1
|
Han J, Hamza F, Guo J, Sayed M, Pyo SH, Xu Y. Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products. Biotechnol Adv 2025; 79:108509. [PMID: 39732443 DOI: 10.1016/j.biotechadv.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
Collapse
Affiliation(s)
- Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Faqiha Hamza
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
2
|
Li XL, Qi XN, Deng JC, Jiang P, Wang SY, Xue XL, Wang QH, Ren X. Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages. Foods 2025; 14:556. [PMID: 40002000 PMCID: PMC11854285 DOI: 10.3390/foods14040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Fusarium venenatum mycoprotein is an alternative, nutritious protein source with a meat-like texture. Here, F. venenatum mycoprotein-based Harbin red sausage was developed and characterized. The study focused on the effect of mycoprotein on the quality of red sausages, which were evaluated in five groups of red sausages based on nutrient content, differential scanning calorimetry (DSC), and gas chromatography-ion mobility spectrometry (GC-IMS). The results showed that increasing the component of mycoprotein in red sausage increased the protein and volatile organic compound content but decreased the water and ash content. There was no significant difference (p > 0.05) between red sausage with 25% added mycoprotein and traditional red sausage in terms of redness and thawed water component, but the protein component was higher, the flavor substances were slightly richer, and the consumer preference was higher. These results suggest that moderate amounts of mycoprotein can improve nutritional value and maintain sensory quality, but that higher levels of substitution can adversely affect preference. This study highlights the potential of mycoprotein as an artificial meat that can strike a balance between improved nutritional value and sensory acceptability.
Collapse
Affiliation(s)
- Xue-Li Li
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Xian-Ni Qi
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Jia-Chen Deng
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
| | - Ping Jiang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
| | - Shu-Yuan Wang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
| | - Xing-Li Xue
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Qin-Hong Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- National Innovation Centre for Synthetic Biology, Tianjin 300308, China
| | - Xiaoqing Ren
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300392, China; (X.-L.L.); (J.-C.D.); (P.J.); (S.-Y.W.); (X.-L.X.)
| |
Collapse
|
3
|
Topias Kilpinen A, Yousefi N, Kontturi E. Enhanced Production of Furfural via Methanolysis of Wood Biomass with HCl Gas. CHEMSUSCHEM 2025; 18:e202401291. [PMID: 39298662 PMCID: PMC11789968 DOI: 10.1002/cssc.202401291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
This study explores the production of furfural, xylose and methylxylosides through the methanolysis of wood flour using anhydrous HCl gas. The process involves methanolysis of wood flour with HCl gas under pressure to generate methylxylosides, which are subsequently converted to xylose and furfural via autohydrolysis in a Parr batch reactor system. The methanolysis was conducted in temperature-controlled HCl gas reactor employing 24 h reaction time and 50 % methanol content in wood flour. During the methanolysis step with HCl gas, 65 % of the available xylan in wood flour was converted to water-soluble methylxylosides, xylose, xylooligosaccharides (XO) and water-soluble methyl xylooligosaccharides (MXO). Methanolysis filtrates were then autohydrolyzed with Parr 50 mL batch reactor system to xylose and furfural in two different pH values at 180 °C. The highest furfural yield of 91 % from methanolysis filtrate was achieved with pH 1.2 and 25 min reaction time.
