1
|
Wang H, Li Y, Zhang J, Zhang T, Wang Y, Li FY. Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124142. [PMID: 39823937 DOI: 10.1016/j.jenvman.2025.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity. However, the information on the management effects on GHG emissions from natural grasslands is still insufficient. Here we conducted a six-year grazing and mowing experiment in a semi-arid steppe grassland in central Inner Mongolia, and employed the static chamber method to investigate the effects of three major management measures, fencing, grazing and mowing, on ecosystem respiration (CO2 emission), methane uptake (CH4), and nitrous oxide emission (N2O) patterns in the experimental grassland. The results demonstrated that: (i) moderate grazing reduced plant aboveground standing biomass and CO2 emissions, but promoted belowground nutrient cycling and CH4 uptake; (ii) mowing enhanced plant biomass production, increased soil carbon and nitrogen content, and also increased CO2 emission; (iii) reducing grazing frequency reduced plant biomass loss and N2O emissions. We conclude that grazing at a moderate intensity and frequency is the best for mitigating GHG emissions while maintaining grassland production, and that mowing enhancement of plant production and GHG emissions should be considered in optimizing grassland management.
Collapse
Affiliation(s)
- Hao Wang
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yanlong Li
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Junzheng Zhang
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; School of Life Science, Inner Mongolia Agricultural University, Hohhot, 010021, China
| | - Tongrui Zhang
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010021, China
| | - Yadong Wang
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Frank Yonghong Li
- Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Dong X, Dong G, Chen J, Legesse TG, Jiang S, Akram MA, Qu LP, Wang L, Deng J, Shao C. Reclamation alters evapotranspiration and its biophysical controls in a meadow grassland on the Mongolian Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122528. [PMID: 39353245 DOI: 10.1016/j.jenvman.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Global grasslands were constantly being replaced and reclaimed for cropland, and such reclamations may profoundly affect ecological such as water cycles. However, the long-term effects of this conversion on evapotranspiration (ET) processes remain underexplored. To discern changes in ET from grassland to reclaimed cropland and among different crop rotations, a four-year study (2018-2021) was conducted using the eddy covariance system in a Hulunber grassland and a neighboring reclaimed cropland. The ET in reclaimed cropland (248 mm) was 49% higher than the grassland (166 mm) during the growing season (crop growth period), whereas the ET in the grassland (134 mm) exceeded that in the cropland (128 mm) by 6% in the non-growing season. The croplands experienced a 19% increase in precipitation, primarily due to artificial irrigation during the growing season. Meanwhile, the increase in ET in reclaimed cropland might also be influenced by changes in vegetation type and crop growth characteristics, as well as by rational tillage practices that increase the cover of vegetation and biomass. Notably, potato cultivation most closely matched the water balance of grasslands. In addition, irrigation directly increased soil water content (SWC), and that enhancing the sensitivity of ET to SWC. Overall, this study highlighted the importance of understanding ET variations due to grassland conversion to cropland and different crop rotations, emphasizing the role of irrigation and tillage practices.
Collapse
Affiliation(s)
- Xiaobing Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jingyan Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shicheng Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianming Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Qu LP, Chen J, Xiao J, De Boeck HJ, Dong G, Jiang SC, Hu YL, Wang YX, Shao CL. The complexity of heatwaves impact on terrestrial ecosystem carbon fluxes: Factors, mechanisms and a multi-stage analytical approach. ENVIRONMENTAL RESEARCH 2024; 240:117495. [PMID: 37890820 DOI: 10.1016/j.envres.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Extreme heatwaves have become more frequent and severe in recent decades, and are expected to significantly influence carbon fluxes at regional scales across global terrestrial ecosystems. Nevertheless, accurate prediction of future heatwave impacts remains challenging due to a lack of a consistent comprehension of intrinsic and extrinsic mechanisms. We approached this knowledge gap by analyzing the complexity factors in heatwave studies, including the methodology for determining heatwave events, divergent responses of individual ecosystem components at multiple ecological and temporal scales, and vegetation status and hydrothermal environment, among other factors. We found that heatwaves essentially are continuously changing compound environmental stress that can unfold into multiple chronological stages, and plant physiology and carbon flux responses differs in each of these stages. This approach offers a holistic perspective, recognizing that the impacts of heatwaves on ecosystems can be better understood when evaluated over time. These stages include instantaneous, post-heatwave, legacy, and cumulative effects, each contributing uniquely to the overall impact on the ecosystem carbon cycle. Next, we investigated the importance of the timing of heatwaves and the possible divergent consequences caused by different annual heatwave patterns. Finally, a conceptual framework is proposed to establish a united foundation for the study and comprehension of the consequences of heatwaves on ecosystem carbon cycle. This instrumental framework will assist in guiding regional assessments of heatwave impacts, shedding light on the underlying mechanisms responsible for the varied responses of terrestrial ecosystems to specific heatwave events, which are imperative for devising efficient adaptation and mitigation approaches.
Collapse
Affiliation(s)
- Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jiquan Chen
- Center for Global Change & Earth Observations (CGCEO), Michigan State University, East Lansing, MI, 48823, USA.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Hans J De Boeck
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Gang Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; School of Life Science, Shanxi University, Taiyuan, China.
| | | | - Ya-Lin Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yi-Xuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chang-Liang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Morales-Pineda M, García-Gómez ME, Bedera-García R, García-González M, Couso I. CO 2 Levels Modulate Carbon Utilization, Energy Levels and Inositol Polyphosphate Profile in Chlorella. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010129. [PMID: 36616258 PMCID: PMC9823770 DOI: 10.3390/plants12010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/15/2023]
Abstract
Microalgae have a growing recognition of generating biomass and capturing carbon in the form of CO2. The genus Chlorella has especially attracted scientists' attention due to its versatility in algal mass cultivation systems and its potential in mitigating CO2. However, some aspects of how these green microorganisms respond to increasing concentrations of CO2 remain unclear. In this work, we analyzed Chlorella sorokiniana and Chlorella vulgaris cells under low and high CO2 levels. We monitored different processes related to carbon flux from photosynthetic capacity to carbon sinks. Our data indicate that high concentration of CO2 favors growth and photosynthetic capacity of the two Chlorella strains. Different metabolites related to the tricarboxylic acid cycle and ATP levels also increased under high CO2 concentrations in Chlorella sorokiniana, reaching up to two-fold compared to low CO2 conditions. The signaling molecules, inositol polyphosphates, that regulate photosynthetic capacity in green microalgae were also affected by the CO2 levels, showing a deep profile modification of the inositol polyphosphates that over-accumulated by up to 50% in high CO2 versus low CO2 conditions. InsP4 and InsP6 increased 3- and 0.8-fold, respectively, in Chlorella sorokiniana after being subjected to 5% CO2 condition. These data indicate that the availability of CO2 could control carbon flux from photosynthesis to carbon storage and impact cell signaling integration and energy levels in these green cells. The presented results support the importance of further investigating the connections between carbon assimilation and cell signaling by polyphosphate inositols in microalgae to optimize their biotechnological applications.
Collapse
|