1
|
Diaz OM, Tell A, Hangartner S, Hutter J, Stalder U, Friedl H, Buser AM, Kern S, Bigler L, Bleiner D, Heeb NV. Determination of chlorinated paraffins and olefins in plastic consumer products of the Swiss market. CHEMOSPHERE 2025; 374:144239. [PMID: 39986000 DOI: 10.1016/j.chemosphere.2025.144239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Chlorinated paraffins (CPs) are plastic additives, which are targeted by international regulatory entities due to their persistence, bioaccumulation, potential for long-range environmental transport and adverse effects. In this work, CPs were analyzed in plastic consumer products of the Swiss market collected in 2021. Up to 144 plastic samples were pre-screened with a GC-ECD method. Plastic samples containing CPs (32, 22%) were further analyzed at homologue level by an LC-APCI-Orbitrap-HRMS method. Respective mass spectrometric data were extracted and evaluated with the CP-Hunter program at the rate of seconds per sample. Qualitative analysis of the LC-HRMS method revealed distinctive CnClx-homologue distributions of both chlorinated paraffins and olefins (COs), highlighting the diversity of CP-mixtures present in the Swiss market. The presence of C21- to C31-homologues in plastic consumer products is reported herein for the first time. Based on the specific fingerprints and the parameters deduced, these samples were grouped with a principal component analysis (PCA). Three industrial strategies were identified in the manufacturing of CP-containing plastics to either comply with or circumvent regulations. These strategies included the avoidance of the SCCP-fraction (type-A), the indiscriminate use of complex technical CP-mixtures (type-B) and the combination of technical CP-mixtures of different carbon-chain lengths and chlorination degrees (type-C). Results showed that the most used strategy was type-B and a partial substitution of SCCPs by MCCPs and LCCPs. Quantitative analysis exhibited that the SCCP content of 20 (14%) out of 144 plastic samples exceeded the Swiss legal limit of 1.5 mg SCCPs per g of plastic. The CnClx-homologue distribution of these plastic samples were type-B and type-C. Therefore, regular monitoring should be conducted to ensure that the composition of plastic products adheres to current regulations.
Collapse
Affiliation(s)
- O Mendo Diaz
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| | - A Tell
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - S Hangartner
- Cantonal Laboratory Basel-Stadt, Kannenfeldstrasse 2, 4056, Basel, Switzerland
| | - J Hutter
- University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - U Stalder
- University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - H Friedl
- Cantonal Laboratory Basel-Stadt, Kannenfeldstrasse 2, 4056, Basel, Switzerland
| | - A M Buser
- Swiss Federal Office for the Environment, Monbijoustrasse 40, 3003, Bern, Switzerland
| | - S Kern
- Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - L Bigler
- University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - D Bleiner
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland; University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - N V Heeb
- Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
2
|
Tran TM, Guida Y, Matsukami H, Hoang AQ, Thuy NTT, Weber R, Kajiwara N, Minh TB. Investigating polychlorinated alkanes in technical chlorinated paraffin mixtures and polymer products available in Vietnam. CHEMOSPHERE 2025; 372:144118. [PMID: 39823956 DOI: 10.1016/j.chemosphere.2025.144118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Chlorinated paraffins (CPs) are chemical additives mostly composed of polychlorinated alkanes (PCAs) which may impact on the environment and human health; however, little is known about their presence in Southeast Asia. To fill this knowledge gap, we assessed 74 PCA homolog groups commonly referred to as short-chain (SCCPs: PCAs-C10-13), medium-chain (MCCPs: PCAs-C14-17), and long-chain CPs (LCCPs: PCAs-C18-20) in technical CP mixtures (n = 4) and polymer samples (n = 49), including recycled plastics, collected in Vietnam in 2023. The contents of measured PCA homolog groups in technical CP mixtures were 86,000-930,000 mg/kg for PCAs-C10-13; 85,000-990,000 mg/kg for PCAs-C14-17; and 23,000-180,000 mg/kg for PCAs-C18-20. Total PCAs-C10-20 levels in polymer samples varied from 0.26 to 28,000 mg/kg and decreased in the order: soft plastic bag, electrical cable sheath, football pitch rubber, polyurethane hose, heat shrinkable tubing, spiral cable cover, plastic powder, and plastic drawstring. In polymer samples, PCAs-C14-17 were found at greater levels (mean/median: 3000/65 mg/kg) than PCAs-C18-20 (1300/9.5 mg/kg) and PCAs-C10-13 (740/16 mg/kg). The contents of total measured PCAs-C10-20 in polyvinyl chloride samples varied according to their life cycle stages, with higher levels found in recycled plastics than in feedstock and commercial product samples. The occurrence of PCAs-C10-13 in polymer samples above internationally proposed limits for PCAs-C10-13 in consumer goods and waste pose a conundrum for the implementation of a safe circular economy and may impact human health in Vietnam. Therefore, this study highlights key challenges for the through implementation of the Basel, Rotterdam, and Stockholm Conventions and the importance of further comprehensive investigations in Vietnam and other developing countries.
