1
|
Ihenetu SC, Hao Y, Ma J, Li J, Li G. Effects of biochar on tire wear particle-derived 6PPD, 6PPD-Q, and antimony levels and microbial community in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137951. [PMID: 40107102 DOI: 10.1016/j.jhazmat.2025.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Although several studies have documented tire wear particles (TWP)-contaminated soil could increase N-(1,3-dimethylbutyl)-N-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone (6PPD-Q), and antimony (Sb) levels, despite this, effective strategies to address the problem are still lacking. This study focused on mitigating environmental risks from TWPs, a significant but overlooked contaminant. We examined the impact of biochar (BC) on TWP contamination at different soil moisture levels. 6PPD levels in TWP-amended soil peaked at 4.239 µg/g by day 60 in flooded conditions. BC amendments reduced 6PPD and 6PPD-Q concentrations by 85-90 % in both conditions. BC also reduced Sb(III) and Sb(V) levels by 80-83 %, while boosting dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) levels by up to 75 %, improving soil fertility. Our results showed that 6PPD and 6PPD-Q exposure altered bacterial composition, with Desulfobacterota and Planctomycetota thriving in flooded conditions, while Gemmamonadota and Verrucomicrobiota declined in 50 % water holding capacity (WHC). Key results indicated a strong reduction in alpha diversity under 50 % WHC, while treatments with MBc400 maintain higher biodiversity, as indicated by the Shannon index, and higher species richness, shown by the Chao index, especially in 50 % WHC. These results implied that higher-temperature BC effectively reduced 6PPD, 6PPD-Q, and Sb bioavailability while mitigating TWP contamination by enhancing microbial diversity, especially under 50 % WHC.
Collapse
Affiliation(s)
- Stanley Chukwuemeka Ihenetu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Yilong Hao
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Jun Ma
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| | - Jinhu Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Gang Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
2
|
Wang S, Qiang T, Shen L, Xv B, Lan Y, Zhang J, Wu Q, Su Y, Song N. Fabrication of chitosan-modified magnetic durian shell biochar for removal of the microplastics. Int J Biol Macromol 2025; 307:141401. [PMID: 40044012 DOI: 10.1016/j.ijbiomac.2025.141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Microplastics (MPs) are an emerging threat to terrestrial ecosystems and have attracted global attention. In this study, durian shell was used as biochar raw material to provide magnetism, and then it was modified with chitosan to make chitosan-modified magnetic biochar (CMBC). The prepared CMBC was used to simulate the adsorption of MPs in sewage. Experimental results showed that the amount of CMBC was 0.1 g, pH was 10, the concentration of 160 mg/L had the optimal adsorption effect, the adsorption rate reached up to 97.22 %, and the adsorption capacity was 15.56 mg/g. According to the adsorption kinetic analysis, the adsorption process conformed to be the Freundlich model. The removal rate of MPs still remained at 76.41 % when CMBC, a green environmentally friendly adsorption material, was recycled for five times. This research broadens the understanding for the evaluation of magnetic biochar effectiveness in the adsorption of MPs pollution.
Collapse
Affiliation(s)
- Shan Wang
- Xianyang Normal University, Xianyang 712000, PR China.
| | - Tao Qiang
- Xi'an Technological University, Xi'an 710021, PR China
| | - Lihua Shen
- Xi'an University of Science and Technology, Xi'an, 710054, PR China.
