standard for surface water in China. In contrast, GAW2 had a shallow water depth and contained ornamental plants, only meeting Class V standard. Furthermore, microbial communities were shaped by water quality, with distinct enriched genera serving as potential "microbial indicators". Enrichment of the hgcI clade and Sporichthyaceae_unclassified indicated superior water quality in GAW1, while prevalence of Comamonadaceae_unclassified, Flavobacterium, Rhodoluna, and Pseudarcicella suggested poor water quality in GAW2. Additionally, highly complex and connected microbial networks suggested elevated pollutant levels in GAWs. This study emphasized the significance of submerged plant species and water depth in GAWs construction and highlighted microbial communities and networks as potential indicators of water quality.
Collapse
Affiliation(s)
- Quan Zhang
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, Guangdong, China.
| | - Xiang Liu
- Shenzhen Jianyan Testing Co., Ltd., 518031 Shenzhen, Guangdong, China
| | - Shijin Peng
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), 518055 Shenzhen, Guangdong, China
| | - Zeguang Chen
- Shenzhen Institute of Building Research Co., Ltd., 518049 Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
18
|
Xiao H, Wang K, Wang Y, Zhang T, Wang X. Inhibition of denitrification and enhancement of microbial interactions in the AGS system by high concentrations of quinoline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122837. [PMID: 39383760 DOI: 10.1016/j.jenvman.2024.122837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Quinoline represents a highly toxic and structurally stable nitrogen-containing heterocyclic compound in coking wastewater, posing a potential threat to human beings and the ecological environment. In this study, we investigated the impact of gradually elevating quinoline concentration on pollutant removal efficiency, sludge characteristics, microbial community and their interactions in the aerobic granular sludge (AGS) system. The results demonstrated that AGS was capable of effectively degrading quinoline, with a final removal rate of 90 mg/L quinoline reaching 98.54 ± 0.28%. Notably, the denitrification process was significantly impeded in the presence of 90 mg/L quinoline, with the Phase D effluent displaying a notably high NO3--N concentration of 37.09 ± 21.81 mg/L, primarily attributed to the reduced abundance of norank_f_A4b bacteria. As the quinoline concentration increased, the sludge particle size diminished from 3.46 to 2.60 mm, while the settling performance deteriorated significantly, escalating from 31.29 ± 1.63 mL/g to 62.32 ± 2.87 mL/g. Meanwhile, the protein (PN) content in EPS gradually increased (from 19.87 ± 0.88 mg/g MLVSS to 51.22 ± 3.21 mg/g MLVSS), while the polysaccharide (PS) content fluctuated. Quinoline profoundly modified microbial community composition and structure, with deterministic processes dominating community assembly. Network analysis indicated intensified and complex microbial interactions at 90 mg/L quinoline, characterized by significantly higher positive correlations. In addition, rare taxa (RT) dominated the network nodes, with 74 of 93 key species belonging to RT, highlighting their pivotal roles in sustaining system functions and strengthening microbial connections. This study provides new insights into the effects of quinoline on microbial community structure and interactions in AGS system.
Collapse
Affiliation(s)
- Haihe Xiao
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kening Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Huang F, Graham NJD, Su Z, Xu L, Yu W. Capabilities of Microbial Consortia from Disparate Environment Matrices in the Decomposition of Nature Organic Matter by Biofiltration. WATER RESEARCH 2024; 262:122047. [PMID: 39003956 DOI: 10.1016/j.watres.2024.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in drinking water treatment, influencing the performance of unit processes and final water quality (e.g. disinfection byproduct risk). Biofiltration is an effective method of reducing DOM, but currently lacks a comprehensive appreciation of the association between microbial profiles and biofiltration performance. In this study, bench-scale biofiltration units inoculated with microbial consortia from river and soil matrices were operated successively for comparing their efficacy in terms of DOM removal. The results showed that biofiltration units receiving soil microbes were significantly superior (p < 0.05) to those receiving river inoculated microbes in terms of decomposing DOM recalcitrant fractions and reducing DBP formation potential, resulting in DOC and DBP precursor removals of up to 58.4 % and 87.9 %, respectively. Characterization of the taxonomic composition revealed that differences in the microbial assembly of the two biofilter groups were subject to deterministic rather than stochastic factors. Furthermore, more complicated interspecific relationships and niche structures in soil inoculated biofilters were deciphered by co-occurrence network, providing a plausible profile on a taxonomic division of labor in DOM stepwise degradation. Accordingly, the contribution of microbial compositions was found to be of greater importance than the GAC mass and biomass attached to the media. Thus, this study has advanced the understanding of microbial-mediated DOM decomposition in biofiltration, and also provided a promising strategy for enhancing the process for water use via developing appropriate engineered consortia of bacteria.