Collapse
Affiliation(s)
- A. Topias Kilpinen
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300AaltoFI-00076Finland
| | - Neptun Yousefi
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300AaltoFI-00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityP.O. Box 16300AaltoFI-00076Finland
| |
Collapse
|
4
|
Zhang Y, Cui H, Xia H. Recent Advances in the Synthesis of 2-Furoic Acid and 2,5-Furandicarboxylic Acid from Furfural. CHEMSUSCHEM 2025; 18:e202401390. [PMID: 39261279 DOI: 10.1002/cssc.202401390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
2,5-furandicarboxylic acid (FDCA) is an important organic platform compound that has been widely used in the fields of medicine, pesticides, dyes, plastics and resins due to its unique structure and properties. In recent years, with the emphasis on sustainable development and green chemistry, the synthesis of FDCA from biomass has attracted extensive attention. The catalytic conversion of furfural (FF) to FDCA has the advantages of easy availability of the raw material, environmental friendliness, economic feasibility and so on, which is an important direction for FDCA synthesis in the future. This paper mainly reviews the prepare pathways of furoic acid (FA) and FDCA using FF as a starting material, including the selective conversion of FF and FA to target products under different types of catalysts. First, the research progress in the synthesis of FA from FF was summarized, and then the advances in the catalytic conversion of FA to FDCA was reviewed. In addition, the development of efficient and green catalysts and the optimization of existing synthesis protocols are emphasized as key factors to improve the yield and purity of FDCA while reducing production costs. Finally, the opportunities and challenges were discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haowen Cui
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haian Xia
- Jiangsu Co-Innovation Center for Efficient Processing andUtilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| |
Collapse
|
5
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
6
|
Gan P, Zhang K, Yang G, Li J, Zhao Y, Chen J. Catalytic Production and Upgrading of Furfural: A Platform Compound. Int J Mol Sci 2024; 25:11992. [PMID: 39596077 PMCID: PMC11593448 DOI: 10.3390/ijms252211992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Furfural is a renewable platform compound that can be derived from lignocellulosic biomass. The highly functionalized molecular structure of furfural enables us to prepare a variety of high value-added chemicals, which will help realize biomass high-value utilization, and alleviate energy and environmental problems. This paper reviews the research progress on furfural production and upgrading to C5 chemicals from the catalyst perspective. The emphasis is placed on summarizing and refining the catalytic mechanism and in-depth analysis of available data. Specifically, the reaction mechanism of furfural production and upgrading is summarized firstly from the perspective of reaction pathways and reaction kinetics. Then, the available data are further processed to evaluate the actual reaction efficiency of different catalytic systems from multiple dimensions. Finally, based on statistical analysis, the challenges and opportunities of furfural-based research are proposed.
Collapse
Affiliation(s)
- Peng Gan
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Kai Zhang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (G.Y.); (J.L.); (Y.Z.)
| | - Guihua Yang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (G.Y.); (J.L.); (Y.Z.)
| | - Jinze Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (G.Y.); (J.L.); (Y.Z.)
| | - Yu Zhao
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (G.Y.); (J.L.); (Y.Z.)
| | - Jiachuan Chen
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi, College of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (G.Y.); (J.L.); (Y.Z.)
| |
Collapse
|
7
|
Salgado-Ramos M, José Huertas-Alonso A, Lorente A, Prado Sánchez-Verdú M, Moreno A, Cabañas B. One-pot, microwave (MW)-assisted production of furfural from almond-, oil-, and wine-derived co-products through biorefinery-based approaches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:280-292. [PMID: 38954920 DOI: 10.1016/j.wasman.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.
Collapse
Affiliation(s)
- Manuel Salgado-Ramos
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto José Huertas-Alonso
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Almudena Lorente
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - María Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Andrés Moreno
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain.
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Departamento de Química Física, Instituto de Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
8
|
Pundir A, Singh Thakur M, Prakash S, Kumari N, Sharma N, He Z, Nam S, Dhumal S, Sharma K, Saxena S, Kumar S, Deshmukh SV, Kumar M. Furfural as a low-volume, high-value asset from agricultural residues: A review on production, agricultural applications and environmental sustainability. Heliyon 2024; 10:e35077. [PMID: 39157344 PMCID: PMC11327586 DOI: 10.1016/j.heliyon.2024.e35077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
This comprehensive review explores furfural production from agricultural residues, focusing on its significance as a low-volume, high-value asset crucial for environmental sustainability. It covers diverse production technologies, recent advancements, and applications in agriculture, evaluating furfural's potential to enhance crop resilience and yield. Showing its role in a circular economy, the review discusses how furfural can replace conventional petrochemical processes, thereby reducing environmental impact. Case studies, such as successful implementations with cotton biomass byproducts, illustrate furfural's practical applications and environmental benefits. The study underscores the need for ongoing research, supportive policies, and furfural's growing role in sustainable agriculture and industry. It is focused on furfural's essential contribution to promoting environmental stewardship and sustainable practices. By examining furfural's role as a value-added product from agricultural residues, this review provides insights into its economic viability and potential challenges.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sunghyun Nam
- USDA-ARS, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sujata Saxena
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Sunil Kumar
- ICAR-Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
9
|
Yue Z, Sun LL, Wen JL, Yao SQ, Sun SN, Cao XF. Simultaneous production of furfural, lignin and cellulose-rich residue from Eucalyptus urophylla × E. grandis by ChCl/1,2-propanediol/MIBK biphasic system pretreatment. Int J Biol Macromol 2024; 275:133522. [PMID: 38945325 DOI: 10.1016/j.ijbiomac.2024.133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the β-O-4, β-β and β-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.