| | - Baolong Xv
- Xianyang Normal University, Xianyang 712000, PR China
| | - Yueli Lan
- Xianyang Normal University, Xianyang 712000, PR China
| | - Jiahao Zhang
- Xianyang Normal University, Xianyang 712000, PR China
| | - Qian Wu
- Xianyang Normal University, Xianyang 712000, PR China
| | - Yongni Su
- Xianyang Normal University, Xianyang 712000, PR China
| | - Nini Song
- Xianyang Normal University, Xianyang 712000, PR China
| |
Collapse
|
3
|
Ashokkumar V, Chandramughi VP, Mohanty K, Gummadi SN. Microplastic pollution: Critical analysis of global hotspots and their impact on health and ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:124995. [PMID: 40186977 DOI: 10.1016/j.jenvman.2025.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
This paper examines microplastic hotspots and their drastic effects on human health and the environment pointing out microplastic pollution as one of the biggest global issues. Besides, it analyses the key sources including industrial effluent discharge, littered plastic wastes, and deterioration of synthetic products together with pathways and routes of exposure. The review also focuses on microplastic contamination in food systems such as meat, plant-based products, dairy, and seafood, detailing their entry into the food chain via soil, water, and air. On the other hand, this work also focuses on human health issues including cellular absorption, and bioaccumulation, which results in tissue oxidative stress, inflammation, hormonal imbalance and adverse long-term effects, including carcinogenicity and organ toxicity. The ultimate effects of microplastic pollution on the condition of the soil, water, and fauna and flora of the ecosystem, highlighting on the need for the prevention measures, were also addressed. This paper seeks to critically ascertain the problems posed by microplastics, including their slow biodegradation limit, the absence of proper regulations, and lack of a universally accepted standard. It also highlights that microplastic pollution requires interdisciplinary analyses, future studies, and high standards-compliant policies and regulations. This work raises the alarm for a collective international effort to protect the public health, food, and the earth.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - V P Chandramughi
- Center for Waste Management and Renewable Energy, SDC, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
| |
Collapse
|
4
|
Tripathi A, Ekanayake A, Tyagi VK, Vithanage M, Singh R, Rao YRS. Emerging contaminants in polluted waters: Harnessing Biochar's potential for effective treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123778. [PMID: 39721395 DOI: 10.1016/j.jenvman.2024.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Biochar is a carbon-rich, sponge-like material with intricate functionalities, making it suitable for various environmental remediation applications, including water treatment, soil amendment and, additives in construction materials, anaerobic digesters, and electrodes, among others. Its easy adaptability and low cost make it particularly attractive. This review highlights a range of biochar and surface-modified biochar exhibiting high uptake and degradation efficiencies for a broad spectrum of contaminants, including humic acid, disinfection by-products (DBPs), radioactive materials, dyes, heavy metals, antibiotics, microplastics, pathogens, Per- and polyfluoroalkyl substances (PFAS), and cytotoxins. The study provides a detailed discussion on different classes of pollutants and their removal mechanisms using biochar, covering processes like physical and chemical adsorption, electrostatic interactions, π-π interactions, hydrogen bonding, as well as surface complexation, chelation, among others. This review article stands out for its comprehensive exploration of biochar's effectiveness in removing a wide range of emerging contaminants, as well as recent advancements in the removal of conventional pollutants like heavy metals and antibiotics.
Collapse
Affiliation(s)
- Abhilasha Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Anusha Ekanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, 248007, India; Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Y R S Rao
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
5
|
Bashir M, Ahanger MA, Gani KM. Investigations on adsorptive removal of PVC microplastics from aqueous solutions using Pinus roxburghii-derived biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59416-59429. [PMID: 39352640 DOI: 10.1007/s11356-024-35166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
This study investigates the adsorption mechanisms of pine bark biochar (BC) and modified pine bark biochar (MBC) in the removal of polyvinyl chloride (PVC) microplastics from aqueous solutions, with a significant focus on resource recovery from pine residues which is one of the key Himalayan Forest byproducts. The research findings highlighted the optimal adsorption capacity of biochar at 131.5 mg/g achieved after 6 h of contact time, with a pH of 10 and a PVC microplastic concentration of 200 mg/L. The primary mechanisms of PVC microplastic adsorption involved ion exchange and physical adsorption, driven by forces such as Vander-Waals, London forces, and electrostatic forces. Thermodynamic analysis showed the exothermic nature of the PVC and BC/MBC interaction, with spontaneous adsorption occurring within the temperature range of 10 to 40 °C. Isotherm and kinetic models fit well with Temkin model and PSO kinetics, as indicated by R2 values exceeding 0.9. Particularly, MBC exhibited superior removal efficiency and adsorption capacity compared to its precursor, reaching an optimum adsorption capacity of 156.08 mg/g with a removal efficiency of 78%, surpassing the performance of BC. This research contributes valuable insights into potential applications of BC for PVC removal and underscores the effectiveness of MBC in achieving enhanced adsorption outcomes.