Collapse
Affiliation(s)
- Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
20
|
Zhou Z, Keiblinger KM, Huang Y, Bhople P, Shi X, Yang S, Yu F, Liu D. Virome and metagenomic sequencing reveal the impact of microbial inoculants on suppressions of antibiotic resistome and viruses during co-composting. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135355. [PMID: 39068883 DOI: 10.1016/j.jhazmat.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Co-composting with exogenous microbial inoculant, presents an effective approach for the harmless utilization of livestock manure and agroforestry wastes. However, the impact of inoculant application on the variations of viral and antibiotic resistance genes (ARGs) remains poorly understood, particularly under varying manure quantity (low 10 % vs. high 20 % w/w). Thus, employing virome and metagenomic sequencing, we examined the influence of Streptomyces-Bacillus Inoculants (SBI) on viral communities, phytopathogen, ARGs, mobile genetic elements, and their interrelations. Our results indicate that SBI shifted dominant bacterial species from Phenylobacterium to thermotropic Bordetella, and the quantity of manure mediates the effect of SBI on whole bacterial community. Major ARGs and genetic elements experienced substantial changes with SBI addition. There was a higher ARGs elimination rate in the composts with low (∼76 %) than those with high manure (∼70 %) application. Virus emerged as a critical factor influencing ARG dynamics. We observed a significant variation in virus community, transitioning from Gemycircularvirus- (∼95 %) to Chlamydiamicrovirus-dominance. RDA analysis revealed that Gemycircularvirus was the most influential taxon in shaping ARGs, with its abundance decreased approximately 80 % after composting. Collectively, these findings underscore the role of microbial inoculants in modulating virus communities and ARGs during biowaste co-composting.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Katharina Maria Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life-Sciences, Vienna 1190, Austria
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Parag Bhople
- Crops, Environment, and Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford Y35TC98, Ireland
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
21
|
Ningthoujam R, Pinyakong O. Exploring di (2-ethylhexyl) phthalate degradation by a synthetic marine bacterial consortium: Genomic insights, pathway and interaction prediction, and application in sediment microcosms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134557. [PMID: 38735188 DOI: 10.1016/j.jhazmat.2024.134557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), a toxic phthalate ester (PAE) plasticizer, is often detected in marine sediment and biota. Our understanding of DEHP-degrading marine bacteria and the associated genetic mechanisms is limited. This study established a synthetic bacterial consortium (A02) consisting of three marine bacteria (OR05, OR16, and OR21). Consortium A02 outperformed the individual strains in DEHP degradation. Investigations into the degradation of DEHP intermediates revealed that OR05 and OR16 likely contributed to enhanced DEHP degradation by Consortium A02 via the utilization of DEHP intermediates, such as protocatechuic acid and mono (ethylhexyl) phthalate, with OR21 as the key DEHP degrader. A pathway of DEHP degradation by Consortium A02 was predicted based on genome analysis and experimental degradation. Bioaugmentation with Consortium A02 led to 80% DEHP degradation in 26 days in saline sediment (100 mg/kg), surpassing the 53% degradation by indigenous microbes, indicating the potential of A02 for treating DEHP-contaminated sediments. Meanwhile, bioaugmentation notably changed the bacterial community, with the exclusive presence of certain bacterial genera in the A02 bioaugmented microcosms, and was predicted to result in a more dynamic and active sediment bacterial community. This study contributes to the limited literature on DEHP degradation by marine bacteria and their associated genes.
Collapse
Affiliation(s)
- Ritu Ningthoujam
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
22
|
Dan H, Song X, Xiang G, Song C, Dai H, Shao Y, Huang D, Luo H. The response pattern of the microbial community structure and metabolic profile of jiupei to Bacillus subtilis JP1 addition during baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5021-5030. [PMID: 38296914 DOI: 10.1002/jsfa.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hulin Dan
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuemiao Song
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Gangxing Xiang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | | | | | - Yan Shao
- Luzhou Laojiao Co. Ltd, Luzhou, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
23
|
da Silva Duarte V, de Paula Dias Moreira L, Skeie SB, Svalestad F, Øyaas J, Porcellato D. Database selection for shotgun metaproteomic of low-diversity dairy microbiomes. Int J Food Microbiol 2024; 418:110706. [PMID: 38696985 DOI: 10.1016/j.ijfoodmicro.2024.110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
The metaproteomics field has recently gained more and more interest as a valuable tool for studying both the taxonomy and function of microbiomes, including those used in food fermentations. One crucial step in the metaproteomics pipeline is selecting a database to obtain high-quality taxonomical and functional information from microbial communities. One of the best strategies described for building protein databases is using sample-specific or study-specific protein databases obtained from metagenomic sequencing. While this is true for high-diversity microbiomes (such as gut and soil), there is still a lack of validation for different database construction strategies in low-diversity microbiomes, such as those found in fermented dairy products where starter cultures containing few species are used. In this study, we assessed the performance of various database construction strategies applied to metaproteomics on two low-diversity microbiomes obtained from cheese production using commercial starter cultures and analyzed by LC-MS/MS. Substantial differences were detected between the strategies, and the best performance in terms of the number of peptides and proteins identified from the spectra was achieved by metagenomic-derived databases. However, extensive databases constructed from a high number of available online genomes obtained a similar taxonomical and functional annotation of the metaproteome compared to the metagenomic-derived databases. Our results indicate that, in the case of low-diversity dairy microbiomes, the use of publically available genomes to construct protein databases can be considered as an alternative to metagenome-derived databases.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Luiza de Paula Dias Moreira
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | - Siv B Skeie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway
| | | | - Jorun Øyaas
- TINE SA, P.O. Box 7, Kalbakken, N-0902 Oslo, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
24
|