Collapse
Affiliation(s)
- Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Ver Elst C, Vroemans R, Bal M, Sergeyev S, Mensch C, Maes BUW. Synthesis of Levulinic Acids From Muconic Acids in Hot Water. Angew Chem Int Ed Engl 2023; 62:e202309597. [PMID: 37579251 DOI: 10.1002/anie.202309597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Levulinic acid is a key biorenewable platform molecule. Its current chemical production from sugars is plagued by limited yields, char formation and difficult separations. An alternative and selective route starting from muconic acid via simple heating in water at high temperature (180 °C) has been developed. Muconic acid can be obtained from sugars or catechol fermentation. Chemical oxidation of catechol is another possibility which advantageously can also be applied on substituted catechols, hereby providing substituted muconic acids. When applying the disclosed hydrothermal protocol on these substrates hitherto unknown substituted levulinic acids were accessed. In particular, 3-propyllevulinic acid has been synthesized from 4-propylcatechol, prepared from pine wood. This propylated derivative has been used for the synthesis of a 3-propyllevulinate diester, i.e. butane-1,4-diyl bis(4-oxo-3-propylpentanoate), via esterification with 1,4-butanediol. The diester showed superior performance as plasticizer in comparison to the corresponding levulinate diester in both PVC (polyvinyl chloride) and PLA (polylactic acid). It plasticizes equally effective as the notorious commercial phthalate-based benchmark DEHP (di-2-ethylhexyl phthalate) in PVC.
Collapse
Affiliation(s)
- Céderic Ver Elst
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Robby Vroemans
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Mathias Bal
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sergey Sergeyev
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Carl Mensch
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
11
|
Gawin R, Tracz A, Krajczy P, Kozakiewicz-Piekarz A, Martínez JP, Trzaskowski B. Inhibition of the Decomposition Pathways of Ruthenium Olefin Metathesis Catalysts: Development of Highly Efficient Catalysts for Ethenolysis. J Am Chem Soc 2023. [PMID: 37916946 DOI: 10.1021/jacs.3c10635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Ruthenium-based Hoveyda-type olefin metathesis catalysts bearing novel rigid spirocyclic alkyl amino carbenes (CAACs) have been developed. They are characterized by exceptional stability toward decomposition through β-elimination and bimolecular pathways, thus enabling unprecedented efficiency in the cross-metathesis of seed oil-derived fatty acid esters with ethylene (ethenolysis). Catalyst loading as low as 100 ppb was applied to the ethenolysis of the model substrate methyl oleate, leading to a remarkable turnover number (TON) of 2.6 million, significantly higher than previously reported (TON 340 000 at 1 ppm and 744 000 at 0.5 ppm catalyst loading). Ethenolysis of methyl esters derived from high oleic sunflower oil and rapeseed oil, readily available on an industrial scale, inexpensive, and renewable feedstocks, was for the first time effectively carried out with 0.5 ppm catalyst loading with TON as high as 964 000.