Collapse
Affiliation(s)
- Misbah Bashir
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006
| | - Manzoor Ahmad Ahanger
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Jammu, and Kashmir, Srinagar, India, 190006.
| |
Collapse
|
6
|
Shang Q, Chi J, Ma Y. Effects of biodegradable microplastics coexistence with biochars produced at low and high temperatures on bacterial community structure and phenanthrene degradation in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122212. [PMID: 39146651 DOI: 10.1016/j.jenvman.2024.122212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The increasing use of biodegradable plastics may result in more serious pollution of microplastics which often coexist with biochar in soil, this will affect how organic pollutants move and transform in the soil. This work investigated the effect of biodegradable polybutylene adipate-co-terephthalate (PBAT) coexistence with biochars produced at temperatures of 400 and 700 °C (W4 and W7) on soil bacterial communities and phenanthrene degradation. The results showed that coexistence of PBAT and biochar paticles greatly boosted the relative abundance of Nocardioides while decreased the relative abundance of Sphingomonas as compared to soils with a single addition of PBAT or biochar. Changes in soil Eh values were the most influential factor in bacterial communities (more than 40% contribution). The degradation ratio of phenanthrene when PBAT coexisted with W7 (39.6 ± 3.6%) was not significantly different from the treatment with a single W7 addition (35.0 ± 2.3%, P>0.05), and was related to phenanthrene degradation in the adsorbed state of W7 in soil. In contrast, the degradation ratio of phenanthrene in PBAT coexisting with W4 (35.1 ± 3.5%) was intermediate between that of single PBAT (49.8 ± 0.9%) and W4 (13.7 ± 5.8%) treatments. This was primarily due to changes in the experiment's initial bioavailable phenanthrene content. Furthermore, after the introduction of earthworms, phenanthrene degradation ratio in coexistence treatments were very similar to that described above in the absence of earthworms. Except for two treatments that contain W7, phenanthrene degradation ratio in the other treatments was increased by the presence of earthworms (up to 23%), which is related to the enhanced relative abundance of polycyclic aromatic hydrocarbon-degraders. Our findings indicated that PBAT coexistence with high-temperature or low-temperature biochar had a completely different impact on bacterial communities and phenanthrene degradation in soil.
Collapse
Affiliation(s)
- Qiongqiong Shang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ying Ma
- Department of Data Science and Big Data Technology, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
7
|
Vasseghian Y, Nadagouda MM, Aminabhavi TM. Biochar-enhanced bioremediation of eutrophic waters impacted by algal blooms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122044. [PMID: 39096732 DOI: 10.1016/j.jenvman.2024.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
The permanent problem of formation of algal blooms in water polluted with nitrogen and phosphorus is one of the formidable environmental problems. Biochar has the potential to solve the issues related to eutrophication due to its special structure and ability to absorb the nutrients. Biochar's exceptional nutrient absorption capacity allows it to absorb excess nutrients, causing the algae to use fewer nutrients. This review deals with effective performance of biochar in reducing the effects caused by algal blooms and improving the environmental conditions. Besides, an analysis of the issues involved addresses the origins and consequences of nitrogen and phosphorus pollution, and the formation of algal blooms is also reviewed. It then delves deeply into biochar, explaining its properties, production methods, and their uses in environmental contexts. The review emphasizes that biochar can be effective in dealing with many challenges associated with environments affected by algal blooms, specifically focusing on the positive effects of biochar and algae to examine their roles in controlling algae growth. Finally, the review emphasizes new achievements and innovative ideas to foster sustainable aquatic ecosystems. The discussions emphasize the central role of biochar in managing nutrient-rich waters and algal blooms.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan.
| | - Megha M Nadagouda
- University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH, 45221, USA
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, 02841, Republic of Korea; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
8
|
Li Y, Ding BH, Geng X. Effect of biochar on microplastics penetration treatment within soil porous medium under the wetting-drying cycles and optimisation of soil-biochar mixing format. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173194. [PMID: 38744391 DOI: 10.1016/j.scitotenv.2024.173194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Plant-based biochar was demonstrated promising capability in adsorbing microplastic particles (MPs) within soil porous mediums. However, biochar's function in mitigating MPs' vertical penetration during wetting-drying cycles, typical of seasonal precipitation and evaporation, remains uncertain. Furthermore, few studies have investigated the structures of how biochar combines with soil. This study conducted column tests to assess the MPs retention capabilities of soil-biochar porous media under saturated and wetting-drying conditions. The water retention and hydrophilic properties were investigated to elucidate the impact of wetting-drying cycles. Additionally, different biochar-soil structures were compared to optimise the structural design. Without biochar, wetting-drying cycles resulted in 8.74 % more MPs escaping from samples. However, incorporating 15 % biochar led to only around 2 % more MPs in effluent. Biochar significantly enhanced soil's MP absorption capacity and mitigated the negative effects of wetting-drying cycles. Biochar's alveolate morphology provides ample adsorption sites and creates complex flow paths. The hydrophilic groups of biochar and capillarity by micropores facilitated slower water release during drying, preventing crack propagation and flush on MP particles. This effect was more pronounced with higher biochar content and lower porosity. Moreover, layer structure was found to improve MPs removal, benefiting the long-term performance and management of the biochar functional layer.
