1
|
Mao Q, Bao J, Du J, Zhang Y, Zhou Y, He T, Cheng B. Comprehensive revealing the destructive effect and inhibitory mechanism of oxytetracycline on aerobic denitrification bacteria Acinetobacter sp. AD1 based on cell state, electron behavior and intracellular environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138058. [PMID: 40168932 DOI: 10.1016/j.jhazmat.2025.138058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/05/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
The wide application and low utilization rate of oxytetracycline (OTC) make it often detected in wastewater, which may cause harmful effects on microbial denitrification. Aerobic denitrification (AD) as a new microbial denitrification technology has obvious advantages. However, systematic studies on the effects of OTC on it are lacking. In this study, the effect of OTC on AD was comprehensively explored from multiple perspectives, the main results are as follows. From the perspective of bacterial performance, OTC inhibited AD bacteria growth, denitrification efficiency, and caused serious damage to cell morphological structure, results of CCK-8 confirmed that bacterial activity was significantly affected. From the perspective of electron behavior, OTC decreased electron-producing capacity of carbon metabolism, reduced activity of the electron transport system, inhibited the electron consumption of NAR and NIR to varying degrees, thus increased the risk of nitrite accumulation. From the perspective of intracellular environment, OTC broke redox balance and antioxidant mechanism, related carbon and nitrogen cycle functional genes were down-regulated, affected amino acid, organic acid and nucleotide metabolic processes. The above results provide important information for evaluating the potential risks of antibiotics on the application of AD, and provide key background and theoretical support for stabilizing the technology.
Collapse
Affiliation(s)
- Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jianguo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Zhou
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ting He
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, PR China
| | - Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
2
|
Lyu P, Li X, Luo X, Cui J. Integrated insights into a novel dual-functioning heterotrophic nitrification-aerobic denitrification strain Glutamicibacter halophytocola MD1: Performance and metabolic mechanisms of synchronous nitrogen and phosphorus removal. BIORESOURCE TECHNOLOGY 2025:132714. [PMID: 40414515 DOI: 10.1016/j.biortech.2025.132714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/25/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Glutamicibacter halophytocola MD1, a novel heterotrophic nitrification-aerobic denitrification and phosphate removal bacterium was isolated. MD1 exhibited high nitrogen and phosphorus removal efficiency across different nitrogen sources. Under optimal conditions, it achieved 100.0 % removal of NO3--N and PO43--P. Multi-omics and nitrogen balance analyses revealed that ammonia assimilation was the main heterotrophic nitrification pathway for MD1, while the aerobic denitrification pathway followed NO3--N → NO2--N → NH4+-N → glutamate. The multi-omics analysis revealed that MD1 possessed a phosphate transport gene cluster pstSCAB; phosphate transformation genes ppk1, ppk2 and ppx. P element fate analysis indicated that approximately 75.5 % of the P taken up by MD1 was stored intracellularly as orthophosphate and phosphodiester, mainly whereas approximately 19.4 % was stored in the extracellular polymeric substances in the form of orthophosphate and monoesters. The discovery of strain MD1 offers novel insights into the development of technologies for the simultaneous removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Pengyi Lyu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 Hebei, China.
| | - Xiaoman Li
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Xiao Luo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 Hebei, China.
| | - Jiansheng Cui
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Sciences and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018 Hebei, China.
| |
Collapse
|
3
|
Xia Z, Ng HY, Bae S. Synergistic microalgal-bacterial interactions enhance nitrogen removal in membrane-aerated biofilm photoreactors treating aquaculture wastewater under salt stress: Insights from metagenomic analysis. WATER RESEARCH 2025; 283:123878. [PMID: 40449312 DOI: 10.1016/j.watres.2025.123878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/12/2025] [Accepted: 05/20/2025] [Indexed: 06/03/2025]
Abstract
This study investigates the membrane-aerated biofilm photoreactor (MABPR) for treating aquaculture effluents with low C/N ratio and elevated salinity (0.5%-3.2%). The MABPR integrated biofilm reactors with microalgal-bacterial consortia, achieving superior total inorganic nitrogen (TIN) removal by leveraging counter-diffusional biofilm properties, bubbleless aeration, and enhanced microalgal productivity. The system consistently outperformed conventional reactors, achieving 84.7 ± 1.9% TIN removal at 3.2% salinity with TIN removal flux increasing from 0.82 ± 0.04 to 1.22 ± 0.07 g/m² d. The MABPR promoted microalgal proliferation (Chl-a/VSS: 8.08-15.04 mg/g) and higher biomass productivity (1.83 g/m² d) compared to SBBPR and MABR. Elevated salinity stimulated extracellular polymeric substance (EPS) production, reinforcing biofilm stability and microbial resilience. The MABPR demonstrated 22%-65% higher nitrogen removal efficiency than controls at the highest salinity. Canonical nitrification-denitrification remained the primary nitrogen removal pathway, with short-cut nitrification-denitrification contributing under salt stress. Metagenomic analysis revealed bidirectional adaptation between microalgae and bacteria, with enriched nitrogen assimilation (GS/GOGAT pathway) compensating for bacterial deficits. Microalgae facilitated pollutant removal through ammonia uptake and dissolved organic matter release, supporting denitrification. At 3.2% salinity, Nitrosomonas and Nitrobacter abundance increased by 42.6% and 35.8%, while denitrifiers Denitromonas and Hoeflea dominated, comprising 59.4% and 35.9% of the population. The MABPR further promoted the synthesis of growth cofactors (vitamins, phytohormones), enhancing microalgal productivity and stress resilience. These synergistic microalgal-bacterial interactions supported pollutant removal, showcasing the MABPR as a robust, sustainable solution for aquaculture wastewater treatment and resource recovery under salt stress.
Collapse
Affiliation(s)
- Zhengang Xia
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Sungwoo Bae
- Department of Environmental Systems Engineering, Korea University Sejong Campus, Sejong City, South Korea.
| |
Collapse
|
4
|
Tian J, Hu L, You A, Hua L, Hu J, Gan Z, Jiang Y, Long Y. Overlooked potential of overlying water disturbances on nitrification and denitrification in urban secondary wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125764. [PMID: 40354741 DOI: 10.1016/j.jenvman.2025.125764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/10/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Urban secondary wetlands, open urban landscape systems, provide both aesthetic and water purification functions. However, the effects of frequent human disturbances on the nitrification-denitrification potential of these wetlands system remains unclear. This study simulated horizontal, vertical and hybrid flow disturbances, along with scenarios of external NH4+-N input leading to the gradual deterioration of water quality, to investigate the effects of human interference on the nitrification-denitrification potential of urban secondary wetlands. The findings revealed that all modes of flow disturbances significantly enhanced the nitrification and denitrification potential of wetland sediments. Hybrid flow disturbance most significantly improved the nitrification potential, with improvements of 6.01 %-8.84 % compared to the undisturbed reactor (CK), especially as water quality deteriorated from Class Ⅰ to poor Class V. Horizontal flow disturbance most significantly boosted denitrification potential, ranging from 5.21 % to 19.9 % over the CK. As water quality gradually deteriorated, hybrid and horizontal flow disturbances improved the microbial alpha-diversity within the wetland sediments. Hybrid flow disturbance also elevated the abundance of nitrification functional genes such as hao and nxrAB, as well as Hao activity in the sediments, favoring the growth of nitrifiers such as unclassified__c__Deltaproteobacteria. Horizontal flow disturbance, on the other hand, significantly increased the abundance of denitrifiers such as unclassified__d__Bacteria and unclassified__c__Gammaproteobacteri, along with the abundance of denitrification functional genes like nirK, nirS, and nosZ. This study important insights for optimizing the management and improving the ecological functions of urban secondary wetlands.
Collapse
Affiliation(s)
- Junsong Tian
- College of Energy Environment and Safety Engineering, College of Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Lifang Hu
- College of Energy Environment and Safety Engineering, College of Carbon Metrology, China Jiliang University, Hangzhou, 310018, China.