Liu Y, Chu K, Hua Z, Li Q, Lu Y, Ye F, Dong Y, Li X. Dynamics of antibiotic resistance genes in the sediments of a water-diversion lake and its human exposure risk behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172563. [PMID: 38641096 DOI: 10.1016/j.scitotenv.2024.172563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The dynamics and exposure risk behaviours of antibiotic resistance genes (ARGs) in the sediments of water-diversion lakes remain poorly understood. In this study, spatiotemporal investigations of ARG profiles in sediments targeting non-water (NWDP) and water diversion periods (WDP) were conducted in Luoma Lake, a typical water-diversion lake, and an innovative dynamics-based risk assessment framework was constructed to evaluate ARG exposure risks to local residents. ARGs in sediments were significantly more abundant in the WDP than in the NWDP, but there was no significant variation in their spatial distribution in either period. Moreover, the pattern of ARG dissemination in sediments was unchanged between the WDP and NWDP, with horizontal gene transfer (HGT) and vertical gene transfer (VGT) contributing to ARG dissemination in both periods. However, water diversion altered the pattern in lake water, with HGT and VGT in the NWDP but only HGT in the WDP, which were critical pathways for the dissemination of ARGs. The significantly lower ARG sediment-water partition coefficient in the WDP indicated that water diversion could shift the fate of ARGs and facilitate their aqueous partitioning. Risk assessment showed that all age groups faced a higher human exposure risk of ARGs (HERA) in the WDP than in the NWDP, with the 45-59 age group having the highest risk. Furthermore, HERA increased overall with the bacterial carrying capacity in the local environment and peaked when the carrying capacity reached three (NWDP) or four (WDP) orders of magnitude higher than the observed bacterial population. HGT and VGT promoted, whereas ODF covering gene mutation and loss mainly reduced HERA in the lake. As the carrying capacity increased, the relative contribution of ODF to HERA remained relatively stable, whereas the dominant mechanism of HERA development shifted from HGT to VGT.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Qiming Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang 213300, PR China
| | - Fuzhu Ye
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
25
|
Wang Y, Yu Q, Zheng C, Wang Y, Chen H, Dong S, Hu X. The impact of microbial inoculants on large-scale composting of straw and manure under natural low-temperature conditions. BIORESOURCE TECHNOLOGY 2024; 400:130696. [PMID: 38614144 DOI: 10.1016/j.biortech.2024.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Understanding large-scale composting under natural conditions is essential for improving waste management and promoting sustainable agriculture. In this study, corn straw (400 tons) and pig manure (200 tons) were composted with microbial inoculants. The thermophilic phase of composting lasted for fourteen weeks, resulting in an alkaline final product. Microbial systems with low-temperature initiation and high-temperature fermentation played a crucial role in enhancing lignocellulose degradation and humic substances (HS) formation. Adding microbes, including Rhodanobacter, Pseudomonas, and Planococcus, showed a positive correlation with degradation rates of cellulose, hemicellulose, and lignin. Bacillus, Planococcus, and Acinetobacter were positively correlated with HS formation. Microorganisms facilitated efficient hydrolysis of lignocelluloses, providing humic precursors to accelerate composting humification through phenolic protein and Maillard pathways. This study provides significant insights into large-scale composting under natural conditions, contributing to the advancement of waste management strategies and the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Yanping Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chuang Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanbo Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | | | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Xiang F, Han L, Jiang S, Xu X, Zhang Z. Black soldier fly larvae mitigate greenhouse gas emissions from domestic biodegradable waste by recycling carbon and nitrogen and reconstructing microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33347-33359. [PMID: 38676863 DOI: 10.1007/s11356-024-33308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Black soldier fly larvae have been proven to reduce greenhouse gas emissions in the treatment of organic waste. However, the microbial mechanisms involved have not been fully understood. The current study mainly examined the dynamic changes of carbon and nitrogen, greenhouse gas emissions, the succession of microbial community structure, and changes in functional gene abundance in organic waste under larvae treatment and non-aeration composting. Thirty percent carbon and 55% nitrogen in the organic waste supplied were stored in larvae biomass. Compared to the non-aeration composting, the larvae bioreactor reduced the proportion of carbon and nitrogen converted into greenhouse gases (CO2, CH4, and N2O decreased by 62%, 87%, and 95%, respectively). 16S rRNA sequencing analysis indicated that the larvae bioreactor increased the relative abundance of Methanophaga, Marinobacter, and Campylobacter during the bioprocess, enhancing the consumption of CH4 and N2O. The metagenomic data showed that the intervention of larvae reduced the ratio of (nirK + nirS + nor)/nosZ in the residues, thereby reducing the emission of N2O. Larvae also increased the functional gene abundance of nirA, nirB, nirD, and nrfA in the residues, making nitrite more inclined to be reduced to ammonia instead of N2O. The larvae bioreactor mitigated greenhouse gas emissions by redistributing carbon and nitrogen and remodeling microbiomes during waste bioconversion, giving related enterprises a relative advantage in carbon trading.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- JiaXing FuKang Biotechnology Company Limited, TongXiang Economic HiTech Zone, Building 1-19#, Development Ave 133, Tongxiang, 314515, People's Republic of China
| | - LuYing Han
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ShuoYun Jiang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, Hangzhou, 311121, People's Republic of China
| | - XinHua Xu
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
- China Academy of West Region Development, Zhejiang University, YuHangTang Ave 866, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
27
|
López-González JA, Suárez-Estrella F, Jurado MM, Martínez-Gallardo MR, Toribio A, Estrella-González MJ, López MJ. Development of functional consortia for the pretreatment of compostable lignocellulosic waste: A simple and effective solution to a large-scale problem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120638. [PMID: 38518496 DOI: 10.1016/j.jenvman.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Microorganisms drive the degradation of organic matter thanks to their enzymatic versatility. However, the structure of lignocellulose poses a great challenge for the microbiota inhabiting a compost pile. Our purpose was to increase the biodegradability of vegetable waste in the early stages of the composting process by applying a microbial consortium with lignocelllulolytic capacity. For this, a previous screening was performed among the culturable microbiota from different composting processes to find inoculants with ligninocellulolytic activity. Selected strains were applied as a pure culture and as a microbial consortium. The starting material was composed of tomato plant and pruning remains mixed in a ratio (50:50 v/v), whose humidity was adjusted to around 65%. To determine the ability of both treatments to activate the biodegradation of the mixtures, moisture, organic matter, ash, C/N ratio, 4-day cumulative respirometric index (AT4) and degradation rates of cellulose, hemicellulose and lignin were evaluated. Subsequently, a real composting process was developed in which the performance of the microbial consortium was compared with the composting process without inoculum (control). According to our tests, three microbial strains (Bacillus safensis, Bacillus licheniformis and Fusarium oxysporum) were selected. The results showed that the application of the bacteria strains at low doses (104 CFU g-1 on the complete residual material of the pile) resulted in higher rates of lignocelullose degradation after 10 days of treatment compared to that observed after application of the fungus in pure culture or untreated controls. The implementation of the strategy described in this work resulted in obtaining compost with better agronomic quality than the uninoculated controls. Therefore, the application of this consortium could be considered as an interesting tool for bioactivation of lignocellulosic waste prior to the composting process.
Collapse
Affiliation(s)
- J A López-González
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain.
| | - F Suárez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain.
