1
|
Li Y, Guo Z, Liu X, Xu L, Zhu W, Cheng Y, Longland AC, Theodorou MK. Bioaugmentation protocols involving Methanobrevibacter thaueri and Pecoramyces ruminantium for investigating lignocellulose degradation and methane production from alfalfa stalks. BIORESOURCE TECHNOLOGY 2024; 408:131172. [PMID: 39079572 DOI: 10.1016/j.biortech.2024.131172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Two protocols involving batch cultures were used to investigate the bioaugmentation of methane production by Pecoramyces ruminantium, and Methanobrevibacter thaueri. Protocol I examined the effect of altering the proportion of the microbial constituents in inoculum on alfalfa stalk fermentations and showed a 25 % improvement in dry matter loss in cultures where the inoculum contained just 30 % of co-culture and 70 % of fungal monoculture. Protocol II involved consecutive cultures and alternating inoculations. This protocol resulted in 17-22 mL/g DM methane production with co-cultures a 30 % increase in methane relative to the fungal monoculture. Both protocols indicate that the co-culture rapidly dominated and was more resilient than the monoculture. Synergistic interaction between fungus and methanogen, promoted more efficient lignocellulose degradation and higher methane yield. This study highlighted the potential of microbial co-cultures for enhancing methane production from lignocellulosic biomass, offering a promising bioaugmentation strategy for improving biogas yields and waste valorization.
Collapse
Affiliation(s)
- Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqi Guo
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | | | - Michael K Theodorou
- Department of Agriculture and Environment, Harper Adams University, Newport TF10 8NB, UK
| |
Collapse
|
2
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Cao X, Cai R, Zuo S, Niu D, Yang F, Xu C. Enhanced lignin degradation by Irpex lacteus through expanded sterilization further improved the fermentation quality and microbial community during the silage preservation process. BIORESOUR BIOPROCESS 2024; 11:14. [PMID: 38647879 PMCID: PMC10992542 DOI: 10.1186/s40643-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/10/2024] [Indexed: 04/25/2024] Open
Abstract
Traditional autoclaving, slow degradation rate and preservation of biomass treated by fungi are the main factors restricting biological treatment. In our previous studies, strains with high efficiency and selective lignin degradation ability were obtained. To further solve the limiting factors of biological treatment, this paper proposed a composite treatment technology, which could replace autoclaves for fungal treatment and improve the preservation and utilization of fungal-pretreated straw. The autoclaved and expanded buckwheat straw were, respectively, degraded by Irpex lacteus for 14 days (CIL, EIL), followed by ensiling of raw materials (CK) and biodegraded straw of CIL and EIL samples with Lactobacillus plantarum for different days, respectively (CP, CIP, EIP). An expansion led to lactic acid bacteria, mold, and yeast of the samples below the detection line, and aerobic bacteria was significantly reduced, indicating a positive sterilization effect. Expansion before I. lacteus significantly enhanced lignin selective degradation by about 6%, and the absolute content of natural detergent solute was about 5% higher than that of the CIL. Moreover, EIL decreased pH by producing higher organic acids. The combination treatment created favorable conditions for ensiling. During ensiling, EIP silage produced high lactic acid about 26.83 g/kg DM and the highest acetic acid about 22.35 g/kg DM, and the pH value could be stable at 4.50. Expansion before I. lacteus optimized the microbial community for ensiling, resulting in EIP silage co-dominated by Lactobacillus, Pediococcus and Weissella, whereas only Lactobacillus was always dominant in CP and CIP silage. Clavispora gradually replaced Irpex in EIP silage, which potentially promoted lactic acid bacteria growth and acetic acid production. In vitro gas production (IVGP) in EIL was increased by 30% relative to CK and was higher than 24% in CIL. The role of expansion was more significant after ensiling, the IVGP in EIP was increased by 22% relative to CP, while that in CIP silage was only increased by 9%. Silage of fungal-treated samples reduced methane emissions by 28% to 31%. The study demonstrated that expansion provides advantages for fungal colonization and delignification, and further improves the microbial community and fermentation quality for silage, enhancing the nutrition and utilization value. This has practical application value for scaling up biological treatment and preserving the fungal-treated lignocellulose.
Collapse
Affiliation(s)
- Xiaohui Cao
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China
| | - Rui Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, China
| | - Sasa Zuo
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, People's Republic of China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, (East Campus), 17 Qing-Hua-Dong-Lu, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
4
|
Zheng M, Mao P, Tian X, Meng L. Effects of exogenous lactic acid bacteria and maize meal on fermentation quality and microbial community of Orychophragmus violaceus silage. Front Microbiol 2023; 14:1276493. [PMID: 37808300 PMCID: PMC10551169 DOI: 10.3389/fmicb.2023.1276493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Orychophragmus violaceus is a local Brassicaceae in China, while most of it is directly mowed and discarded after the ornamental period. In order to develop forage resources, this study firstly evaluated the potential preservation of O. violaceus silage. O. violaceus was harvested at full-bloom stage, and ensiled without (CK) or with maize meal (Y5), lactic acid bacteria inoculant (Z) and compound additive (Y5Z) for 60 d. Results of chemical and microbiological analysis showed that a large amount of lactic acid was produced and the final pH value was below 4.1 in silages regardless of additive application. CK silage was well preserved as indicated by the low levels of dry matter loss and butyric acid content, and the predominant genus were identified as Enterococcus and Pediococcus. Y5 silage had potential health risks for humans and animals as seen by frequent occurrence of pathogenic bacteria Clostridium and Achromobacter. Z and Y5Z silages were poorly preserved, resulting in great dry matter loss and butyric acid content. Considering the abundant acetic acid production, the dominant Lactobacillus might possess a heterofermentative pathway in Z and Y5Z silages. In conclusion, O. violaceus has the potential to be long stored as silage because of its sufficient water-soluble carbohydrates, while exogenous lactic acid bacteria and maize meal generally provided little positive effect. In future research, efficient homofermentative Lactobacillus strains were suggested to be screened to further enhance the ensiling process of O. violaceus silage.