Collapse
Affiliation(s)
- Yixin Li
- School of Engineering, University of Warwick, CV4 7AL Coventry, UK
| | | | - Xueyu Geng
- School of Engineering, University of Warwick, CV4 7AL Coventry, UK.
| |
Collapse
|
9
|
Xu S, Li H, Xiao L, Feng S, Fan J, Pawliszyn J. Monitoring Poly(methyl methacrylate) and Polyvinyl Dichloride Micro/Nanoplastics in Water by Direct Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. Anal Chem 2024; 96:10772-10779. [PMID: 38902946 DOI: 10.1021/acs.analchem.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A simple, sustainable, and sensitive monitoring approach of micro/nanoplastics (MNPs) in aqueous samples is crucial since it helps in assessing the extent of contamination and understanding the potential risks associated with their presence without causing additional stress to the environment. In this study, a novel strategy for qualitative and quantitative determination of MNPs in water by direct solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was proposed for the first time. Spherical poly(methyl methacrylate) (PMMA) and irregularly shaped polyvinyl dichloride (PVDC) were used to evaluate the feasibility and performance of the proposed method. The results demonstrated that both PMMA and PVDC MNPs were efficiently extracted by the homemade SPME coating of nitrogen-doped porous carbons (N-SPCs) and exhibited sufficient thermal decomposition in the GC-MS injection port. Excellent extraction performances of N-SPCs coating for MNPs are attributed to hydrophobic cross-linking, electrostatic forcing, hydrogen bonding, and pore trapping. Methyl methacrylate was identified as the marker for PMMA, while 1,3-dichlorobenzene and 1,3,5-trichlorobenzene were the indicators for PVDC. Under the optimal extraction and decomposition conditions, the proposed method exhibited ultrahigh sensitivity, with a limit of detection of 0.0041 μg/L for PMMA and 0.0054 μg/L for PVDC. Notably, a programmed temperature strategy for the GC-MS injector was developed to discriminate and eliminate the potential interferences of intrinsic indicator compounds. Owing to the integration of sampling, extraction, injection, and decomposition into one step by SPME, the proposed method demonstrates exceptional sensitivity, eliminating the necessity for complex sample pretreatment procedures and the use of organic solvents. Finally, the proposed method was successfully applied in the determination of PMMA and PVDC MNPs in real aqueous samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Yang Z, Li Y, Zhang G. Degradation of microplastic in water by advanced oxidation processes. CHEMOSPHERE 2024; 357:141939. [PMID: 38621489 DOI: 10.1016/j.chemosphere.2024.141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Plastic products have gained global popularity due to their lightweight, excellent ductility, high durability, and portability. However, out of the 8.3 billion tons of plastic waste generated by human activities, 80% of plastic waste is discarded due to improper disposal, and then transformed into microplastic pollution under the combined influence of environmental factors and microorganisms. In this comprehensive study, we present a thorough review of recent advancements in research on the source, distribution, and effect of microplastics. More importantly, we conducted deep research on the catalytic degradation technologies of microplastics in water, including advanced oxidation and photocatalytic technologies, and elaborated on the mechanisms of microplastics degradation in water. Besides, various strategies for mitigating microplastic pollution in aquatic ecosystems are discussed, ranging from policy interventions, the initiative for plastic recycling, the development of efficient catalytic materials, and the integration of multiple technological approaches. This review serves as a valuable resource for addressing the challenge of removing microplastic contaminants from water bodies, offering insights into effective and sustainable solutions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
11
|
Wang C, Lin X, Zhang X, Show PL. Research advances on production and application of algal biochar in environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123860. [PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
| | - Xiao Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
12
|
Sharma P, Sharma P. Micro(nano)plastics: invisible compounds with a visible impact. F1000Res 2024; 13:69. [PMID: 38659492 PMCID: PMC11040229 DOI: 10.12688/f1000research.142212.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The plastic related research has been an epicentre in recent times. The presence and spread of micro (nano) plastics (MNPs) are well-known in the terrestrial and aquatic environment. However, the focus on the fate and remediation of MNP in soil and groundwater is limited. The fate and bioaccumulation of ingested MNPs remain unknown within the digestive tract of animals. There is also a significant knowledge gap in understanding the ubiquitous organic environmental pollutants with MNPs in biological systems. Reducing plastic consumption, improving waste management practices, and developing environmentally friendly alternatives are some of the key steps needed to address MNP pollution. For better handling and to protect the environment from these invisible substances, policymakers and researchers urgently need to monitor and map MNP contamination in soil and groundwater.