| | - M M Jurado
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain
| | - M R Martínez-Gallardo
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain
| | - A Toribio
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain
| | - M J Estrella-González
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain
| | - M J López
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almería, Spain
| |
Collapse
|
28
|
Cheng J, Zhang L, Gao X, Shi T, Li G, Luo W, Qi C, Xu Z. Multi-stage aeration regime to regulate organic conversion toward gas alleviation and humification in food waste digestate composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120809. [PMID: 38583382 DOI: 10.1016/j.jenvman.2024.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Aerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study. In addition to continuous aeration with a constant intensity of 0.3 L kg·dry mass (DM)-1·min-1, two multi-stage decreased aeration regimes were designed as "0.3-0.2-0.1" and "0.3-0.1-0.1" L·kg·DM-1·min-1 from the thermophilic to cooling and then mature stages, respectively. Results showed that the decreased aeration regimes could alleviate nitrous oxide (N2O) and ammonia (NH3) emission and slightly enhance humification during composting. The alleviated N2O and NH3 emission were mainly contributed by abiotically reducing gaseous release potential as well as biotically inactivating denitrifers (Pusillimonas and Pseudidiomarina) and proliferating Atopobium to reduce nitrate availability under lower aeration supply. The "0.3-0.2-0.1 L kg·DM-1·min-1" regime exhibited a more excellent performance to alleviate N2O and NH3 emission by 27.5% and 16.3%, respectively. Moreover, the decreased aeration regimes also favored the enrichment of functional bacteria (Caldicoprobacter and Syntrophomonas) to accelerate lignocellulosic biodegradation and thus humic acid synthesis by 6.5%-11.2%. Given its better performance to improve gaseous emissions and humification, the aeration regime of "0.3-0.2-0.1 L kg·DM-1·min-1" are recommended in food waste digestate composting in practice.
Collapse
Affiliation(s)
- Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tong Shi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Xing W, Gai X, Xue L, Li S, Zhang X, Ju F, Chen G. Enriched rhizospheric functional microbiome may enhance adaptability of Artemisia lavandulaefolia and Betula luminifera in antimony mining areas. Front Microbiol 2024; 15:1348054. [PMID: 38577689 PMCID: PMC10993014 DOI: 10.3389/fmicb.2024.1348054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Dominant native plants are crucial for vegetation reconstruction and ecological restoration of mining areas, though their adaptation mechanisms in stressful environments are unclear. This study focuses on the interactions between dominant indigenous species in antimony (Sb) mining area, Artemisia lavandulaefolia and Betula luminifera, and the microbes in their rhizosphere. The rhizosphere microbial diversity and potential functions of both plants were analyzed through the utilization of 16S, ITS sequencing, and metabarcoding analysis. The results revealed that soil environmental factors, rather than plant species, had a more significant impact on the composition of the rhizosphere microbial community. Soil pH and moisture significantly affected microbial biomarkers and keystone species. Actinobacteria, Proteobacteria and Acidobacteriota, exhibited high resistance to Sb and As, and played a crucial role in the cycling of carbon, nitrogen (N), phosphorus (P), and sulfur (S). The genes participating in N, P, and S cycling exhibited metabolic coupling with those genes associated with Sb and As resistance, which might have enhanced the rhizosphere microbes' capacity to endure environmental stressors. The enrichment of these rhizosphere functional microbes is the combined result of dispersal limitations and deterministic assembly processes. Notably, the genes related to quorum sensing, the type III secretion system, and chemotaxis systems were significantly enriched in the rhizosphere of plants, especially in B. luminifera, in the mining area. The phylogenetic tree derived from the evolutionary relationships among rhizosphere microbial and chloroplast whole-genome resequencing results, infers both species especially B. luminifera, may have undergone co-evolution with rhizosphere microorganisms in mining areas. These findings offer valuable insights into the dominant native rhizosphere microorganisms that facilitate plant adaptation to environmental stress in mining areas, thereby shedding light on potential strategies for ecological restoration in such environments.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Shaocui Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
30
|
Liu X, Rong X, Jiang P, Yang J, Li H, Yang Y, Deng X, Xie G, Luo G. Biodiversity and core microbiota of key-stone ecological clusters regulate compost maturity during cow-dung-driven composting. ENVIRONMENTAL RESEARCH 2024; 245:118034. [PMID: 38147920 DOI: 10.1016/j.envres.2023.118034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-throughput sequencing, polytrophic ecological networks, and statistical models to visualize our hypothesis. The results showed significant differences in the richness, phylogenetic diversity, and community composition of bacteria, fungi, and eukaryotes at different composting stages. The ASV191 (Sphingobacterium), ASV2243 (Galibacter), ASV206 (Galibacter), and ASV62 (Firmicutes) were the core microbiota of key-stone bacterial clusters relating to compost maturity; And the ASV356 (Chytridiomycota), ASV470 (Basidiomycota), and ASV299 (Ciliophora) were the core microbiota of key-stone eukaryotic clusters relating to compost maturity based on the data of this study. Compared with the fungal taxa, the biodiversity and core microbiota of key-stone bacterial and eukaryotic clusters contributed more to compost maturity and could largely predict the change in the compost maturity. Structural equation modeling revealed that the biodiversity of total microbial communities and the biodiversity and core microbiota of the key-stone microbial clusters in the compost directly and indirectly regulated compost maturity by influencing nutrient availability (e.g., NH4+-N and NO3--N), hemicellulose, humic acid content, and fulvic acid content, respectively. These results contribute to our understanding of the biodiversity and core microbiota of key-stone microbial clusters in compost to improve the performance and efficiency of cow-dung-driven composting.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Jiang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Junyan Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Yong Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Guixian Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Gongwen Luo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
31
|
Mao L, Kang J, Sun R, Liu J, Ge J, Ping W. Ecological succession of abundant and rare subcommunities during aerobic composting in the presence of residual amoxicillin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133456. [PMID: 38211525 DOI: 10.1016/j.jhazmat.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Aerobic composting increases the content of soluble nutrients and facilitates the safe treatment of livestock manure. Although different taxa play crucial roles in maintaining ecological functionality, the succession patterns of community composition and assembly of rare and abundant subcommunities during aerobic composting under antibiotic stress and their contributions to ecosystem functionality remain unclear. Therefore, this study used 16 S rRNA gene sequencing technology to reveal the response mechanisms of diverse microbial communities and the assembly processes of abundant and rare taxa to amoxicillin during aerobic composting. The results indicated that rare taxa exhibited distinct advantages in terms of diversity, community composition, and ecological niche width compared with abundant taxa, highlighting their significance in maintaining ecological community dynamics. In addition, deterministic (heterogeneous selection) and stochastic processes (dispersal limitation) play roles in the community succession and functional dynamics of abundant and rare subcommunities. The findings of this study may contribute to a better understanding of the relative importance of deterministic and stochastic assembly processes in composting systems, and the ecological functions of diverse microbial communities, ultimately leading to improved ecological environment.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jiaxin Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
32
|
Rajeswari G, Kumar V, Jacob S. A concerted enzymatic de-structuring of lignocellulosic materials using a compost-derived microbial consortia favoring the consolidated pretreatment and bio-saccharification. Enzyme Microb Technol 2024; 174:110393. [PMID: 38219439 DOI: 10.1016/j.enzmictec.2023.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
33
|
Huang J, Jiang Z, Li A, Jiang F, Tang P, Cui J, Feng W, Fu C, Lu Q. Role of keystone drives polycyclic aromatic hydrocarbons degradation and humification especially combined with aged contaminated soil in co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120323. [PMID: 38417356 DOI: 10.1016/j.jenvman.2024.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.