Collapse
Affiliation(s)
- Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Yago Guida
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan; Institute of Biophysics Carlos Chagas Filho, Health Sciences Center, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam
| | - Nguyen Thi Thu Thuy
- Faculty of Chemistry, TNU-University of Science, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Viet Nam
| | - Roland Weber
- POPs Environmental Consulting, Schwabisch Gmünd, 73527, Germany
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Viet Nam.
| |
Collapse
|
3
|
Wu X, Zhang S, Cao J, Tian J, Zhou W, Gao H, Dong S. Chlorinated paraffins in takeout food and its packaging in Beijing, China and dietary exposure risk. ENVIRONMENTAL RESEARCH 2024; 252:118768. [PMID: 38521355 DOI: 10.1016/j.envres.2024.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Chlorinated paraffins (CPs) are hazardous to humans, and dietary intake acts as the primary pathway for human exposure to CPs. Takeout food is popular worldwide, but the presence of CPs in takeout food and its packaging is unclear. In this study, the concentrations and distributions of short- and median-chain CPs (SCCPs and MCCPs, respectively) were measured in 97 samples of four categories of takeout food and 33 samples of three types of takeout packaging. The SCCP and MCCP median concentrations for the takeout food samples were 248 and 339, 77.2 and 98.2, 118 and 258, 42.9 and 64.4 ng/g wet weight in meat, starch, half meat/half starch, and vegetables, respectively. Takeout food contained higher concentrations of SCCPs than MCCPs. The dominant SCCP and MCCP congener groups in takeout food were C10Cl6-7 and C14Cl7-8, respectively. The CP concentrations in takeout food were lower than those in packaging. The SCCP and MCCP median concentrations, respectively, in packaging were 9750 and 245 ng/g in polypropylene, 2830 and 135 ng/g in paper, and 2060 and 119 ng/g in aluminum foil. The concentrations of SCCPs and MCCPs were comparable in aluminum foil, whereas the concentrations of SCCPs were higher than those of MCCPs in polypropylene and paper. Correlations between CP concentrations in the takeout food and packaging indicated that CPs in packaging were potentially an important source of CPs in the takeout food. A dietary exposure risk assessment showed the takeout food posed a low risk for human exposure to CPs; however, high-frequency consumption may pose a health risk. This study clarified the current contamination situation in takeout food in Beijing, China. The resulting data could be used to prevent human exposure to CPs through dietary intake and to facilitate the market's control over the quality of takeout food.
Collapse
Affiliation(s)
- Xingyi Wu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Su Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Cao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangxin Tian
- College of Science, China Agricultural University, Beijing 100193, China
| | - Wenfeng Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Haixiang Gao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Shujun Dong
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Tahir A, Abbasi NA, He C, Ahmad SR. Exposure and human health risk assessment of chlorinated paraffins in indoor and outdoor dust from a metropolitan city, Lahore, Pakistan. CHEMOSPHERE 2024; 347:140687. [PMID: 37952823 DOI: 10.1016/j.chemosphere.2023.140687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Chlorinated paraffins (CPs) are widely used in commercial products due to their stability and durability and are subsequently released in the environment posing serious health risks in human population. In this study, dust samples from indoor and outdoor settings of residential, commercial and industrial zones as well as from vehicles were collected from a metropolitan city, Lahore, Pakistan. A total of 83 dust samples were analyzed for short (SCCPs) and medium (MCCPs) chained CPs through quadrupole time of flight mass spectrometer in atmospheric pressure chemical ionization (APCI QToF-MS) mode. The median concentrations of ƩCPs (C10-17) in outdoor dust were higher than indoor dust in industries (0.97 vs 0.48 μg/g), and residential areas (0.70 vs 0.13 μg/g) while lower in commercial areas (0.28 vs 0.44 μg/g) reflecting their higher prevalence in industrial and residential zones. The vehicular dust had median ƩCPs of 0.16 μg/g which was similar to residential indoor dust. Overall, ƩSCCPs were dominant among all zones with C10,12 and Cl7-8 as abundant carbon and chlorine congeners in both indoor and outdoor dusts. No significant correlations were observed between indoor and outdoor dust for ƩSCCPs and ƩMCCPs indicating their varying exposure. Health hazard index and margin of exposure revealed that toddlers were at higher risk compared to adults as a results of CPs exposure from both indoor and outdoor environments. This is the first ever assessment of CPs in Pakistan reflecting higher prevalence of SCCPs than MCCPs in dust of local environment posing some serious health consequences hence needed intensive investigation and effective management.