Collapse
Affiliation(s)
- Prabhakar Sharma
- Department of Agricultural Engineering and Technology, School of Engineering, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Prateek Sharma
- Environmental Science, Central University of Jharkhand, Ranchi, Jharkhand, 835222, India
| |
Collapse
|
13
|
Zhou T, Song S, Min R, Liu X, Zhang G. Advances in chemical removal and degradation technologies for microplastics in the aquatic environment: A review. MARINE POLLUTION BULLETIN 2024; 201:116202. [PMID: 38484537 DOI: 10.1016/j.marpolbul.2024.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 04/07/2024]
Abstract
In recent years, global attention has been extensively focused on the water pollution and health risks caused by microplastics(MPs), thereby making the treatment of microplastics a key area of research. Chemical removal and degradation present effective approaches to addressing this issue. Consequently, this review summarizes the latest research advancements in the chemical removal and degradation of microplastics in water, comparing the treatment efficacy and advantages and disadvantages of various removal/degradation techniques. It elucidates the chemical mechanisms underlying the removal/degradation of microplastics and identifies the primary influencing factors during the treatment process. A systematic analysis of the performance of microplastic treatment technologies is conducted, examining the impact of microplastic characteristics, operational conditions, and other parameters on the effectiveness of microplastic treatment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xin Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
14
|
Lu H. Microplastic inhibits the sorption of trichloroethylene on modified biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1981-1995. [PMID: 38678403 DOI: 10.2166/wst.2024.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/24/2024] [Indexed: 04/30/2024]
Abstract
Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.
Collapse
Affiliation(s)
- Hainan Lu
- State Environment Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China E-mail:
| |
Collapse
|
15
|
Yang L, Liang H, Wu Q, Shen P. Biochar alleviated the toxic effects of microplastics-contaminated geocarposphere soil on peanut (Arachis hypogaea L.) pod development: roles of pod nutrient metabolism and geocarposphere microbial modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2990-3001. [PMID: 38050830 DOI: 10.1002/jsfa.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The accumulation of microplastics in agricultural soil poses a threat to the sustainability of agriculture, impacting crop growth and soil health. Due to the geocarpy feature of peanut, geocarposphere soil environment is critical to pod development and its nutritional quality. While the effects of microplastics in the rhizosphere have been studied, their impact on peanut pod in the geocarposphere remains unknown. Biochar has emerged as a potential soil agent with the ability to remediate soil contamination. However, the mechanisms of biochar in mitigating the toxic effects of microplastics-contaminated geocarposphere soil on peanut pod development remain largely unexplored. RESULTS We evaluated the peanut pod performance and microbiome when facing microplastics contamination and biochar amendment in geocarposphere soil. The results showed that microplastics present in geocarposphere soil could directly enter the peanut pod, cause pod developmental disorder and exert adverse effects on nutritional quality. Aberrant expression of key genes associated with amino acid metabolism, lipid synthesis, and auxin and ethylene signaling pathways were the underlying molecular mechanisms of microplastics-induced peanut pod developmental inhibition. However, these expression abnormalities could be reversed by biochar application. In addition, peanut geocarposphere microbiome results showed that biochar application could restore the diversity of microbial communities inhibited by microplastics contamination and promote the relative abundance of bacteria correlated with pathogen resistance and nitrogen cycle of geocarposphere soil, further promoting peanut pod development. CONCLUSION This study demonstrated that biochar application is an effective strategy to mitigate the toxic effects of microplastics-contaminated geocarposphere soil on pod development and nutritional quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyu Yang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