Collapse
Affiliation(s)
- Jiayue Huang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ziwei Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Anyang Li
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fangzhi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Pengfei Tang
- Heilongjiang Provincial Ecological Environment Monitoring Center, Harbin, 150056, China
| | - Jizhe Cui
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Wenxuan Feng
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Chang Fu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Qian Lu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
34
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
35
|
Hu S, Xu C, Xie Y, Ma L, Niu Q, Han G, Huang J. Metagenomic insights into the diversity of 2,4-dichlorophenol degraders and the cooperation patterns in a bacterial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168723. [PMID: 38008322 DOI: 10.1016/j.scitotenv.2023.168723] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
2,4-Dichlorophenol, which is largely employed in herbicides and industrial production, is frequently detected in ecosystems and poses risks to human health and environmental safety. Microbial communities are thought to perform better than individual strains in the complete degradation of organic contaminants. However, the synergistic degradation mechanisms of the microbial consortia involved in 2,4-dichlorophenol degradation are still not widely understood. In this study, a bacterial consortium named DCP-2 that is capable of degrading 2,4-dichlorophenol was obtained. Metagenomic analysis, cultivation-dependent functional verification, and co-occurrence network analysis were combined to reveal the primary 2,4-dichlorophenol degraders and the cooperation patterns in the consortium DCP-2. Metagenomic analysis showed that Pseudomonas, Achromobacter, and Pigmentiphaga were the primary degraders for the complete degradation of 2,4-dichlorophenol. Thirty-nine phylogenetically diverse bacterial genera, such as Brucella, Acinetobacter, Aeromonas, Allochromatium and Bosea, were identified as keystone taxa for 2,4-dichlorophenol degradation by keystone taxa analysis of the co-occurrence networks. In addition, a stable synthetic consortium of isolates from DCP-2 was constructed, consisting of Pseudomonas sp. DD-13 and Brucella sp. FZ-1; this synthetic consortium showed superior degradation capability for 2,4-dichlorophenol in both mineral salt medium and wastewater compared with monoculture. The findings provide valuable insights into the practical bioremediation of 2,4-dichlorophenol-contaminated sites.
Collapse
Affiliation(s)
- Shunli Hu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Chuangchuang Xu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Yanghe Xie
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Lu Ma
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Qingfeng Niu
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, 230036 Hefei, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, 230036 Hefei, China.
| | - Junwei Huang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
36
|
Dong S, Wei Y, Yu Q, Gao Y, Chen H, Zhou K, Cheng M, Wang B, Wei Y, Hu X. Inoculating functional bacteria improved the humification process by regulating microbial networks and key genera in straw composting by adding different nitrogen sources. BIORESOURCE TECHNOLOGY 2024; 393:130022. [PMID: 37979883 DOI: 10.1016/j.biortech.2023.130022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The aim of this study was to compare the effect of functional inoculant and different nitrogen sources on the relationship among lignocellulose, precursors, and humus as well as their interactions with bacterial genera in straw composting. Results showed that inoculation improved the heating process and retained more nitrate compared to control. Inoculation increased the degradation of lignocellulosic components by 26.9%-81.6% and the formation of humus by 15.7%-23.0%. Bioinformatics analysis showed that inoculation enriched key genera Chryseolinea in complex nitrogen source (pig manure) compost and Pusillimas, Luteimonas, and Flavobacteria in single nitrogen source (urea) compost, which were related to humus formation. Network analysis found that inoculation and urea addition improved the microbial synergistic effect and inoculation combined with pig manure had more complex modularity and interactions. Combining the functional bacterial inoculant with urea helped to enhance the degradation of lignocellulose and humification process during straw composting especially with single nitrogen source.
Collapse
Affiliation(s)
| | - Yiyang Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Gao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Heshu Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Bo Wang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Zhang Y, Liu L, Huang G, Yang C, Tian W, Ge Z, Zhang B, Wang S, Zhang H. Enhancing humification and microbial interactions during co-composting of pig manure and wine grape pomace: The role of biochar and Fe 2O 3. BIORESOURCE TECHNOLOGY 2024; 393:130120. [PMID: 38029803 DOI: 10.1016/j.biortech.2023.130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Phenol-rich wine grape pomace (WGP) improves the conversion of pig manure (PM) into humic acid (HA) during composting. However, the impact of using combinations of Fe2O3 and biochar known to promote compost maturation remains uncertain. This research explored the individual and combined influence of biochar and Fe2O3 during the co-composting of PM and WGP. The findings revealed that Fe2O3 boosts microbial network symbiosis (3233 links), augments the HA yield to 3.38 by promoting polysaccharide C-O stretching, and improves the germination index to 124.82 %. Limited microbial interactions, increased by biochar, resulted in a lower HA yield (2.50). However, the combination weakened the stretching of aromatics and quinones, which contribute to the formation of HA, resulting in reduced the humification to 2.73. In addition, Bacillus and Actinomadura were identified as pivotal factors affecting HA content. This study highlights Fe2O3 and biochar's roles in phenol-rich compost humification, but combined use reduces efficacy.
Collapse
Affiliation(s)
- Yingchao Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Liqian Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Guowei Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Changhao Yang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenxin Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhenyu Ge
- Leading Bio-agricultural Co. Ltd. and Hebei Agricultural Biotechnology Innovation Center, Qinhuangdao 066004, PR China
| | - Baohai Zhang
- Hemiao Biological Technology Co., Ltd, Qinhuangdao 066000, PR China
| | - Sufeng Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Xu P, Shu L, Yang Y, Kumar S, Tripathi P, Mishra S, Qiu C, Li Y, Wu Y, Yang Z. Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115884. [PMID: 38154152 DOI: 10.1016/j.ecoenv.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 ℃ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.