Collapse
Affiliation(s)
- Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Chang He
- Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, 4102, Australia
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Souza MCO, Souza JMO, da Costa BRB, Gonzalez N, Rocha BA, Cruz JC, Guida Y, Souza VCO, Nadal M, Domingo JL, Barbosa F. Levels of organic pollutants and metals/metalloids in infant formula marketed in Brazil: Risks to early-life health. Food Res Int 2023; 174:113594. [PMID: 37986457 DOI: 10.1016/j.foodres.2023.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Infant formula intake is recommended to ensure comprehensive nutritional and caloric fulfillment when exclusive breastfeeding is not possible. However, similarly to breast milk, infant formulas may also contain pollutants capable of inducing endocrine-disrupting and neurotoxic effects. Thus, considering the sensitivity of their developing physiological systems and that infants have heightened susceptibility to environmental influences, this study was aimed at assessing the contents of essential elements, and inorganic and organic pollutants in infant formulas marketed in Brazil. Additionally, health risk assessments for selected contaminants were also performed. Measured contents of essential elements (Ca, Fe, Mg, Mn, Cu, Se, and Zn) were congruent with label information. Nevertheless, some toxic elements (Pb, Cd, As, Ni, and Al) were also detected. Notably, in the upper-bound scenario, Pb and Cd surpassed established threshold values when comparing the estimated daily intake (EDI) and tolerable daily intake (TDI - 3.57 and 0.36 μg/kg bw, respectively). Bisphenol P (BPP) and benzyl butyl phthalate (BBP) were frequently detected (84 % detection rate both) with elevated contents (BPP median = 4.28 ng/g and BBP median = 0.24 ng/g). Furthermore, a positive correlation (0.41) was observed between BPP and BBP, implying a potential co-occurrence within packaging materials. Methyl-paraben also correlated positively with BBP (0.57), showing a detection rate of 53 %. The cumulative PBDE contents ranged from 0.33 to 1.62 ng/g, with BDE-154 and BDE-47 the dominant congeners. When comparing EDI values with TDIs, all organic pollutants remained below the thresholds across all exposure scenarios. Moreover, non-carcinogenic risks were below the threshold (HQ > 1) when dividing the EDIs by the respective reference doses for chronic exposure. While the current findings may suggest that infant formula intake poses no immediate risk in terms of the evaluated chemicals, it remains imperative to conduct further research to safeguard the health of infants considering other chemicals, as well as their potential cumulative effects.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Juliana Maria Oliveira Souza
- Department of Biochemistry, Biological Sciences Institute, University of Juiz de Fora, Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Bruno Ruiz Brandão da Costa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Forensic Toxicology Analysis Laboratory, Avenida dos Bandeirantes, 3900 - Monte Alegre, 14015-130, Ribeirao Preto, Sao Paulo, Brazil; University of Sao Paulo, Institute of Biosciences, Department of Botany, Laboratory of Phytochemistry, Rua do Matão, 277, 05508-090 Sao Paulo, Brazil
| | - Neus Gonzalez
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Yago Guida
- Institute of Biophysics Carlos Chagas Filho, Health Sciences Center, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Vanessa Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
6
|
Tomasko J, Parizek O, Pulkrabova J. Short- and medium-chain chlorinated paraffins in T-shirts and socks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122065. [PMID: 37330183 DOI: 10.1016/j.envpol.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are complex mixtures of persistent compounds used mainly as plastic additives. They can have a negative impact on human health as they are suspected of disrupting the endocrine system and being carcinogenic, which is why monitoring their presence in the human environment is desirable. Clothing was selected for this study because they are produced in large quantities worldwide and the final products are worn for long periods throughout the day, in direct contact with human skin. The concentrations of CPs in this type of sample have not been sufficiently reported. We determined SCCPs and MCCPs in 28 samples of T-shirts and socks by gas chromatography coupled with high-resolution mass spectrometry in negative chemical ionisation mode (GC-NCI-HRMS). CPs were found above the limits of quantification in all samples, with concentrations ranging from 33.9 to 5940 ng/g (mean 1260 ng/g, median 417 ng/g). The samples with a substantial proportion of synthetic fibres contained higher CP concentrations (22 times higher mean for SCCPs and 7 times higher mean for MCCPs) than garments composed exclusively of cotton. Finally, the effect of washing in the washing machine was investigated. The individual samples behaved differently: (i) excessively emitting CPs; (ii) being contaminated; (iii) retaining the original CP levels. The CP profiles also changed for some samples (with a substantial proportion of synthetic fibres and samples composed exclusively of cotton).