| | - Aiju You
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Lei Hua
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Jingwen Hu
- Zhejiang Institute of Hydraulics & Estuary, Zhejiang Institute of Marine Planning & Design, Hangzhou, 310020, China
| | - Zewei Gan
- College of Energy Environment and Safety Engineering, College of Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuhan Jiang
- College of Energy Environment and Safety Engineering, College of Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
5
|
Xu RZ, Cao JS, Cheng S, Luo JY, Ni BJ, Fang F, Liu W, Wang P. Heterotrophic nitrification-aerobic denitrification strains: An overlooked microbial interaction nexus in the anaerobic-swing-anoxic-oxic (ASAO) plug-flow system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125030. [PMID: 40112476 DOI: 10.1016/j.jenvman.2025.125030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study aims to clarify the overlooked functions of heterotrophic nitrification-aerobic denitrification (HNAD) bacteria in a novel anaerobic-swing-anoxic-oxic (ASAO) continuous plug-flow system. The dissolved oxygen (DO) levels and aerated hydraulic retention time (HRT) varied in the swing zones, providing a more diverse redox environment. High nitrogen (85.0 %) and phosphorus (80.0 %) removal were achieved by enriched HNAD bacteria (e.g., Thauera and Malikia) and phosphate accumulating organisms (PAO, e.g., Rhodocyclus and Azonexus) under middle DO level (1.0-2.0 mg/L) and longer aerated HRT (5.0 h). More importantly, microbial network revealed that HNAD bacteria became a connection point for other functional microorganisms associated with pollutant metabolism, and promoted the cooperation and functional evolution of microbial communities. The microbial ecology analysis captured the high importance of homogeneous selection, diffusion restriction, and drift for microbial community assembly in the ASAO system. Among them, HNAD bacteria contributed to both deterministic and stochastic processes, whereas the community assembly of PAO was mainly affected by the deterministic processes. The upregulation of denitrification genes (i.e., napA, napB, nirS, norB and norC) further confirmed the nitrogen removal contribution of aerobic denitrification by HNAD bacteria. Through this study, a comprehensive analysis of microbial interactions in the ASAO system was achieved, providing valuable insights into the targeted regulation of functional microorganisms in wastewater biological treatment processes.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environment Engineering, Jiangsu, Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
6
|
Mupindu P, Zhao YG, Pan C, Zhang Y, Liu J. Enhancement of aerobic denitrification process on antibiotics removal: Mechanism and efficiency: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70050. [PMID: 40065507 DOI: 10.1002/wer.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Traditionally, the removal of nitrogenous pollutants from wastewater relied on conventional anaerobic denitrification as well as aerobic nitrification and anoxic denitrification. However, anaerobic denitrification is complicated since it requires stringent environmental conditions as well as a large land, therefore, denitrification and nitrification were performed in two separate reactors. Although high pollutant removal efficiency has been achieved via aerobic nitrification and anoxic denitrification, the demerits of this approach include high operational costs. Other traditional nitrogen removal methods include air stripping, reverse osmosis, adsorption, ion exchange, chemical precipitation, advanced oxidation process, and breakpoint chlorination. Traditional nitrogen removal methods are not only complicated but they are also uneconomical due to the high operational costs. Researchers have discovered that denitrification can be carried out by heterotrophic nitrification-aerobic denitrification (HNAD) microorganisms which remove nitrogen in a single aerobic reactor that does not require stringent operating conditions. Despite the significant effort that researchers have put in, there is still little information known about the mechanisms of antibiotic removal during HNAD. This review begins with an update on the current state of knowledge on the removal of nitrogenous pollutants and antibiotics from wastewater by HNAD. The mechanisms of antibiotic removal via HNAD were examined in detail. Followed by, the enhancement of antibiotics removal via co-metabolism and oxidation of sulfamethoxazole (SMX) as well as the response of microbial communities to antibiotic toxicity. Lastly, the conditions favorable for antibiotic biodegradation and mechanisms for nitrogen removal via HNAD were examined. The findings in this review show that co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms, pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed in the discussion. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater. Understanding the mechanisms and pathways of antibiotic removal by HNAD helps wastewater engineers and researchers apply the technology more efficiently. PRACTITIONER POINTS: The mechanisms of antibiotic removal via HNAD were examined in detail. Co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms. Pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed. Conditions favorable for antibiotic biodegradation were examined. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, China
| | - Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiannan Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Carpanez TG, Carvalho de Lima E Silva N, Amaral MCS, Moreira VR. Reuse of wastewater and biosolids in soil conditioning: Potentialities, contamination, technologies for wastewater pre-treatment and opportunities for land restoration. CHEMOSPHERE 2025; 373:144185. [PMID: 39908843 DOI: 10.1016/j.chemosphere.2025.144185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
This study reviews the potential use of various wastewaters-vinasse, swine, food industry, paper and pulp, municipal wastewaters, and biosolids-as soil conditioners for restoring degraded areas, focusing on the circular economy concept. Over 90 articles from 2013 to 2024 were analyzed to address current scientific concerns, including these effluents' resistance genes, hormones, and macro/micronutrients. The presence of contaminants was critically examined alongside the necessary treatment methods to prevent soil degradation and ensure soil quality improvement. These included contaminants of emerging concern (CECs), antibiotic resistance genes (AGRs), and pathogens. These contaminants can either be assimilated and degraded by the soil ecosystem or leach into groundwater, translocate to plants, or accumulate in surface soil, necessitating careful monitoring. Furthermore, the study critically evaluates the potential of various physical and biological treatment technologies, such as anaerobic digestion, composting, dewatering, stabilization ponds, biological reactors, membrane processes, rotating disks, and pelletizers, highlighting their effectiveness in mitigating contamination and enhancing soil quality. The long-term effects of wastewater reuse as soil conditioner depend on both wastewater characteristics and soil properties. The benefits of using wastewater as soil conditioners are found to be influenced by characteristics of both the soil and the wastewater, with improvements in soil physical properties (increased porosity and permeability) and chemical properties (increased soil organic carbon and nutrients). Overall, the literature suggests that while wastewaters hold promise as soil conditioners, their successful application depends on effective wastewater management strategies to optimize benefits and mitigate risks.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Nayara Carvalho de Lima E Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
8
|
Fan XY, Zhang ZX, Li N, Li X. Molecular ecological insights into the synergistic response mechanism of nitrogen transformation, electron flow and antibiotic resistance genes in aerobic activated sludge systems driven by sulfamethoxazole and/or trimethoprim stresses. WATER RESEARCH 2025; 270:122853. [PMID: 39616686 DOI: 10.1016/j.watres.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025]
Abstract
The prevalence of antibiotics poses a serious challenge to biological nitrogen removal in wastewater. In this study, the effects of sulfamethoxazole and/or trimethoprim (15 mg/L∼30 mg/L) on treatment performance, nitrogen transformation and antibiotic resistance genes (ARGs) were investigated in aerobic activated sludge systems to elucidate the metabolic mechanism under high antibiotic stress. 15 mg/L single antibiotic stress improved total nitrogen removal performance due to the persistence of nitrifiers and enrichment of denitrifiers, with an optimum removal efficiency of 96.5 %. Up-regulation of all denitrifying genes, coupled with enhanced electron transfer of Complex II and III, contributed to the emergence of aerobic denitrification. The increased expression of antioxidant genes also alleviated intracellular pressure. Whereas combined antibiotic stress induced the significant down-regulation of denitrifying bacteria and genes (nirKS and nosZ), and suppressed the electron supply for denitrification by restraining genes related to Complex Ⅰ and energy supply by tricarboxylic acid cycle, driving the collapse of activated sludge system, with ammonia and total nitrogen removal efficiencies dropping to below 40 % and 20 %, respectively. The dominant genera in system changed from TM7a to Thiothrix and Sphaerotilus with increasing antibiotic concentration and type. Moreover, antibiotic stress promoted a slight enrichment of ARGs, especially those encoding efflux mechanisms. Cooperative relationships (> 93 %) dominated among ARGs, and Klebsiella was identified as the crucial host. ARGs regulating antibiotic efflux were more likely to be co-expressed with functional genes. These results may provide a theoretical basis for establishing promising strategies to mitigate antibiotic-caused process deterioration.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; Chongqing Research Institute of Beijing University of Technology, Chongqing 401121, PR China
| | - Zhong-Xing Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Wang H, Dai H, Jiang D, Cao X, Wang R, Dai Z, Zhang W, Abbasi HN, Li B, Zhu G, Wang X. Screening, identification, and application of anaerobic ammonia oxidizing bacteria in activated sludge systems: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124272. [PMID: 39874694 DOI: 10.1016/j.jenvman.2025.124272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance. It further delineates coupled processes that utilize Anammox technology, offering practical insights for process selection. Eventually, the review concludes by suggesting future research directions and highlighting critical areas for further investigation. This review serves as a theoretical reference for the enrichment and cultivation of AnAOB, environmental impact management, and the selection of effective treatment processes.