Collapse
Affiliation(s)
- Peng Xu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luolin Shu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sunil Kumar
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Priyanka Tripathi
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Sita Mishra
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Chun Qiu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Wu
- School of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenchao Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Chen L, Chen S, Xing T, Long Y, Wang Z, Kong X, Xu A, Wu Q, Sun Y. Phytoremediation with application of anaerobic fermentation residues regulate the assembly of ecological clusters within co-occurrence network in ionic rare earth tailings soil: A pot experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122790. [PMID: 37890691 DOI: 10.1016/j.envpol.2023.122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/03/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The cultivation of energy plants (Pennisetum hybrid) with anaerobic fermentation residues has become an important phytoremediation approach in ionic rare earth elements (REEs) tailings because of its advantages in low cost and sustainability recently. In this study, a comparative pot experiment was carried out to determine the interaction pattern and key ecological clusters in microbial community respond to phytoremediation. Results showed that the application of biogas residues or slurry could effectively mitigate soil acidification, increase soil nutrients, alter REEs bioavailability and promote plant growth. Without fertilization, plant growth was restricted and soil acidification and nutrient-deficiency would be further aggravated. This difference in phytoremediation effect was associated with the assembly of seven key ecological clusters in co-occurrence network of rhizosphere soil. And such assembly pattern of cluster, determined by the environmental preference (e.g. pH, REEs), nutrient demand and interaction among clusters, could alter the microbial communities in response to the changes in soil context rapidly and exert corresponding ecological function during phytoremediation, such as participating in soil nutrient cycling, affecting plant biomass and altering REEs bioavailability. These findings provided new insights for anaerobic fermentation residues application, and can be beneficial to support for studying microbe-plant combined remediation in the future.
Collapse
Affiliation(s)
- Liumeng Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shasha Chen
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yun Long
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Science and Technology of China, Hefei, 230026, China.
| | - An Xu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qiangjian Wu
- Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yongmin Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
40
|
Zhang X, Chen G, Kang J, Bello A, Fan Z, Liu P, Su E, Lang K, Ma B, Li H, Xu X. β-Glucosidase-producing microbial community in composting: Response to different carbon metabolic pressure influenced by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119506. [PMID: 37951109 DOI: 10.1016/j.jenvman.2023.119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Poor management of agricultural waste will cause a lot of environment pollution and the composting process is one of the most effective measures for resource reuse of agricultural waste. β-Glucosidase-producing microbial communities play a vital role in cellulose degradation during composting and regulate cellulase production via differentially expressed glucose/non-glucose tolerant β-glucosidase genes. Biochar is widely used as an amendment in compost to accelerate cellulose degradation during composting. However, Biochar-mediated impacts on β-glucosidase-producing microbial communities in compost are unclear. Here, different carbon metabolism pressures were set in natural and biochar compost to elucidate the regulation mechanism and interaction of the β-glucosidase microbial community. Results showed that the addition of biochar decreased the transcription of β-glucosidase genes and led to a reduction of β-glucosidase activity. Micromonospora and Cellulosimicrobium were the predominant functional communities determining cellulose degradation during biochar compost. Biochar addition strengthened the response of the functional microbial community to carbon metabolism pressure. And adding biochar altered the key β-glucosidase-producing microbial communities, influencing cellulase and the interaction between these communities to respond to the different carbon metabolic pressure of compost. Biochar also shifted the co-occurrence network of β-glucosidase-producing microbial community by changing the keystone species. Furthermore, co-occurrence network analysis revealed that high glucose decreased the complexity and stability of the functional microbial network. Most functional microorganisms from Streptomyces produce non-glucose tolerant β-glucosidase, which were the key bacterial communities affecting β-glucosidase activity in the non-glucose treatment. This study provides new insights into the response of functional microbial communities and the regulation of enzyme production during the transformation of cellulosic biomass.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxin Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingxue Kang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhihua Fan
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Peizhu Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Kaice Lang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
41
|
Xiang F, Zhang Q, Xu X, Zhang Z. Black soldier fly larvae recruit functional microbiota into the intestines and residues to promote lignocellulosic degradation in domestic biodegradable waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122676. [PMID: 37839685 DOI: 10.1016/j.envpol.2023.122676] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Lignocellulose is an important component of domestic biodegradable waste (DBW), and its complex structure makes it an obstacle in the biological treatment of DBW. Here, we identify black soldier fly larvae (Hermetia illucens L., BSFL) as a bioreactor for lignocellulose degradation in DBW based on their ability to effectively recruit lignocellulose-degrading bacteria. This study mainly examined the lignocellulose degradation, dynamic succession of the microbial community, gene expression of carbohydrate-active enzymes (CAZymes), and co-occurrence network analysis. Investigation of lignocellulose degradation by BSFL within 14 days indicated that the lignocellulose biodegradation rate in the larvae treatment (LT, 26.5%) group was higher than in natural composting (NC, 4.06%). In order to gain a more comprehensive understanding of microbiota, we conducted metagenomic sequencing of larvae intestines (LI), along with the LT and NC. The relative abundance of lignocellulose-degrading bacteria and CAZymes genes in LT and LI were higher than those in NC based on metagenomics sequencing. Importantly, genes coding cellulase and hemicellulase in LI were 3.36- and 2.79-fold higher, respectively, than that in LT, while the ligninase genes in LT were 1.82-fold higher than in LI. A co-occurrence network analysis identified Enterocluster and Luteimonas as keystone taxa in larvae intestines and residues, respectively, with a synergistic relationship to lignocellulose-degrading bacteria. The mechanism of recruiting functional bacteria through the larvae intestines promoted lignocellulose degradation in DBW, improving the efficiency of BSFL biotechnology and resource regeneration.