Collapse
Affiliation(s)
- Jakub Tomasko
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Dejvice, Czech Republic.
| | - Ondrej Parizek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Dejvice, Czech Republic.
| | - Jana Pulkrabova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28, Prague 6, Dejvice, Czech Republic.
| |
Collapse
|
7
|
Guida Y, Matsukami H, Oliveira de Carvalho G, Weber R, Vetter W, Kajiwara N. Homologue Composition of Technical Chlorinated Paraffins Used in Several Countries over the Last 50 Years─SCCPs Are Still Out There. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13136-13147. [PMID: 37607020 DOI: 10.1021/acs.est.3c02243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals, with certain CP subgroups facing global restrictions due to their environmental dispersion, persistence, bioaccumulation, and toxicity. To evaluate the effectiveness of these international restrictions, we assessed the homologue group contribution and the mass fraction of short-chain CPs (SCCPs: C10-C13), medium-chain CPs (MCCPs: C14-C17), and long-chain CPs (LCCPs: ≥C18) in 36 technical CP mixtures used worldwide over the last 50 years. Using low-resolution mass spectrometry (LC-ESI-MS/MS), we quantified 74 CP homologue groups (C10Cl4-C20Cl10). Additionally, high-resolution mass spectrometry (LC-ESI-QTOF-MS) screening was employed to identify unresolved CP contents, covering 375 CP homologue groups (C6Cl4-C30Cl30). Overall, 1 sample was mainly composed of
Collapse
Affiliation(s)
- Yago Guida
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Gabriel Oliveira de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, 21941-902 Rio de Janeiro, Brazil
| | - Roland Weber
- POPs Environmental Consulting, 73527 Schwäbisch Gmünd, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, DE-70593 Stuttgart, Germany
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
8
|
Girones L, Guida Y, Oliva AL, Machado Torres JP, Marcovecchio JE, Vetter W, Arias AH. Short- and medium-chain chlorinated paraffins in fish from an anthropized south-western Atlantic estuary, Bahía Blanca, Argentina. CHEMOSPHERE 2023; 328:138575. [PMID: 37011823 DOI: 10.1016/j.chemosphere.2023.138575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chlorinated paraffins (CPs) are synthetic organic compounds of growing environmental and social concern. Short-chain chlorinated paraffins (SCCPs) were listed under the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2017. Further, in 2021, medium-chain chlorinated paraffins (MCCPs) were proposed to be listed as POPs. We investigated SCCP and MCCP amounts and homolog profiles in four wild fish species from Bahía Blanca Estuary, a South Atlantic Ocean coastal habitat in Argentina. SCCPs and MCCPs were detected in 41% and 36% of the samples, respectively. SCCP amounts ranged from <12 to 29 ng g-1 wet weight and <750-5887 ng g-1 lipid weight, whereas MCCP amounts ranged from <7 to 19 ng g-1 wet weight and <440-2848 ng g-1 lipid weight. Amounts were equivalent to those found in fish from the Arctic and Antarctic Oceans and from some North American and Tibetan Plateau lakes. We performed a human health risk assessment and found no direct risks to human health for SCCP or MCCP ingestion, according to present knowledge. Regarding their environmental behavior, no significant differences were observed among SCCP amounts, sampling locations, species, sizes, lipid content, and age of the specimens. However, there were significant differences in MCCP amounts across species, which could be attributed to fish size and feeding habits. Homolog profiles in all fish were dominated by the medium-chlorinated (Cl6 and Cl7) CPs and shorter chain length CPs were the most abundant, with C10Cl6 (12.8%) and C11Cl6 (10.1%) being the predominant SCCPs and C14Cl6 (19.2%) and C14Cl7 (12.4%) the predominant MCCPs. To the best of our knowledge, this is the first study on the presence of CPs in the environment in Argentina and the South Atlantic Ocean. CP occurrence in the environment, particularly in the food chain, promotes the need for further research on their occurrence and behavior, and the impact of CPs in marine ecosystems in Argentina.