Collapse
Affiliation(s)
- Haoyun Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Deyi Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Xuandi Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Ruochen Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Zheqin Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| |
Collapse
|
10
|
Huang TY, Ju HJ, Huang MY, Kuo QM, Su WT. Optimal nitrite degradation by isolated Bacillus subtilis sp. N4 and applied for intensive aquaculture water quality management with immobilized strains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123896. [PMID: 39798321 DOI: 10.1016/j.jenvman.2024.123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4. The optimal conditions for nitrite degradation by B. subtilis sp. N4 were identified using response surface methodology as 167 rpm, pH 6.4, 1 g/8 mL feed, 0.6 OD600, and 30 °C, with a predicted 99 % nitrite removal efficiency. The B. subtilis sp. N4 demonstrated a maximum nitrite concentration tolerance of 60 mg/L, with μmax and Ks values calculated using a Monod model analysis of 1.67 mg/L/h and 0.29 mg/L, respectively. Immobilized B. subtilis sp. N4 could be reused for ten cycles while maintaining a nitrite degradation efficiency of >99 %, and retained a high nitrite-degrading ability after being refrigerated at 4 °C for three months. Immobilized B. subtilis sp. N4 effectively reduced ammonia nitrogen, nitrite, and nitrate concentrations in Nile tilapia aquaculture, maintaining them at consistently low levels. Therefore, free or immobilized B. subtilis sp. N4, with both nitrification and denitrification capabilities, has considerable potential for application in the aquaculture industry in the future.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Huei-Jen Ju
- Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Mei-Ying Huang
- Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Qiao-Miao Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
11
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Yin J, Li J, Xie H, Wang Y, Zhao J, Wang L, Wu L. Unveiling cold Code: Acinetobacter calcoaceticus TY1's adaptation strategies and applications in nitrogen treatment. BIORESOURCE TECHNOLOGY 2024; 413:131449. [PMID: 39244103 DOI: 10.1016/j.biortech.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Overcoming low nitrogen removal efficiency at low temperatures is a challenge in biological treatment. This study investigated the cold-tolerant heterotrophic nitrification-aerobic denitrification by Acinetobacter calcoaceticus TY1. Transcriptomic and biochemical analyses indicated that strain TY1 upregulated genes for energy production, assimilation, cell motility, and antioxidant enzyme production under cold stress, maintaining functions such as energy supply, nitrogen utilization, and oxidative defense. Increasing the synthesis of extracellular polysaccharides, unsaturated fatty acids, and medium-chain fatty acids and secreting large amounts of antioxidant enzymes ensured cell membrane flexibility while enhancing the antioxidant system. Immobilization experiments showed that biofilms accelerated the removal of nitrogen pollutants and demonstrated good stability, with carriers being reusable to five times, maintaining high ammonia nitrogen (63.90 %) and total nitrogen (50.66 %) removal rates. These findings reveal the cold tolerance mechanisms of strain TY1 and its excellent practical potential as a candidate for wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Junyi Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Hongliang Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Jialin Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, PR China.
| |
Collapse
|
13
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
14
|
Wang H, Ma X, Ran X, Wang T, Zhou M, Liu C, Li X, Wu M, Wang Y. Analyzing performance and microbial mechanisms in an incineration leachate treatment after waste separation: Integrated metagenomic and metaproteomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175821. [PMID: 39191330 DOI: 10.1016/j.scitotenv.2024.175821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 08/29/2024]
Abstract
The absence of food waste after separation poses a significant challenge to incineration leachate treatment, as it decreases the C/N ratio and COD of leachate, greatly impacting the biological treatment process. A one-year in-situ study was systematically conducted in an incineration leachate treatment plant that experienced waste separation, focusing on the variations in carbon and nitrogen removal performance as well as the involved microbial mechanism of the "anaerobic digestion (AD) + two-stage A/O" process. Results indicated that the biodegradability of leachate significantly decreased over time, with COD concentration decreasing by 10 times and the average C/N ratio decreasing from 12.3 to 1.4. The AD process was maintained stable, achieving a COD removal efficiency exceeding 92 %. The nitrification process also remained stable; while the denitrification process was significantly affected, and a nine-fold increase in external glucose addition was required to achieve a nitrogen removal efficiency of 85 %. Metagenomic analysis indicated that comammox Nitrospira (contributing 90 % to ammonia monooxygenase) occupied the dominant position over Nitrosomonas for nitrification due to the low NH4+-N concentration in A/O tanks (<35 mg/L), and Methanothrix was substituted by Methanosarcina for methanogenesis in AD unit. Metaproteomic results further elucidated that the expression of enzymes responsible for denitrification process, i.e., Nir, Nor, Nos (convert NO2- to N2), was decreased significantly, although the expression of enzymes related to glycolysis and TCA cycle were stimulated by glucose addition. The expression of Nar (convert NO3--N to NO2--N) remained stable, while the imbalance expression within denitrifying enzymes might have facilitated occurrence of partial denitrification, attributed to the low C/N ratio. The results prove that the function robustness and metabolic versatility were achieved in leachate treatment plant after waste separation but at the cost of the high external carbon resource addition, highlighting the urgent requirement for low-carbon nitrogen removal technologies.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Xiaoqian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China; Xiamen Tungsten Co., Ltd., Xiamen 361009, PR China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China; Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai 200125, PR China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Rajeev M, Cho JC. Rhodobacteraceae are Prevalent and Ecologically Crucial Bacterial Members in Marine Biofloc Aquaculture. J Microbiol 2024; 62:985-997. [PMID: 39546167 DOI: 10.1007/s12275-024-00187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
Bioflocs are microbial aggregates primarily composed of heterotrophic bacteria that play essential ecological roles in maintaining animal health, gut microbiota, and water quality in biofloc aquaculture systems. Despite the global adoption of biofloc aquaculture for shrimp and fish cultivation, our understanding of biofloc microbiota-particularly the dominant bacterial members and their ecological functions-remains limited. In this study, we employed integrated metataxonomic and metagenomic approaches to demonstrate that the family Rhodobacteraceae of Alphaproteobacteria consistently dominates the biofloc microbiota and plays essential ecological roles. We first analyzed a comprehensive metataxonomic dataset consisting of 200 16S rRNA gene amplicons collected across three Asian countries: South Korea, China, and Vietnam. Taxonomic investigation identified Rhodobacteraceae as the dominant and consistent bacterial members across the datasets. The predominance of this taxon was further validated through metagenomics approaches, including read taxonomy and read recruitment analyses. To explore the ecological roles of Rhodobacteraceae, we applied genome-centric metagenomics, reconstructing 45 metagenome-assembled genomes. Functional annotation of these genomes revealed that dominant Rhodobacteraceae genera, such as Marivita, Ruegeria, Dinoroseobacter, and Aliiroseovarius, are involved in vital ecological processes, including complex carbohydrate degradation, aerobic denitrification, assimilatory nitrate reduction, ammonium assimilation, and sulfur oxidation. Overall, our study reveals that the common practice of carbohydrate addition in biofloc aquaculture systems fosters the growth of specific heterotrophic bacterial communities, particularly Rhodobacteraceae. These bacteria contribute to maintaining water quality by removing toxic nitrogen and sulfur compounds and enhance animal health by colonizing gut microbiota and exerting probiotic effects.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Institute for Specialized Teaching and Research, Inha University, Incheon, 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
16
|
Sun W, Hu C, Wu J, Wei M, Lin JG, Hong Y. Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1. iScience 2024; 27:110599. [PMID: 39220262 PMCID: PMC11365388 DOI: 10.1016/j.isci.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Chunchen Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
17
|
Mao J, Zhao R, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. Nitrogen removal capability and mechanism of a novel low-temperature-tolerant simultaneous nitrification-denitrification bacterium Acinetobacter kyonggiensis AKD4. Front Microbiol 2024; 15:1349152. [PMID: 39318430 PMCID: PMC11419981 DOI: 10.3389/fmicb.2024.1349152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
A low-temperature-tolerant simultaneous nitrification-denitrification bacterial strain of Acinetobacter kyonggiensis (AKD4) was identified. It showed high efficiency in total nitrogen (TN) removal (92.45% at 10°C and 87.51% at 30°C), indicating its excellent low-temperature tolerance. Transcriptomic analysis revealed possible metabolic mechanisms under low-temperature stress. Genes involved in cell growth, including ATP synthase (atpADGH), amino acid (glyA, dctA, and ilvE), and TCA cycle metabolism (gltA, fumC, and mdh) were remarkably upregulated from 1.05-3.44-fold at 10°C, suggesting that their actions enhance survivability at low temperatures. The expression levels of genes associated with nitrogen assimilation (glnAE, gltBD, and gdhA), nitrogen metabolism regulation (ntrC, glnB, and glnD), and denitrification processes (napA) were increased from 1.01-4.38-fold at 10°C, which might have contributed to the bacterium's highly efficient nitrogen removal performance at low temperatures. Overall, this study offers valuable insights into transcriptome, and enhances the comprehension of the low-temperature-tolerant mechanism of simultaneous nitrification and denitrification processes.