Collapse
Affiliation(s)
- FangMing Xiang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China.
| | - Qian Zhang
- JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 311118, HangZhou, 311121, PR China.
| | - XinHua Xu
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China.
| | - ZhiJian Zhang
- College of Environmental and Resource Sciences, ZheJiang University, YuHangTang Ave 866, HangZhou, ZheJiang Province, 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou, 310058, PR China.
| |
Collapse
|
42
|
Li X, Zhong X, Yang Z, Cai C, Zhang W, Li X, Sun X, Dong B, Xu Z. Novelty three stages for humification of sewage sludge during hyperthermophilic aerobic fermentation. ENVIRONMENTAL RESEARCH 2023; 239:117276. [PMID: 37806481 DOI: 10.1016/j.envres.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Compared with conventional aerobic fermentation (CAF), there is limited knowledge of how hyperthermophilic aerobic fermentation (HAF) enhances the humification of sewage sludge. This study compared three novel stages of organic degradation, precursors, functional groups, bacterial community, and humus synthesis mechanism in HAF with CAF. The results showed that organic matter (OM) degraded rapidly, and 68% of the degradation could be completed of stage I in HAF. Compared with the initial stage, ammonium nitrogen (NH4+-N), water-soluble organic carbon, and water-soluble total nitrogen increased by 2.83 times, 40.5 times, and 33.5 times, respectively. Cellulose and hemicellulose decreased by 29.22% and 21.85%, respectively. These results suggested that temperature (>80 °C) and Bacillus dominated accelerate the humification process by rapidly improving OM degradation. Compared with the initial value of HAF, the maximum increment of reducing sugar at stage II was 297%, and the degradation rate of cellulose was effectively increased by 21.03% compared with that of CAF. The precursors such as reducing sugars and amino acids formed humus at stage II. The content of Aryl C increased significantly during the HAF process, the degree of polymerization of humus and the aromatization degree of HA and FA increased significantly, and complex organic macromolecular material polymers were formed at stage III. The sugar-amine condensation was the mechanism of humification in the sludge HAF process. This investigation provided three new stages of insights into the synthesis of humification during the HAF process and extended the current mechanism of humification in the HAF process.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Xinru Zhong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Zao Yang
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Chen Cai
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| | - Wei Zhang
- School of Environment and Architecture. University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojie Sun
- Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China
| | - Bin Dong
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China; Guangxi Key laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, PR China.
| | - Zuxin Xu
- School of Environmental Science and Engineering. Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
43
|
Kumar Awasthi S, Verma S, Liu T, Kumar Awasthi M, Zhang Z, Syed A, Bahkali AH. Regulation of fungal communities during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 389:129823. [PMID: 37805085 DOI: 10.1016/j.biortech.2023.129823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
The role of protein shell (PS) amendment in altering the fungal community during pig manure (PM) composting was investigated. Six different dosages of PS based on the dry weight of PM (0 %, 2.5 %, 5 %, 7.5 %, 10 %, and 12 %; T1-T6, respectively) were mixed with wheat straw to make the initial feedstock and composted for 42 days. The results showed that Ascomycota, Basidiomycota, and Giomeromycota were the most abundant phyla in all treatments. However, the relative abundance of Giomeromycota was the highest in the control treatment, although a substantially greater population was observed in all treatments. Genus abundance declined steadily from T1 to T6; however, T4 and T6 had smaller populations. Correlation analysis also suggested that T6 amendment increased the overall fungal dynamics and organic matter degradation. Thus, T6 was more efficient to enhance the overall fungal population and dynamics with considerable network connections among all the analyzed parameters.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Chen J, Cai Y, Wang Z, Xu Z, Li J, Ma X, Zhuang W, Liu D, Wang S, Song A, Xu J, Ying H. Construction of a synthetic microbial community based on multiomics linkage technology and analysis of the mechanism of lignocellulose degradation. BIORESOURCE TECHNOLOGY 2023; 389:129799. [PMID: 37774801 DOI: 10.1016/j.biortech.2023.129799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The efficient degradation of lignocellulose is a bottleneck for its integrated utilization. This research performed species analysis and made functional predictions in various ecosystems using multiomics coupling to construct a core synthetic microbial community with efficient lignocellulose degradation function. The synthetic microbial community was employed to degrade corn straw via solid-state fermentation. The degradation mechanisms were resolved using proteomics. The optimum culture conditions included 10% inoculum level (w/v), 4% nitrogen source ratio and a fermentation time of 23 d. Under these conditions, the degradation rates of cellulose, hemicellulose, and lignin were 34.91%, 45.94%, and 23.34%, respectively. Proteomic analysis revealed that lignin 1,4-β-xylanase, β-xylosidase and endo-1,4-β-xylanase were closely related to lignocellulose degradation. The metabolic pathways involved in lignocellulose degradation and the functional roles of eight strains were obtained. The synthesis of a microbial community via multiomics linkage technology can effectively decompose lignocellulose, which is useful for their further utilization.
Collapse
Affiliation(s)
- Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Zhengzhong Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Jia Li
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Xiaotian Ma
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Dong Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China.
| | - Andong Song
- College of Life Science, Henan Agricultural University, 218 Ping An Avenue, Zhengdong New District, Zhengzhou 450002, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
45
|
Chang Y, Zhou K, Yang T, Zhao X, Li R, Li J, Xu S, Feng Z, Ding X, Zhang L, Shi X, Su J, Li J, Wei Y. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism. ENVIRONMENTAL RESEARCH 2023; 237:117016. [PMID: 37657603 DOI: 10.1016/j.envres.2023.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.
Collapse
Affiliation(s)
- Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Longli Zhang
- Beijing VOTO Biotech Co.,Ltd, 100193, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
46
|
Ma W, Lin L, Peng Q. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates. MICROBIAL ECOLOGY 2023; 86:1589-1603. [PMID: 36717391 DOI: 10.1007/s00248-023-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Terrestrial microbial consortia were reported to play fundamental roles in the global carbon cycle and renewable energy production through the breakdown of complex organic carbon. However, we have a poor understanding of how biotic/abiotic factors combine to influence consortia assembly and lignocellulose degradation in aquatic ecosystems. In this study, we used 96 in situ lignocellulose enriched, coastal intertidal zone-derived bacterial consortia as the initial inoculating consortia and developed 384 cultured consortia under different lignocellulose substrates (aspen, pine, rice straw, and purified Norway spruce lignin) with gradients of salinity and temperature. As coastal consortia, salinity was the strongest driver for assembly, followed by Norway spruce lignin, temperature, and aspen. Moreover, a conceptual model was proposed to demonstrate different succession dynamics between consortia under herbaceous and woody lignocelluloses. The succession of consortium under Norway spruce lignin is greatly related with abiotic factors, while its substrate degradation is mostly correlated with biotic factors. A discrepant pattern was observed in the consortium under rice straw. Finally, we developed four groups of versatile, yet specific consortia. Our study not only reveals that coastal intertidal wetlands are important natural resources to enrich lignocellulolytic degrading consortia but also provides insights into the succession and ecological function of coastal consortium.