16
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
17
|
Meng Z, Wu J, Huang S, Xin L, Zhao Q. Competitive adsorption behaviors and mechanisms of Cd, Ni, and Cu by biochar when coexisting with microplastics under single, binary, and ternary systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169524. [PMID: 38142002 DOI: 10.1016/j.scitotenv.2023.169524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In this study, the effects of coexistence with microplastics and co-ageing with the soil on adsorption behaviors and mechanisms of biochar for heavy metals were investigated. Adsorption experiments of Cd, Ni, and Cu by microplastics, biochar, and their combination were conducted in single, binary, and ternary systems. The results indicated that the heavy metal adsorption by microplastics was ranked as Ni > Cd > Cu, which increased with decreasing particle size, and the adsorption capacity of microplastics was enhanced after dry-wet and freeze-thaw ageing. Biochar preferentially adsorbed Cd in the single system, while the maximum adsorption of Cu was observed in the binary and ternary systems due to the minimizing impact of competition on the Cu adsorption by biochar. The heavy metal adsorption by the combination of microplastics and biochar was less than that by single biochar, and the smaller the particle size of microplastics, the greater the negative effects on heavy metal adsorption. Coexistence with microplastics reduced Cd adsorption of biochar by 0.72 %-50.35 %, Ni adsorption by 1.17 %-30.43 %, and Cu adsorption by 5.78 %-47.88 %, respectively. Moreover, coexistence with microplastics exacerbated the adverse impacts of competition on biochar adsorption for heavy metals. The contribution percentages of biochar mineral mechanisms for heavy metal adsorption were ranked as Cu > Cd > Ni. When coexisting with microplastics or after ageing, the mineral mechanisms of heavy metal adsorption by biochar significantly decreased. This study investigated the competitive adsorption behaviors and mechanisms of heavy metals by biochar when coexisting with microplastics, which highlighted that the application of biochar for the remediation of heavy metal pollution should be concerned with the impacts of microplastics.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Lei Xin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Ou D, Ni Y, Li W, He W, Wang L, Huang H, Pan Z. Psychrobacter species enrichment as potential microplastic degrader and the putative biodegradation mechanism in Shenzhen Bay sediment, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132971. [PMID: 37956562 DOI: 10.1016/j.jhazmat.2023.132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental concern due to its ubiquity and longevity. Biodegradation of MPs has garnered significant attention in combatting global MP contamination. This study focused on MPs within sediments near the sewage outlet of Shenzhen Bay. The objective was to elucidate the microbial communities in sediments with varying MPs, particularly those with high MP loads, and to identify microorganisms associated with MP degradation. The results revealed varying MP abundance, ranging from 211 to 4140 items kg-1 dry weight (d. w.), with the highest concentration observed near the outfall. Metagenomic analysis confirmed the enrichment of Psychrobacter species in sediments with high MP content. Psychrobacter accounted for ∼16.71% of the total bacterial community and 41.71% of hydrocarbon degrading bacteria at the S3 site, exhibiting a higher abundance than at other sampling sites. Psychrobacter contributed significantly to bacterial function at S3, as evidenced by the Kyoto Encyclopedia of Genes and Genomes pathway and enzyme analysis. Notably, 28 enzymes involved in MP biodegradation were identified, predominantly comprising oxidoreductases, hydrolases, transferases, ligases, lyases, and isomerases. We propose a putative mechanism for MP biodegradation, involving the breakdown of long-chain plastic polymers and subsequent oxidation of short-chain oligomers, ultimately leading to thorough mineralization.
Collapse
Affiliation(s)
- Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, PR China
| | - Yue Ni
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Institute for Advanced Studies, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603 Kuala Lumpur, Malaysia
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.