Collapse
Affiliation(s)
- Jiwei Mao
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Ruojin Zhao
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|
18
|
Ma B, Chu M, Zhang H, Chen K, Li F, Liu X, Kosolapov DB, Zhi W, Chen Z, Yang J, Deng Y, Sekar R, Liu T, Liu X, Huang T. Mixotrophic aerobic denitrification facilitated by denitrifying bacterial-fungal communities assisted with iron in micro-polluted water: Performance, metabolic activity, functional genes abundance, and community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135057. [PMID: 38943884 DOI: 10.1016/j.jhazmat.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Low-dosage nitrate pollutants can contribute to eutrophication in surface water bodies, such as lakes and reservoirs. This study employed assembled denitrifying bacterial-fungal communities as bio-denitrifiers, in combination with zero-valent iron (ZVI), to treat micro-polluted water. Immobilized bacterial-fungal mixed communities (IBFMC) reactors demonstrated their ability to reduce nitrate and organic carbon by over 43.2 % and 53.7 %, respectively. Compared to IBFMC reactors, IBFMC combined with ZVI (IBFMC@ZVI) reactors exhibited enhanced removal efficiencies for nitrate and organic carbon, reaching the highest of 31.55 % and 17.66 %, respectively. The presence of ZVI in the IBFMC@ZVI reactors stimulated various aspects of microbial activity, including the metabolic processes, electron transfer system activities, abundance of functional genes and enzymes, and diversity and richness of microbial communities. The contents of adenosine triphosphate and electron transfer system activities enhanced more than 5.6 and 1.43 folds in the IBFMC@ZVI reactors compared with IBFMC reactors. Furthermore, significant improvement of crucial genes and enzyme denitrification chains was observed in the IBFMC@ZVI reactors. Iron played a central role in enhancing microbial diversity and activity, and promoting the supply, and transfer of inorganic electron donors. This study presents an innovative approach for applying denitrifying bacterial-fungal communities combined with iron enhancing efficient denitrification in micro-polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengrui Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 16500, Czech Republic
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Ye Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Zhang G, Hao Q, Gou Y, Wang X, Chen F, He Y, Liang Z, Jiang C. Changing the order and ratio of substrate filling reduced CH 4 and N 2O emissions from the aerated constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173740. [PMID: 38839002 DOI: 10.1016/j.scitotenv.2024.173740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Constructed wetlands (CWs) have been used to enhance pollutant removal by filling several types of material as substrates. However, research on substrate filling order remains still limited, particularly regarding the effects of greenhouse gas (GHG) emissions. In this study, six CWs were constructed using zeolite and ferric‑carbon micro-electrolysis (Fe-C) fillers to evaluate the effect of changing the filling order and ratio on pollutant removal, GHGs emissions, and associated microbial structure. The results showed that the order of substrate filling significantly impacted pollutant removal performance on CWs. Specifically, CWs filled with zeolite in the top layer exhibited superior NH4+-N removal compared to those filled in the lower layer. Moreover, the highest NH4+-N removal (95.0 % ± 1.9 %) was observed in CWs with a zeolite to Fe-C volume ratio of 8:2 (CWZe-1). Moreover, zeolite-filled at the top had lower GHGs emissions, with the lowest CH4 (0.22 ± 0.10 mg m-2 h-1) and N2O (167.03 ± 61.40 μg m-2 h-1) fluxes in the CWZe-1. In addition, it is worth noting that N2O is the major contributor to integrated global warming potential (GWP) in the six CWs, accounting for 81.7 %-90.8 %. The upper layer of CWs filled with zeolite exhibited higher abundances of nirK, nirS and nosZ genes. The order in which the substrate was filled affected the microbial community structure and the upper layer of CWs filled with zeolite had higher relative abundance of nitrifying genera (Nitrobacter, Nitrosomonas) and denitrifying genera (Zoogloea, Denitratisoma). Additionally, N2O emission was reduced by approximately 41.2 %-64.4 % when the location of the aeration of the CWs was changed from the bottom to the middle. This study showed that both the order of filling the substrate and the aeration position significantly affected the GHGs emissions from CWs, and that CWs had lower GHGs emissions when zeolites were filled in the upper layer and the aeration position was in the middle.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongxiang Gou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xunli Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fanghui Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yangjian He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Cao K, Huang X, Wang CD, Yu JH, Gui WJ, Zhang S. Refractory degradable dissolved organic matter (R-DOM) driving nitrogen removal by the electric field coupled iron‑carbon biofilter (E-ICBF): Performance and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173374. [PMID: 38795998 DOI: 10.1016/j.scitotenv.2024.173374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Researches on the advanced nitrogen (N) removal of municipal tailwater always overlooked the value of refractory degradable dissolved organic matter (R-DOM). In this study, a novel electric field coupled iron‑carbon biofilter (E-ICBF) was utilized to explore the performance and microbial changes with polyethylene glycol (PEG) as the representative R-DOM. Results demonstrated that the removal efficiencies of E-ICBF for nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N), and total nitrogen (TN) improved by 28.76 %, 12.96 %, and 28.45 %, compared to quartz sand biofilter (SBF). Moreover, removal efficiencies of NO3--N and TN in E-ICBF with R-DOM went up by 12.11 % and 14.02 % compared to methanol. Additionally, both PEG and the electric field reduced the microbial richness and diversity. However, PEG promoted the increase of denitrifying bacteria abundance including unclassified_f_Comamonadaceae, Thauera, and unclassified_f_Gallionellaceae. The electric field improved the abundances of genes related to N removal (hao, nasC, nasA, nifH, nifD, nifK) and PEG further enhanced the effect. The abundances of key enzymes [EC:1.7.5.1], [EC:1.7.2.1], [EC:1.7.2.4], and [EC:1.7.2.5] decreased due to the addition of PEG and the electric field mitigated the negative influence. Additionally, the electric field changed relationships between microorganisms and pollutant removal, and improved interspecific relationships between denitrifying bacterial genera and other genera in E-ICBF.
Collapse
Affiliation(s)
- Kai Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Cheng-Da Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jiang-Hua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wen-Jing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
21
|
Wang Y, Wang Z, Ali A, Su J, Huang T, Hou C, Li X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. CHEMOSPHERE 2024; 362:142762. [PMID: 38971440 DOI: 10.1016/j.chemosphere.2024.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
22
|
Xiong Y, Wang Y, Tsang CC, Zhou J, Hao F, Liu F, Wang J, Xi S, Zhao J, Fan Z. Metal Doped Unconventional Phase IrNi Nanobranches: Tunable Electrochemical Nitrate Reduction Performance and Pollutants Upcycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10863-10873. [PMID: 38842426 DOI: 10.1021/acs.est.4c04014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 μg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Chi Ching Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 627833, Singapore
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
23
|
Liang H, Jia Y, Khanal SK, Huang D, Sun L, Lu H. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms. WATER RESEARCH 2024; 256:121592. [PMID: 38626614 DOI: 10.1016/j.watres.2024.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-Sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Dongqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China.
| |
Collapse
|
24
|
Lu T, Su K, Ma G, Jia C, Li J, Zhao Q, Song M, Xu C, Song X. The growth and nutrient removal properties of heterotrophic microalgae Chlorella sorokiniana in simulated wastewater containing volatile fatty acids. CHEMOSPHERE 2024; 358:142270. [PMID: 38719126 DOI: 10.1016/j.chemosphere.2024.142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Shandong Society for Environmental Sciences, Jinan, Shandong, 250014, PR China
| | - Guangxiang Ma
- Shandong Society for Environmental Sciences, Jinan, Shandong, 250014, PR China
| | - Cong Jia
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Jie Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Qi Zhao
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| | - Chongqing Xu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250013, PR China
| | - Xiaozhe Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| |
Collapse
|
25
|
Jin Y, Liu D, Xiong W, Wu Z, Xiao G, Wang S, Su H. Enhancing nitrogen removal performance using immobilized aerobic denitrifying bacteria by modified polyvinyl alcohol/sodium alginate (PVA/SA). CHEMOSPHERE 2024; 357:141954. [PMID: 38615964 DOI: 10.1016/j.chemosphere.2024.141954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Aerobic denitrification has emerged as a promising and efficient method for nitrogen removal from wastewater. However, the direct application of aerobic denitrifying bacteria has faced challenges such as low nitrogen removal efficiency, bacterial loss, and poor stability. To address these issues, this study developed a novel microbial particle carrier using NaHCO3-modified polyvinyl alcohol (PVA)/sodium alginate (SA) gel (NaHCO3-PVA/SA). This carrier exhibits several advantageous properties, including excellent mass transfer efficiency, favorable biocompatibility, convenient film formation, abundant biomass, and exceptional pollutant treatment capacity. The carrier was modified with 0.3% NaHCO3, 8.0% PVA, and 1.0% SA, resulting in a remarkable 3.4-fold increase in the average pore diameter and a 12.8% improvement in mass transfer efficiency. This carrier was utilized to immobilize the aerobic denitrifying bacterium Stutzerimonas stutzeri W-2 to enhance nitrogen removal (NaHCO3-PVA/SA@W-2), resulting in a NO3--N removal efficiency of 99.06%, which was 21.39% higher than that without modification. Compared with the non-immobilized W-2, the degradation efficiency was improved by 43.70%. After five reuses, the NO3--N and TN removal rates remained at 99% and 93.01%, respectively. These results provide a solid foundation for the industrial application of the modified carrier as an effective tool for nitrogen removal in large-scale wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
26
|
Zhang X, Zhao Y, Wang Y, Qian H, Xing J, Joseph A, Rene ER, Li J, Zhu N. The interplay of hematite and photic biofilm triggers the acceleration of biotic nitrate removal. CHEMOSPHERE 2024; 358:142136. [PMID: 38692363 DOI: 10.1016/j.chemosphere.2024.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.