Collapse
Affiliation(s)
- Wenwen Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| |
Collapse
|
47
|
Liu H, Shi B, Liu W, Wang L, Zhu L, Wang J, Kim YM, Wang J. Effects of magnesium-modified biochar on antibiotic resistance genes and microbial communities in chicken manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108553-108564. [PMID: 37752398 DOI: 10.1007/s11356-023-29804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Abatement of antibiotic resistance genes (ARGs) in livestock manure by composting has attracted attention. This study investigated the effect of adding magnesium-modified biochar (MBC) on ARGs and microbial communities in chicken manure composting. Twelve genes for tetracyclines, sulfonamides, and macrolides, and mobile genetic elements were measured in the compost pile. The results showed that after 45 days of the composting, the treatment groups of MBC had longer high temperature periods, significantly higher germination indices (GI) and lower phytotoxicity. There were four major dominant phyla (Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota) in the compost. The abundance of Firmicutes decreased significantly during the compost cooling period; tetracycline resistance genes demonstrated an extremely significant positive correlation with Firmicutes, showing a trend of the same increase and decrease with composting time; tetT, tetO, tetM, tetW, ermB, and intI2 were reduced in the MBC group; the total abundance of resistance genes in the 2% MBC addition group was 0.67 times that of the control; Proteobacteria and Chloroflexi were also significantly lower than the other treatment groups. Most ARGs were significantly associated with mobile genetic elements (MGEs); MBC can reduce the spread and diffusion of ARGs by reducing the abundance of MGEs and inhibiting horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Hunan Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Baihui Shi
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenwen Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
48
|
Zhu S, Cai Y, Li Y, Xiong J, Lei Y, Sun Y. Effects of temporal and spatial scales on soil yeast communities in the peach orchard. Front Microbiol 2023; 14:1226142. [PMID: 37795290 PMCID: PMC10546340 DOI: 10.3389/fmicb.2023.1226142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Shihezi Reclamation Area is located at the southern edge of the Junggar Basin, with natural, soil, and climatic conditions unique to the production of peaches. In turn, peach orchards have accumulated rich microbial resources. As an important taxon of soil fungi, the diversity and community structure changes of yeast in the soil of peach orchards on spatial and temporal scales are still unknown. Here, we aimed to investigate the changes in yeast diversity and community structure in non-rhizosphere and rhizosphere soils of peach trees of different ages in the peach orchard and the factors affecting them, as well as the changes in the yeast co-occurrence network in the peach orchard at spatial and temporal scales. High-through put sequencing results showed that a total of 114 yeast genera were detected in all soil samples, belonging to Ascomycota (60 genera) and Basidiomycota (54 genera). The most dominant genus, Cryptococcus, was present in greater than 10% abundance in each sample. Overall, the differences in yeast diversity between non-rhizosphere and rhizosphere soil of peach trees at 3, 8 and 15 years were not significant. Principal coordinate analysis (PCoA) showed that differences in yeast community structure were more pronounced at the temporal scale compared to the spatial scale. The results of soil physical and chemical analysis showed that the 15-year-old peach rhizosphere soil had the lowest pH, while the OM, TN, and TP contents increased significantly. Redundancy analysis showed that soil pH and CO were key factors contributing to changes in soil yeast community structure in the peach orchard at both spatial and temporal scales. The results of co-occurrence network analysis showed that the peach orchard soil yeast network showed synergistic effects as a whole, and the degree of interactions and connection tightness of the 15-year-old peach orchard soil yeast network were significantly higher than the 3- and 8-year-old ones on the time scale. The results reveal the distribution pattern and mechanism of action of yeast communities in peach orchard soils, which can help to develop effective soil management strategies and improve the stability of soil microecology, thus promoting crop growth.
Collapse
Affiliation(s)
- ShanShan Zhu
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - YanLi Cai
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Xiong
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - YongHui Lei
- Department of Plant Protection, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - YanFei Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
49
|
Zhang D, Sun J, Wang D, Peng S, Wang Y, Lin X, Yang X, Hua Q, Wu P. Comparison of bacterial and fungal communities structure and dynamics during chicken manure and pig manure composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94347-94360. [PMID: 37531050 DOI: 10.1007/s11356-023-29056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Composting is a sustainable and eco-friendly technology that turns animal waste into organic fertilizers. It remains unclear whether differences exist in the structure of microbial communities during different livestock manure composting. This study analyzed the dynamic change of bacterial and fungal communities, metabolic function, and trophic mode during chicken manure (CM) and pig manure (PM) composting based on 16S rRNA and ITS sequencing. Environmental factors were investigated for their impact on microbial communities. During composting, bacterial diversity decreased and then increased, while fungal diversity slightly increased and then decreased. Saccharomonospora and Aspergillus were the dominant genera and key microorganisms in CM and PM, respectively, which played crucial roles in sustaining the stability of the ecological network structure in the microbial ecology and participating in metabolism. Saccharomonospora gradually increased, while Aspergillus increased at first and then decreased. PM had better microbial community stability and more keystone taxa than CM. In CM and PM, the primary function of bacterial communities was metabolism, while saprotroph was the primary trophic mode of fungal communities. Dissolved organic carbon (DOC) was the primary factor influencing the structure and function of microbial communities in CM and PM. In addition to DOC, pH and moisture were important factors affecting the fungal communities in CM and PM, respectively. These results show that the succession of bacteria and fungi in CM and PM proceeded in a similar pattern, but there are still some differences in the dominant genus and their responses to environmental factors.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 101400, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Jianbin Sun
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 101400, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Danqing Wang
- College of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Shuang Peng
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Yiming Wang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 101400, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
- College of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Xiangui Lin
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Xiaoqian Yang
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Qingqing Hua
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Pan Wu
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
50
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|