| |
Collapse
|
19
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
20
|
Li Y, Zhao L, An Y, Qin L, Qiao Z, Chen D, Li Y, Geng H, Yang Y. Bibliometric analysis and systematic review of the adherence, uptake, translocation, and reduction of micro/nanoplastics in terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167786. [PMID: 37848143 DOI: 10.1016/j.scitotenv.2023.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Micro/nanoplastics are emerging agricultural pollutants globally. Micro/nanoplastics can adhere to terrestrial plant surfaces, be absorbed and transported by plants, and accumulate in the edible parts of plants, leading to the possibility of enrichment and transmission through the food chain and threatening human health. However, the underlying mechanism remains unclear. With increased studies on the internalization of micro/nanoplastics in terrestrial plants, a comprehensive and systematic review summarizing the current research trends and progress is warranted to provide a reference for further relevant research. Based on bibliometric analysis, this study focused on the mechanisms, study methods, and reduction techniques of micro/nanoplastics adherence, uptake, and translocation by terrestrial plants. The results showed that micro/nanoplastics can adhere to the surfaces of plant tissues such as seeds, roots, and leaves. Root uptake (root-to-leaf translocation) and foliar uptake (leaf-to-root translocation) are the two simultaneous internalization pathways of MNPs in plants. The observation methods included scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and inductively coupled plasma-mass spectrometry (ICP-MS). We highlighted the necessity and urgency of reducing the uptake and translocation of MNPs by plants and found that the application of silicon may be a promising approach for reducing internalization. This study identifies current knowledge gaps and proposes possible future needs.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Ahmad M, Lubis NMA, Usama M, Ahmad J, Al-Wabel MI, Al-Swadi HA, Rafique MI, Al-Farraj ASF. Scavenging microplastics and heavy metals from water using jujube waste-derived biochar in fixed-bed column trials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122319. [PMID: 37544401 DOI: 10.1016/j.envpol.2023.122319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Extensive production and utilization of plastic products have resulted in the generation of microplastics (MPs), subsequently polluting the environment. The efficiency of biochars (BCs) derived from jujube (Ziziphus jujube L.) biomass (300 °C and 700 °C) for nylon (NYL) and polyethylene (PE) removal from contaminated water was explored in fixed-bed column trials. The optimum pH for the removal of both MPs was found 7. Both of the produced biochars demonstrated >99% removal of the MPs, while the sand filter exhibited a maximum of 78% removal of MPs. BC produced at 700 °C (BC700) showed 33-fold higher MPs retention, while BC produced at 300 °C (BC300) exhibited 20-fold higher retention, as compared to sand filters, indicating the higher efficiency of BC produced at higher pyrolysis temperature. Entrapment into the pores, entanglement with flaky structures of the BCs, and electrostatics interactions were the major mechanism for MPs retention in BCs. The efficiency of MPs-amended BCs was further explored for the removal of Pb(II) and Cd(II) in fixed-bed column trials. BC700 amended with PE and NYL exhibited the highest 50% breakthrough time (2114.23 and 2024.61 min, respectively, for Pb(II) removal and 2107.92 and 1965.19 min, respectively, for Cd(II) removal), as compared to sand filters (38.07 and 60.49 min for Pb(II) and Cd(II) removal, respectively). Thomas model predicted highest adsorption capacity was exhibited by BC700 amended with PE (584.34 and 552.80 mg g-1, for Pb(II) and Cd(II) removal, respectively), followed by BC700 amended with NYL (557.65 and 210.59 mg g-1 for Pb(II) and Cd(II) removal, respectively). Therefore, jujube waste-derived BCs could be used as efficient adsorbents to remove PE and NYL from contaminated water, while MPs-loaded BCs can further be utilized for higher adsorption of Pb(II) and Cd(II) from contaminated aqueous media. These findings suggest that BC could be used as an efficient adsorbent to remove the co-existing MPs-metals ions from the environment on a sustainable basis.
Collapse
Affiliation(s)
- Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Nahrir M A Lubis
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Usama
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Hamed A Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Imran Rafique
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdullah S F Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
23
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Shang Q, Chi J. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130761. [PMID: 36638674 DOI: 10.1016/j.jhazmat.2023.130761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Microplastics and biochar normally coexist in soil. In this study, two microplastics of different polarities (nonpolar polyethylene (PE) and polar polybutylene adipate-co-terephthalate (PBAT)) and two wheat straw biochars produced at 400 (W4) and 700 °C (W7) were selected to investigate the sorption behaviors of phenanthrene in soil where microplastics and biochar coexisted. The results showed that the presence of PE more significantly weakened the adhesion of soil particles onto biochar than the presence of PBAT. Meanwhile, the presence of biochar enhanced the soil particle attachment on the microplastic surface. As a result, the sorption behavior of phenanthrene was significantly different in soil where biochar coexisted with microplastics of different polarities. The Koc values of PE-biochar-soil mixtures at Ce= 0.005 Cs were up to 42 % lower than those of PBAT-biochar-soil mixtures, which is related to lower micropore area of particles isolated from the former. However, at Ce = 0.05 Cs and 0.5 Cs, the Koc values of PE-biochar-soil mixtures were up to 1.4 times higher than those of PBAT-biochar-soil mixtures because of a more significant reduction in biochar surface polarity when it coexisted with nonpolar PE.
Collapse
Affiliation(s)
- Qiongqiong Shang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
25
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|