Collapse
Affiliation(s)
- Xiguo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanhui Zhao
- Changjiang Basin Ecology and Environment Monitoring and Scientific Research Center, Changjiang Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Wuhan, 430010, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haoliang Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, 210008, China.
| |
Collapse
|
27
|
Chen MX, Li YJ, Wu L, Lv XY, Li Y, Ru J, Yi Y. Optimal conditions and nitrogen removal performance of aerobic denitrifier Comamonas sp. pw-6 and its bioaugmented application in synthetic domestic wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3007-3020. [PMID: 38877627 DOI: 10.2166/wst.2024.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
To assess the possibility of using aerobic denitrification (AD) bacteria with high NO2--N accumulation for nitrogen removal in wastewater treatment, conditional optimization, as well as sole and mixed nitrogen source tests involving AD bacterium, Comamonas sp. pw-6 was performed. The results showed that the optimal carbon source, pH, C/N ratio, rotational speed, and salinity for this strain were determined to be succinate, 7, 20, 160 rpm, and 0%, respectively. Further, this strain preferentially utilized NH4+-N, NO3--N, and NO2--N, and when NO3--N was its sole nitrogen source, 92.28% of the NO3--N (150 mg·L-1) was converted to NO2--N. However, when NH4+-N and NO3--N constituted the mixed nitrogen source, NO3--N utilization by this strain was significantly lower (p < 0.05). Therefore, a strategy was proposed to combine pw-6 bacteria with traditional autotrophic nitrification to achieve the application of pw-6 bacteria in NH4+-N-containing wastewater treatment. Bioaugmented application experiments showed significantly higher NH4+-N removal (5.96 ± 0.94 mg·L-1·h-1) and lower NO3--N accumulation (2.52 ± 0.18 mg·L-1·h-1) rates (p < 0.05) than those observed for the control test. Thus, AD bacteria with high NO2--N accumulation can also be used for practical applications, providing a basis for expanding the selection range of AD strains for wastewater treatment.
Collapse
Affiliation(s)
- Maoxia X Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China E-mail:
| | - Yanjun J Li
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Liang Wu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Xiaoyu Y Lv
- South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yang Li
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Jing Ru
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| | - Yan Yi
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China; South Sichuan Pollution Control and Resource Recovery Research Center, Leshan Normal University, Leshan 614000, China
| |
Collapse
|
28
|
Ma B, Li A, Chen S, Guo H, Li N, Pan S, Chen K, Liu H, Kosolapov DB, Liu X, Zhi W, Chen Z, Mo Y, Sekar R, Huang T, Zhang H. Algicidal activity synchronized with nitrogen removal by actinomycetes: Algicidal mechanism, stress response of algal cells, denitrification performance, and indigenous bacterial community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134117. [PMID: 38554519 DOI: 10.1016/j.jhazmat.2024.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The harmful algal blooms (HABs) can damage the ecological equilibrium of aquatic ecosystems and threaten human health. The bio-degradation of algal by algicidal bacteria is an environmentally friendly and economical approach to control HABs. This study applied an aerobic denitrification synchronization algicidal strain Streptomyces sp. LJH-12-1 (L1) to control HABs. The cell-free filtrate of the strain L1 showed a great algolytic effect on bloom-forming cyanobacterium, Microcystis aeruginosa (M. aeruginosa). The optimal algicidal property of strain L1 was indirect light-dependent algicidal with an algicidal rate of 85.0%. The functional metabolism, light-trapping, light-transfer efficiency, the content of pigments, and inhibition of photosynthesis of M. aeruginosa decreased after the addition of the supernatant of the strain L1 due to oxidative stress. Moreover, 96.05% nitrate removal rate synchronized with algicidal activity was achieved with the strain L1. The relative abundance of N cycling functional genes significantly increased during the strain L1 effect on M. aeruginosa. The algicidal efficiency of the strain L1 in the raw water was 76.70% with nitrate removal efficiency of 81.4%. Overall, this study provides a novel route to apply bacterial strain with the property of denitrification coupled with algicidal activity in treating micro-polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS) 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 16500, Czech Republic
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
29
|
Tian W, Li Q, Luo Z, Wu C, Sun B, Zhao D, Chi S, Cui Z, Xu A, Song Z. Microbial community structure in a constructed wetland based on a recirculating aquaculture system: Exploring spatio-temporal variations and assembly mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106413. [PMID: 38507984 DOI: 10.1016/j.marenvres.2024.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
The diversity, composition and performance of microbial communities within constructed wetlands (CW) were markedly influenced by spatio-temporal variations. A pilot-scale integrated vertical-flow constructed wetland (IVCW) as the biological purification unit within a recirculating aquaculture system (RAS) was established and monitored in this study. The investigation aimed to elucidate the responses of community structure, co-occurrence networks, and assembly mechanisms of the microbial community to spatial and temporal changes. Spatially, all a-diversity indices and microbial networks complexity were significantly higher in the upstream pool of the IVCW than in the downstream pool. Temporally, the richness increased over time, while the evenness showed a decreasing trend. The number of nodes and edges of microbial networks increased over time. Notably, the stable pollutant removal efficiencies were observed during IVCW operations, despite a-diversity and bacterial community networks exhibited significant variations across time. Functional redundancy emerged as a likely mechanism contributing to the stability of microbial ecosystem functions. Null model and neutral model analyses revealed the dominance of deterministic processes shaping microbial communities over time, with deterministic influences being more pronounced at lower a-diversity levels. DO and inorganic nitrogen emerged as the principal environmental factor influencing microbial community dynamics. This study provides a theoretical foundation for the regulation of microbial communities and environmental factors within the context of IVCW.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Qiufen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| | - Zijun Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bo Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Danting Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Saisai Chi
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
30
|
Wang Z, Liao Y, Yan L, Liao B. Biological performance and membrane fouling of a microalgal-bacterial membrane photobioreactor for wastewater treatment without external aeration and carbonation. ENVIRONMENTAL RESEARCH 2024; 247:118272. [PMID: 38246292 DOI: 10.1016/j.envres.2024.118272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Biological nutrient removal processes involving the use of activated sludge (AS) to treat municipal wastewater normally result in high aeration energy consumption and significant greenhouse gas (GHG) emissions. Therefore, developing cost-efficient and environmentally friendly processes for wastewater treatment is vital. In this work, a novel non-aerated microalgal-bacterial membrane photobioreactor (MB-MPBR) was proposed, and its feasibility for organic contaminant and nutrient removals was evaluated, for the first time. The effects of inoculation ratio (microalgae to bacteria (M/B)) on the biological performance and membrane fouling were systematically investigated. The results showed that 95.9% of the chemical oxygen demand (COD), 74.5% of total nitrogen (TN), 98.5% of NH4+-N and 42.0% of total phosphorus (TP) were removed at an inoculation M/B ratio of 3:2 at steady state, representing a significant improvement compared to the M/B inoculation ratio of 1:3. Additionally, the higher inoculation M/B ratio (3:2) significantly promoted the biomass production owing to the favorable mutual exchange of oxygen and carbon dioxide between microalgae and bacteria. Cake layer formation was the primary fouling mechanism owing to the absence of aeration scouring on the membrane surface. The membrane fouling rate was slightly higher at the higher inoculation ratio (M/B = 3:2) owing to the increased biomass and extracellular polymeric substances (EPS) productions, despite the larger particle size. These results demonstrated that the non-aerated MB-MPBR could achieve superior biological performance, of which the inoculation M/B ratio was of critical importance for the initiation and maintenance of microalgal-bacterial symbiotic system, yet possibly caused severer membrane fouling in the absence of external aeration and carbonation. This study provides a new perspective for further optimizing and applying non-aerated MB-MPBR to enhance municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhaozhao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, PR China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, PR China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| | - Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Lina Yan
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
31
|
Lv HZ, Chen J, Zhao Y, Li Y, Cao SH, Cai WP, Shen L, Lu Y, Li YQ. A novel derivative synchronous fluorescence method for the rapid, non-destructive and intuitive differentiation of denitrifying bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120587. [PMID: 38520848 DOI: 10.1016/j.jenvman.2024.120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
It is challenging to differentiate bacteria residing in the same habitat by direct observation. This difficulty impedes the harvest, application and manipulation of functional bacteria in environmental engineering. In this study, we developed a novel method for rapid differentiation of living denitrifying bacteria based on derivative synchronous fluorescence spectroscopy, as exemplified by three heterotrophic nitrification-aerobic denitrification bacteria having the maximum nitrogen removal efficiencies greater than 90%. The intact bacteria and their living surroundings can be analyzed as an integrated target, which eliminates the need for the complex pre-processing of samples. Under the optimal synchronous scanning parameter (Δλ = 40 nm), each bacterium possesses a unique fluorescence spectral structure and the derivative synchronous fluorescence technique can significantly improve the spectral resolution compared to other conventional fluorescence methods, which enables the rapid differentiation of different bacteria through derivative synchronous fluorescence spectra as fast as 2 min per spectrum. Additionally, the derivative synchronous fluorescence technique can extract the spectral signals contributed by bacterial extracellular substances produced in the biological nitrogen removal process. Moreover, the results obtained from our method can reflect the real-time denitrification properties of bacteria in the biological nitrogen removal process of wastewater. All these merits highlight derivative synchronous fluorescence spectroscopy as a promising analytic method in the environmental field.
Collapse
Affiliation(s)
- Huang-Zhou Lv
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jinliang Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Yan Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China; Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, 361021, PR China
| | - Yu Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China; Department of Electronic Science, Xiamen University Xiamen, 361005, PR China
| | - Wei-Peng Cai
- Xiamen Municipal Center for Disease Control and Prevention, Xiamen, 361021, PR China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China.