Collapse
Affiliation(s)
- Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina
| | - Yago Guida
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-902, Rio Janeiro, RJ, Brazil
| | - Ana Laura Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina
| | - João Paulo Machado Torres
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-902, Rio Janeiro, RJ, Brazil
| | - Jorge Eduardo Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, 7600, Mar del Plata, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, 8000, Bahía Blanca, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, 1014, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), DE-70593, Stuttgart, Germany
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga Km 7.5, B8000FWB, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
9
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
10
|
Zhang R, Li J, Wang Y, Jiang G. Distribution and exposure risk assessment of chlorinated paraffins and novel brominated flame retardants in toys. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130789. [PMID: 36641847 DOI: 10.1016/j.jhazmat.2023.130789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs) and novel brominated flame retardants (NBFRs) were examined in children's toys collected from 13 families in China. The concentrations of short-chain CPs (SCCPs), medium-chain CPs (MCCPs) and NBFRs in toys were 32.8-1,220,954 ng/g, not detected-2,688,656 ng/g and 0.08-103,461 ng/g, respectively. Median concentrations of SCCPs and MCCPs in toys were 1355 and 1984 ng/g, respectively, while except for pentabromobenzene (median:0.04 ng/g), the median concentrations of the other 8 NBFRs were below method detection limits. Rubber and foam toys contained higher amounts of CPs and NBFRs. Among the SCCPs and MCCPs monitored, Cl6-8-SCCPs/MCCPs and C14-MCCPs were the most abundant congener groups. On the other hand, decabromodiphenyl ethane was the predominant NBFR in toys. Moreover, to understand the role of toys in children's daily exposure to CPs and NBFRs, hand-to-mouth contact, mouthing, and dermal exposure were assessed for children aged 3 months to 6 years. Hand-to-mouth contact is the primary exposure route for children's exposure to CPs (25.4-536 ng/kg/day) and NBFRs (1.24-26.2 ng/kg/day) through toys. A low deleterious risk associated with children's toys concerning CPs and NBFRs was investigated based on the margin of exposure and hazard quotient values.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Yu H, Gao Y, Zhan F, Zhang H, Chen J. Release Mechanism of Short- and Medium-Chain Chlorinated Paraffins from PVC Materials under Thermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3095-3103. [PMID: 36799869 DOI: 10.1021/acs.est.2c07548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) as plasticizers are massively added to polyvinyl chloride (PVC) products, during whose life cycle CPs can be continuously released especially under thermal stress. In this study, a PVC cable sheath was adopted as a representative kind of PVC material to investigate the release behaviors of short- and medium-chain CPs (SCCPs and MCCPs) under thermal treatment. Release percentages of CPs with increasing temperature followed a Gaussian-like curve. At the unmolten stage of 80 °C, heating for 10 min caused 0.051% of added SCCPs and 0.029% of added MCCPs to be released. At the molten stage of 270 °C, accumulative release rates of SCCPs and MCCPs within 10 min were up to 30 and 14%, respectively. The developed emission model indicated that material-gas partitioning and internal diffusion simultaneously governed the release of CPs. During thermal treatment, the release of CPs could be remarkably affected by the thermal expansion of the PVC material and the formation of breakage and micropores. Congener group profiles of released CPs indicated a slight fractionation effect for SCCPs during the release process. Furthermore, the release risk of CPs from the whole life cycle of PVC products was preliminarily evaluated.
Collapse
Affiliation(s)
- Haoran Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Faqiang Zhan
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|