Collapse
Affiliation(s)
- Rafał Gawin
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | - Andrzej Tracz
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | | | | | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| |
Collapse
|
12
|
Madadi M, Elsayed M, Sun F, Wang J, Karimi K, Song G, Tabatabaei M, Aghbashlo M. Sustainable lignocellulose fractionation by integrating p-toluenesulfonic acid/pentanol pretreatment with mannitol for efficient production of glucose, native-like lignin, and furfural. BIORESOURCE TECHNOLOGY 2023; 371:128591. [PMID: 36627085 DOI: 10.1016/j.biortech.2023.128591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
A new cutting-edge lignocellulose fractionation technology for the co-production of glucose, native-like lignin, and furfural was introduced using mannitol (MT)-assisted p-toluenesulfonic acid/pentanol pretreatment, as an eco-friendly process. The addition of optimized 5% MT in pretreatment enhanced the delignification rate by 29% and enlarged the surface area and biomass porosity by 1.07-1.80 folds. This increased the glucose yield by 45% (from 65.34 to 94.54%) after enzymatic hydrolysis relative to those without MT. The extracted lignin in the organic phase of pretreatment exhibited β-O-4 bonds (61.54/100 Ar) properties of native cellulosic enzyme lignin. Lignin characterization and molecular docking analyses revealed that the hydroxyl tails of MT were incorporated with lignin and formed etherified lignin, which preserved high lignin integrity. The solubilized hemicellulose (96%) in the liquid phase of pretreatment was converted into furfural with a yield of 83.99%. The MT-assisted pretreatment could contribute to a waste-free biorefinery pathway toward a circular bioeconomy.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mahdy Elsayed
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
13
|
Progress of Reactions between Furfural and Aliphatic Alcohols via Catalytic Oxidation Processes: Reaction Routes, Catalysts, and Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11020640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Furfural is one of the most important biomass platform compounds and can be used to prepare various high-value-added chemicals. The reactions of furfural with aliphatic alcohols via an oxidative esterification reaction or oxidative condensation reaction can bond two carbon molecules together and produce longer hydrocarbon chains chemicals, including methylfuroate and some low-volatility liquid biomass fuels. Thus, these reactions are considered significant utilization routes of furfural, and many inspiring catalytic systems have been designed to promoted these reactions. In this work, the reported catalytic systems for the oxidative esterification and oxidative condensation reactions are reviewed separately. The catalysts for the oxidative esterification reaction are reviewed for the classification of noble metal catalysts and non-noble metal catalysts, according to the active metals in the catalysts. For the oxidative condensation reactions, the studies using oxygen as the oxidant are reviewed firstly, and then the studies conducted using the hydrogen transfer process are analyzed subsequently. Furthermore, suggestions for future research directions for the oxidative esterification and oxidative condensation reactions are put forward.
Collapse
|
14
|
Xu W, Zhang W, Han M, Zhang F, Lei F, Cheng X, Ning R, Wang K, Ji L, Jiang J. Production of xylooligosaccharides from Camellia oleifera Abel fruit shell using a shell-based solid acid catalyst. BIORESOURCE TECHNOLOGY 2022; 365:128173. [PMID: 36283662 DOI: 10.1016/j.biortech.2022.128173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to produce xylooligosaccharides (XOS) from Camellia oleifera Abel fruit shell (CFS) using a shell-based solid acid derived from CFS (CFS-BSA). CFS-BSA preparation was optimized by incomplete carbonization at 450 °C for 1 h, followed by sulfonation at 130 °C for 8 h to yield a -SO3H functional group concentration of 1.04 mmol/g. When CFS-BSA was used to hydrolyze CFS with a 1:5 ratio of CFS-BSA to CFS at 170 °C for 20 min, a maximum XOS yield (X2-X5) of 51.41 % was achieved, which was notably higher than when using subcritical H2O solely. CFS-BSA can be recycled and reused at least six times by sieving without a substantial loss in its catalytic activity. CFS-BSA can also be used to produce XOS from other lignocellulosic materials such as corncob (41.04 %), sugarcane bagasse (45.03 %), corn stalk (45.89 %), birchwood (46.05 %), and poplar (40.10 %).
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Minghui Han
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Ruxia Ning
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|