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, PR China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
32
|
Xia Z, Ng HY, Xu D, Bae S. Lumen air pressure regulated multifunctional microbiotas in membrane-aerated biofilm reactors for simultaneous nitrogen removal and antibiotic elimination from aquaculture wastewater. WATER RESEARCH 2024; 251:121102. [PMID: 38198973 DOI: 10.1016/j.watres.2024.121102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
In this study, two membrane-aerated biofilm reactors (MABRs) were constructed: one solely utilizing biofilm and another hybrid MABR (HMABR) incorporating both suspended-sludge and biofilm to treat low C/N aquaculture wastewater under varying lumen air pressure (LAP). Both HMABR and MABR demonstrated superior nitrogen removal than conventional aeration reactors. Reducing LAP from 10 kPa to 2 kPa could enhance denitrification processes without severely compromising nitrification, resulting in an increase in total inorganic nitrogen (TIN) removal from 50.2±3.1 % to 71.6±1.0 %. The HMABR exhibited better denitrification efficacy than MABR, underscoring its potential for advanced nitrogen removal applications. A decline in LAP led to decreased extracellular polymeric substance (EPS) production, which could potentially augment reactor performance by minimizing mass transfer resistance while maintaining microbial matrix stability and function. Gene-centric metagenomics analysis revealed decreasing LAP impacted nitrogen metabolic potentials and electron flow pathways. The enrichment of napAB at higher LAP and the presence of complete ammonia oxidation (Comammox) Nitrospira at lower LAP indicated aerobic denitrification and Comammox processes in nitrogen removal. Multifunctional microbial communities developed under LAP regulation, diversifying the mechanisms for simultaneous nitrification-denitrification. Increased denitrifying gene pool (narGHI, nirK, norB) and enzymatic activity at a low LAP can amplify denitrification by promoting denitrifying genes and electron flow towards denitrifying enzymes. Sulfamethoxazole (SMX) was simultaneously removed with efficiency up to 80.2 ± 3.7 %, mainly via biodegradation, while antibiotic resistome and mobilome were propagated. Collectively, these findings could improve our understanding of nitrogen and antibiotic removal mechanisms under LAP regulation, offering valuable insights for the effective design and operation of MABR systems in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Zhengang Xia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| | - Dong Xu
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
33
|
Meng J, Di Y, Geng Y, Li W, Huo R, Zhou S. Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. BIORESOURCE TECHNOLOGY 2024; 396:130457. [PMID: 38369080 DOI: 10.1016/j.biortech.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The nitrogen removal characteristics and microbial response of biochar-immobilized mixed aerobic denitrifying bacteria (BIADB) were investigated at 25 °C and 10 °C. BIADB removed 53.51 ± 1.72 % (25 °C) and 39.90 ± 4.28 % (10 °C) nitrate in synthetic oligotrophic water. Even with practical oligotrophic water, BIADB still effectively removed 47.66-53.21 % (25 °C), and 39.26-45.63 % (10 °C) nitrate. The addition of inorganic electron donors increased nitrate removal by approximately 20 % for synthetic and practical water. Bacterial and functional communities exhibited significant temperature and stage differences (P < 0.05), with temperature and total dissolved nitrogen being the main environmental factors. The dominant genera and keystone taxa exhibited significant differences at the two temperatures. Structural equation model analysis showed that dissolved organic matter had the highest direct and indirect effects on diversity and function, respectively. This study provides an innovative pathway for utilizing biochar and inorganic electron donors for nitrate removal from oligotrophic waters.
Collapse
Affiliation(s)
- Jiajing Meng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
34
|
Shao W, Qian Y, Zhai X, Xu L, Guo H, Zhang M, Qiao W. Mechanisms of nanoscale zero-valent iron mediating aerobic denitrification in Pseudomonas stutzeri by promoting electron transfer and gene expression. BIORESOURCE TECHNOLOGY 2024; 394:130202. [PMID: 38092073 DOI: 10.1016/j.biortech.2023.130202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Aerobic denitrification and its mechanism by P. stutzeri was investigated in the presence of nanoscale zero-valent iron (nZVI). The removal of nitrate and ammonia was accelerated and the nitrite nitrogen accumulation was reduced by nZVI. The particle size and dosage of nZVI were key factors for enhancing aerobic denitrification. nZVI reduced the negative effects of low carbon/nitrogen, heavy metals, surfactants and salts to aerobic denitrification. nZVI and its dissolved irons were adsorbed into the bacteria cells, enhancing the transfer of electrons from nicotinamide adenine dinucleotide (NADH) to nitrate reductase. Moreover, the activities of NADH-ubiquinone reductase involved in the respiratory system, and the denitrifying enzymes were increased. The expression of denitrifying enzyme genes napA and nirS, as well as the iron metabolism gene fur, were promoted in the presence of nZVI. This work provides a strategy for enhancing the biological denitrification of wastewater using the bio-stimulation of nanomaterials.
Collapse
Affiliation(s)
- Weizhen Shao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaopeng Zhai
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - He Guo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
35
|
Ren J, Tang J, Min H, Tang D, Jiang R, Liu Y, Huang X. Nitrogen removal characteristics of novel bacterium Klebsiella sp. TSH15 by assimilatory/dissimilatory nitrate reduction and ammonia assimilation. BIORESOURCE TECHNOLOGY 2024; 394:130184. [PMID: 38086459 DOI: 10.1016/j.biortech.2023.130184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
A novel strain with heterotrophic nitrification and aerobic denitrification was screened and identified as Klebsiella sp. TSH15 by 16S rRNA. The results demonstrated that the ammonia-N and nitrate-N removal rates were 2.99 mg/L/h and 2.53 mg/L/h under optimal conditions, respectively. The analysis of the whole genome indicated that strain TSH15 contained the key genes involved in assimilatory/dissimilatory nitrate reduction and ammonia assimilation, including nas, nar, nir, nor, glnA, gltB, gdhA, and amt. The relative expression levels of key nitrogen removal genes were further detected by RT-qPCR. The results indicated that the N metabolic pathways of strain TSH15 were the conversion of nitrate or nitrite to ammonia by assimilatory/dissimilatory nitrate reduction (NO3-→NO2-→NH4+) and further conversion of ammonia to glutamate (NH4+-N → Glutamate) by ammonia assimilation. These results indicated that the strain TSH15 had the potential to be applied to practical sewage treatment in the future.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiajun Tang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Hongping Min
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Dingding Tang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Rui Jiang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, 430100, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
37
|
Ma B, Yang W, Li N, Kosolapov DB, Liu X, Pan S, Liu H, Li A, Chu M, Hou L, Zhang Y, Li X, Chen Z, Chen S, Huang T, Cao S, Zhang H. Aerobic Denitrification Promoting by Actinomycetes Coculture: Investigating Performance, Carbon Source Metabolic Characteristic, and Raw Water Restoration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:683-694. [PMID: 38102081 DOI: 10.1021/acs.est.3c05062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The coculture theory that promotes denitrification relies on effectively utilizing the resources of low-efficiency denitrification microbes. Here, the strains Streptomyces sp. PYX97 and Streptomyces sp. TSJ96 were isolated and showed lower denitrification capacity when cultured individually. However, the coculture of strains PYX97 and TSJ96 enhanced nitrogen removal (removed 96.40% of total nitrogen) and organic carbon reduction (removed 92.13% of dissolved organic carbon) under aerobic conditions. Nitrogen balance analysis indicated that coculturing enhanced the efficiency of nitrate converted into gaseous nitrogen reaching 70.42%. Meanwhile, the coculturing promoted the cell metabolism capacity and carbon source metabolic activity. The coculture strains PYX97 and TSJ96 thrived in conditions of C/N = 10, alkalescence, and 150 rpm shaking speed. The coculturing reduced total nitrogen and CODMn in the raw water treatment by 83.32 and 84.21%, respectively. During this treatment, the cell metabolic activity and cell density increased in the coculture strains PYX97 and TSJ96 reactor. Moreover, the coculture strains could utilize aromatic protein and soluble microbial products during aerobic denitrification processes in raw water treatment. This study suggests that coculturing inefficient actinomycete strains could be a promising approach for treating polluted water bodies.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Huaqing College, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109 Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, Utah 84322, United States
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500Praha-Suchdol ,Czech Republic
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
38
|
Tang M, Du R, Cao S, Berry M, Peng Y. Tracing and utilizing nitrogen loss in wastewater treatment: The trade-off between performance improvement, energy saving, and carbon footprint reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119525. [PMID: 37948961 DOI: 10.1016/j.jenvman.2023.119525] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Biological nitrogen removal is widely applied to reduce the discharge of inorganic nitrogen and mitigate the eutrophication of receiving water. However, nitrogen loss is frequently observed in wastewater treatment systems, yet the underlying principle and potential enlightenment is still lacking a comprehensive discussion. With the development and application of novel biological technologies, there are increasing achievement in the deep understanding and mechanisms of nitrogen loss processes. This article reviews the potential and novel pathways of nitrogen loss, occurrence mechanisms, influential factors, and control strategies. A survey of recent literature showed that 3%∼73% of nitrogen loss beyond the nitrogen budget can be ascribed to the unintentional presence of simultaneous nitrification/denitrification, partial nitrification/anammox, and endogenous denitrification processes, under low dissolved oxygen (DO) and limited available organic carbon source at aerobic conditions. Key influential parameters, including DO, aeration strategies, solid retention time (SRT), hydraulic retention time (HRT), temperature and pH, significantly affect both the potential pathways of nitrogen loss and its quantitative contribution. Notably, the widespread and spontaneous growth of anammox bacteria is an important reason for ammonia escape at anaerobic/anoxic conditions, leading to 7%∼78% of nitrogen loss through anammox pathway. Moreover, the unwanted nitrous oxide (N2O) emission should also be considered as a key pathway in nitrogen loss. Future development of new nitrogen removal technologies is proposed to suppress the generation of harmful nitrogen losses and reduce the carbon footprint of wastewater treatment by controlling key influential parameters. Transforming "unintentional observation" to "intentional action" as high-efficiency and energy-efficient nitrogen removal process provides a new approach for the development of wastewater treatment.
Collapse
Affiliation(s)
- Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire, 44603, France
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
39
|
Yang S, Huang T, Zhang H, Tang Y, Guo H, Hu R, Cheng Y. Promoting aerobic denitrification in reservoir water with iron-activated carbon: Enhanced nitrogen and organics removal efficiency, and biological mechanisms. ENVIRONMENTAL RESEARCH 2024; 240:117452. [PMID: 37865328 DOI: 10.1016/j.envres.2023.117452] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Carbon scarcity limits denitrification in micropolluted water, especially in drinking water reservoirs. Therefore, a Fe-activated carbon (AC) carrier was used in this study to enhance the nitrogen removal capacity of aboriginal denitrification in drinking water reservoirs under aerobic conditions. Following carrier addition, total nitrogen (TN) and permanganate index (CODMn) removal efficiencies reached 81.89% and 72.66%, respectively, and were enhanced by 40.45% and 39.65%. Nitrogen balance analysis indicated that 77.86% of the initial TN was converted into gaseous nitrogen. Biolog analysis suggested that the metabolic activity of denitrifying bacteria was substantially enhanced. 16S rRNA gene sequencing indicated that organic degradation bacteria, hydrogen-consuming, Fe-oxidizing, and Fe-reducing denitrifying bacteria (e.g., Arenimonas, Hydrogenophaga, Zoogloea, Methylibium, and Piscinibacter) evolved into the dominant species. Additionally, napA, nirS, nirK, and nosZ genes were enriched by 3.17, 6.68, 0.40, and 6.70 folds, respectively, which is conducive to complete denitrification. These results provide a novel pathway for the use of Fe-AC to promote aerobic denitrification in micropolluted drinking water reservoirs.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yun Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
40
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
41
|
Wang K, Du W, Liu Z, Liu R, Guan Q, He L, Zhou H. Extracellular electron transfer for aerobic denitrification mediated by the bioelectric catalytic system with zero-carbon source. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115691. [PMID: 37979359 DOI: 10.1016/j.ecoenv.2023.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The slow rate of electron transfer and the large consumption of carbon sources are technical bottlenecks in the biological treatment of wastewater. Here, we first proposed to domesticate aerobic denitrifying bacteria (ADB) from heterotrophic to autotrophic by electricity (0.6 V) under zero organic carbon source conditions, to accelerate electron transfer and shorten hydraulic retention time (HRT) while increasing the biodegradation rate. Then we investigated the extracellular electron transfer (EET) mechanism mediated by this process, and additionally examined the integrated nitrogen removal efficiency of this system with composite pollution. It was demonstrated that compared with the traditional membrane bioreactor (MBR), the BEC displayed higher nitrogen removal efficiency. Especially at C/N = 0, the BEC exhibited a NO3--N removal rate of 95.42 ± 2.71 % for 4 h, which was about 6.5 times higher than that of the MBR. Under the compound pollution condition, the BEC still maintained high NO3--N and tetracycline removal (94.52 ± 2.01 % and 91.50 ± 0.001 %), greatly superior to the MBR (10.64 ± 2.01 % and 12.00 ± 0.019 %). In addition, in-situ electrochemical tests showed that the nitrate in the BEC could be directly converted to N2 by reduction using electrons from the cathode, which was successfully demonstrated as a terminal electron acceptor.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Wentao Du
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Runhang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
42
|
Yang S, Dong M, Lu H, Cai Z, Ge M, Xing J, Huang H, Huang Y, Sun G, Zhou S, Xu M. Explaining nitrogen turnover in sediments and water through variations in microbial community composition and potential function. CHEMOSPHERE 2023; 344:140379. [PMID: 37827459 DOI: 10.1016/j.chemosphere.2023.140379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Anthropogenic activities greatly impact nitrogen (N) biogeochemical cycling in aquatic ecosystems. High N concentrations in coastal aquaculture waters threaten fishery production and aquaculture ecosystems and have become an urgent problem to be solved. Existing microbial flora and metabolic potential significantly regulate N turnover in aquatic ecosystems. To clarify the contribution of microorganisms to N turnover in sediment and water, we investigated three types of aquaculture ecosystems in coastal areas of Guangdong, China. Nitrate nitrogen (NO3--N) was the dominant component of total nitrogen in the sediment (interstitial water, 90.4%) and water (61.6%). This finding indicates that NO3--N (1.67-2.86 mg/L and 2.98-7.89 mg/L in the sediment and water) is a major pollutant in aquaculture ecosystems. In water, the relative abundances of assimilation nitrogen reduction and aerobic denitrifying bacteria, as well as the metabolic potentials of nitrogen fixation and dissimilated nitrogen in fish monoculture, were only 61.0%, 31.5%, 47.5%, and 27.2% of fish and shrimp polyculture, respectively. In addition, fish-shrimp polyculture reduced NO3--N content (2.86 mg/L) compared to fish monoculture (7.89 mg/L), which was consistent with changes in aerobic denitrification and nitrate assimilation, suggesting that polyculture could reduce TN concentrations in water bodies and alleviate nitrogen pollution risks. Further analysis via structural equation modeling (SEM) revealed that functional pathways (36% and 31%) explained TN changes better than microbial groups in sediment and water (13% and 11%), suggesting that microbial functional capabilities explain TN better than microbial community composition and other factors (pH, O2, and aquaculture type). This study enhances our understanding of nitrogen pollution characteristics and microbial community and functional capabilities related to sediment-water nitrogen turnover in three types of aquaculture ecosystems, which can contribute to the preservation of healthy coastal ecosystems.
Collapse
Affiliation(s)
- Shan Yang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meijun Dong
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Huibin Lu
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhipeng Cai
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meng Ge
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jia Xing
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Haobin Huang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Youda Huang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoping Sun
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shaofeng Zhou
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
43
|
Chen SL, Wang TY, Tang CC, Wang R, He ZW, Li ZH, Tian Y, Wang XC. Revealing mechanisms of triclosan on the removal and distribution of nitrogen and phosphorus in microalgal-bacterial symbiosis system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122539. [PMID: 37699452 DOI: 10.1016/j.envpol.2023.122539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.
Collapse
Affiliation(s)
- Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tian-Yang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rong Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
44
|
Feng L, Wu G, Zhang Z, Tian Z, Li B, Cheng J, Yang G. Improving denitrification performance of biofilm technology with salt-tolerant denitrifying bacteria agent for treating high-strength nitrate and sulfate wastewater from lab-scale to pilot-scale. BIORESOURCE TECHNOLOGY 2023; 387:129696. [PMID: 37598804 DOI: 10.1016/j.biortech.2023.129696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study focused on the application of salt-tolerant denitrifying bacteria (DBA) in an optimized biofilm process to treat high sulfate-nitrate wastewater from lab-scale to pilot-scale. Lab-scale results demonstrated the salinity, DBA inoculum, supplementary carbon and phosphorus source significantly varied the startup periods at the range of 36-74 d, and the optimum initial start-up conditions were as follows: >0.6 g/L of DBA, 2-4 of C/N ratio, 0.3-0.6 mg/L of phosphorus and a salinity-gradient domestication method. A pilot scale of biofilm technology with DBA was further developed for treating real wastewater from the desulfuration and denitration with both high nitrate (≈200 mg/L) and sulfate (2.7%). The denitrification efficiency reached above 90% after one-month gradient-salinity of 0.5%-2.7%. Mature biofilm had dominant genera Hyphomicrobium (31.80%-61.35%), Methylotenera (0.85%-20.21%) and Thauera (1.42%-8.40%), etc. Notably, the largest genera Hyphomicrobium covered the complete denitrification genes.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guiyang Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zeliang Zhang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhijuan Tian
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Bu Li
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Junmei Cheng
- Sinopec Luoyang Petrochemical Engineering Corporation, Luoyang 471003, China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
45
|
Yan L, Yin M, Miao J, Song X, Jiang J, Zhang S. Removal of nitrate nitrogen by Pseudomonas JI-2 under strong alkaline conditions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 388:129755. [PMID: 37696334 DOI: 10.1016/j.biortech.2023.129755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The nitrate nitrogen removal characteristics of Pseudomonas JI-2 under strong alkaline conditions and the composition and functional groups of extracellular polymeric substance were analyzed. Furthermore, nontargeted metabonomics and bioinformatics technology were used to investigate the alkaline tolerance mechanism. JI-2 removed 11.05 mg N/(L·h) of nitrate with the initial pH, carbon to nitrogen ratio and temperature were 11.0, 8 and 25 °C respectively. Even when the pH was maintained at 11.0, JI-2 could still effectively remove nitrate. JI-2 contains a large number of Na+/H+ antiporters, such as Mrp, Mnh (mnhACDEFG) and Pha (phaACDEFG), which can stabilize the intracellular acid-base environment, and SlpA can enable quick adaptation to alkaline conditions. Moreover, JI-2 responds to the strong alkaline environment by secreting more polysaccharides, acidic functional groups and compatible solutes and regulating key metabolic processes such as pantothenate and CoA biosynthesis and carbapenem biosynthesis. Therefore, JI-2 can survive in strong alkaline environments and remove nitrate efficiently.
Collapse
Affiliation(s)
- Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Mingyue Yin
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Jishuang Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China
| | - Shaoliang Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030 China.
| |
Collapse
|
46
|
Yang S, Huang T, Zhang H, Guo H, Hu R, Lin Z, Li Y, Cheng Y. Activation of indigenous denitrifying bacteria and enhanced nitrogen removal via artificial mixing in a drinking water reservoir: Insights into gene abundance, community structure, and co-existence model. ENVIRONMENTAL RESEARCH 2023; 236:116830. [PMID: 37543131 DOI: 10.1016/j.envres.2023.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Nitrogen pollution poses a severe threat to aquatic ecosystems and human health. This study investigated the use of water lifting aerators for in situ nitrogen reduction in a drinking water reservoir. The reservoir was thoroughly mixed and oxygenated after using water-lifting aerators for 42 days. The average total nitrogen concentration, nitrate nitrogen, and ammonium nitrogen-in all water layers-decreased significantly (P < 0.01), with a reduction efficiency of 35 ± 3%, 34 ± 2%, and 70 ± 6%, respectively. Other pollutants, including organic matter, phosphorus, iron, and manganese, were also effectively removed. Quantitative polymerase chain reactions indicated that bacterial nirS gene abundance was enhanced 26.34-fold. High-throughput sequencing, phylogenetic tree, and network analysis suggested that core indigenous nirS-type denitrifying bacteria, such as Dechloromonas, Simplicispira, Thauera, and Azospira, played vital roles in nitrogen and other pollutant removal processes. Furthermore, structural equation modeling revealed that nitrogen removal responded positively to WT, DO, and nirS gene abundance. Our findings provide a promising strategy for nitrogen removal in oligotrophic drinking water reservoirs with carbon deficiencies.
Collapse
Affiliation(s)
- Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruzhu Hu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zishen Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanqing Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
47
|
Wang F, Bo Z, Dong X, Zhou X, Hu X. Nitrogen removal performance of aerobic denitrifying bacteria enhanced by an iron-anode pulsed electric field. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2019-2032. [PMID: 37906456 PMCID: wst_2023_334 DOI: 10.2166/wst.2023.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pulsed electric field (PEF) technology has attracted considerable attention because it can efficiently treat pollutants that are difficult to degrade. In this study, a PEF system using iron as the electrode was constructed to investigate the effect of PEF-Fe on the growth and metabolism of aerobic denitrifying bacteria and the effectiveness of wastewater nitrogen removal. The chemical oxygen demand, NO3--N and nitrate removal rates were 98.93%, 97.60% and 24.40 mg·L-1·h-1, respectively, under optimal conditions. As confirmed in this study, PEF-Fe could improve the key enzyme activities of W207-14. Scanning electron microscopy revealed that the surface of PEF-Fe-treated W207-14 was intact and smooth without any irreversible deformation. Flow cytometry combined with fluorescence staining analysis also confirmed reversible electroporation on the cell membrane surface of PEF-Fe-treated W207-14. Differentially expressed gene enrichment analysis showed that PEF-Fe activated the transmembrane transport function of ATP-binding cassette transporte (ABC) transport proteins and enhanced the cell membrane permeability of aerobic denitrifying bacteria. The significant differential expression of iron-sulphur cluster proteins facilitated the regulation of electron transport and maintenance of the dynamic balance of iron ions within the PEF-Fe system.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Resources and Civil Engineering, Northeastern University, Shenyang 110014, China; Liaoning HaiTianGe Environmental Protection Technology CO., LTD, Shenfu Reform and Innovation Demonstration Zone, Liaoning, 113122, China; These authors contributed equally to this study. E-mail:
| | - Zhang Bo
- Institute of Resources and Civil Engineering, Northeastern University, Shenyang 110014, China; These authors contributed equally to this study
| | - Xiaonan Dong
- Liaoning Municipal Engineering Design h&Research Institute CO., LTD, Shenyang 110006, China
| | - Xingxing Zhou
- College of Architecture and Environment, Ningxia Institute of Science and Technology, Shizuishan 753000, China
| | - Xiaomin Hu
- Institute of Resources and Civil Engineering, Northeastern University, Shenyang 110014, China
| |
Collapse
|
48
|
Hu YQ, Zeng YX, Du Y, Zhao W, Li HR, Han W, Hu T, Luo W. Comparative genomic analysis of two Arctic Pseudomonas strains reveals insights into the aerobic denitrification in cold environments. BMC Genomics 2023; 24:534. [PMID: 37697269 PMCID: PMC10494350 DOI: 10.1186/s12864-023-09638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Biological denitrification has been commonly adopted for the removal of nitrogen from sewage effluents. However, due to the low temperature during winter, microorganisms in the wastewater biological treatment unit usually encounter problems such as slow cell growth and low enzymatic efficiency. Hence, the isolation and screening of cold-tolerant aerobic denitrifying bacteria (ADB) have recently drawn attention. In our previous study, two Pseudomonas strains PMCC200344 and PMCC200367 isolated from Arctic soil demonstrated strong denitrification ability at low temperatures. The two Arctic strains show potential for biological nitrogen removal from sewage in cold environments. However, the genome sequences of these two organisms have not been reported thus far. RESULTS Here, the basic characteristics and genetic diversity of strains PMCC200344 and PMCC200367 were described, together with the complete genomes and comparative genomic results. The genome of Pseudomonas sp. PMCC200344 was composed of a circular chromosome of 6,478,166 bp with a G + C content of 58.60% and contained a total of 5,853 genes. The genome of Pseudomonas sp. PMCC200367 was composed of a circular chromosome of 6,360,061 bp with a G + C content of 58.68% and contained 5,801 genes. Not only prophages but also genomic islands were identified in the two Pseudomonas strains. No plasmids were observed. All genes of a complete set of denitrification pathways as well as various putative cold adaptation and heavy metal resistance genes in the genomes were identified and analyzed. These genes were usually detected on genomic islands in bacterial genomes. CONCLUSIONS These analytical results provide insights into the genomic basis of microbial denitrification in cold environments, indicating the potential of Arctic Pseudomonas strains in nitrogen removal from sewage effluents at low temperatures.
Collapse
Affiliation(s)
- Yong-Qiang Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Yin-Xin Zeng
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu Du
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Zhao
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Hui-Rong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Han
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Ting Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
| |
Collapse
|
49
|
Wang L, Chen C, Tang Y, Liu B. Efficient nitrogen removal by a novel extreme strain, Pseudomonas reactans WL20-3 under dual stresses of low temperature and high alkalinity: Characterization, mechanism, and application. BIORESOURCE TECHNOLOGY 2023:129465. [PMID: 37429553 DOI: 10.1016/j.biortech.2023.129465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Although many studies report the resistance of heterotrophic nitrification-aerobic denitrification (HN-AD) strains to single environmental stress, there is no research on its resistance to dual stresses of low temperature and high alkalinity. A novel bacterium Pseudomonas reactants WL20-3 isolated in this study showed removal efficiencies of 100%, 100%, and 97.76% for ammonium, nitrate, and nitrite, respectively, at 4 °C and pH 11.0. Transcriptome analysis revealed that the resistance of strain WL20-3 to dual stresses was attributed not only to the regulation of genes in the nitrogen metabolic pathway, but also to genes in other pathways such as the ribosome, oxidative phosphorylation, amino acid metabolism, and ABC transporters. Additionally, WL20-3 removed 83.98% of ammonium from actual wastewater at 4 °C and pH 11.0. This study isolated a novel strain WL20-3 with superior nitrogen removal under dual stresses and provided a molecular understanding of its tolerance mechanism to low temperature and high alkalinity.
Collapse
Affiliation(s)
- Li Wang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd, Haikou, Hainan 571126, China
| | - Yueqin Tang
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Baicang Liu
- College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China.
| |
Collapse
|
50
|
Zhang X, Shi HT, Feng XC, Jiang CY, Wang WQ, Xiao ZJ, Xu YJ, Zeng QY, Ren NQ. Efficient aerobic denitrification without nitrite accumulation by Pseudomonas mendocina HITSZ-D1 isolated from sewage sludge. BIORESOURCE TECHNOLOGY 2023; 379:129039. [PMID: 37037332 DOI: 10.1016/j.biortech.2023.129039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | - Chen-Yi Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Wen-Qian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Yu-Jie Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Qin-Yao Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| |
Collapse
|