Collapse
Affiliation(s)
| | | | | | - Lin Meng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Feng Q, Zhang J, Ling W, Degen AA, Zhou Y, Ge C, Yang F, Zhou J. Ensiling hybrid Pennisetum with lactic acid bacteria or organic acids improved the fermentation quality and bacterial community. Front Microbiol 2023; 14:1216722. [PMID: 37455750 PMCID: PMC10340086 DOI: 10.3389/fmicb.2023.1216722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
The aim of this study was to compare the effect of different additives on nutritional quality, fermentation variables and microbial diversity of hybrid Pennisetum silages. A control (CK - no additives) and seven treatments were tested, namely, Lactiplantibacillus plantarum (LP), Lentilactobacillus buchneri (LB), propionic acid (PA), calcium propionate (CAP), LP + LB; LP + PA and LP + CAP. In comparison with CK, all treatments increased the contents of crude protein and lactic acid, decreased the content of butyric acid, and altered the bacterial communities of the silage. Except for the CAP and LP + CAP treatments, the additives decreased pH and the ammonia nitrogen:total nitrogen (NH3-N:TN) ratio. The results of principal component analysis revealed that the PA, LP + PA and LP + LB treatments ranked as the top three silages. The PA and LP + PA treatments exhibited higher water-soluble carbohydrate content, but lower pH, and NH3-N:TN ratio than the other treatments. With the PA and LP + PA treatments, the relative abundances of Lactobacillus and Enterobacter decreased, and of Proteobacteria and Delftia increased, while the carbohydrate metabolism of the microorganisms improved. The LP and LB treatments reduced the Shannon and Simpson diversities. In the beta diversity, PA and LP + PA separated from the other treatments, indicating that there were differences in the composition of bacterial species. The relative abundance of Lactobacillus increased in the LP and LB treatments and of Leucanostoc and Weissella increased in the CAP and LP + CAP treatments. In summary, the addition of L. plantarum, L. buchneri, propionic acid, calcium propionate, and their combinations improved fermentation quality, inhibited harmful bacteria and conserved the nutrients of hybrid Pennisetum.
Collapse
Affiliation(s)
- Qixian Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqing Ling
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yi Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyan Ge
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhou
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Aniza R, Chen WH, Pétrissans A, Hoang AT, Ashokkumar V, Pétrissans M. A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121363. [PMID: 36863440 DOI: 10.1016/j.envpol.2023.121363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Biowaste remediation and valorization for environmental sustainability focuses on prevention rather than cleanup of waste generation by applying the fundamental recovery concept through biowaste-to-bioenergy conversion systems - an appropriate approach in a circular bioeconomy. Biomass waste (biowaste) is discarded organic materials made of biomass (e.g., agriculture waste and algal residue). Biowaste is widely studied as one of the potential feedstocks in the biowaste valorization process due to its being abundantly available. In terms of practical implementations, feedstock variability from biowaste, conversion costs and supply chain stability prevent the widespread usage of bioenergy products. Biowaste remediation and valorization have used artificial intelligence (AI), a newly developed idea, to overcome these difficulties. This report analyzed 118 works that applied various AI algorithms to biowaste remediation and valorization-related research published between 2007 and 2022. Four common AI types are utilized in biowaste remediation and valorization: neural networks, Bayesian networks, decision tree, and multivariate regression. The neural network is the most frequent AI for prediction models, the Bayesian network is utilized for probabilistic graphical models, and the decision tree is trusted for providing tools to assist decision-making. Meanwhile, multivariate regression is employed to identify the relationship between experimental variables. AI is a remarkably effective tool in predicting data, which is reportedly better than the conventional approach owing to its characteristics of time-saving and high accuracy. The challenge and future work in biowaste remediation and valorization are briefly discussed to maximize the model's performance.
Collapse
Affiliation(s)
- Ria Aniza
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; International Doctoral Degree Program on Energy Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | | | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | | |
Collapse
|
7
|
Jiang X, Peng Z, Zhu Q, Zheng T, Liu X, Yang J, Zhang J, Li J. Exploration of seasonal fermentation differences and the possibility of flavor substances as regulatory factors in Daqu. Food Res Int 2023; 168:112686. [PMID: 37120185 DOI: 10.1016/j.foodres.2023.112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Medium-high temperature Daqu is a characteristic starter for Chinese strong-flavor Baijiu fermentation, and its final quality determines the character and type of Baijiu. Nonetheless, its formation is affected by the interaction of physical and chemical, environmental and microbial interaction, and the differences in seasonal fermentation performance emerge. Here, the differences in the two seasons' Daqu fermentation properties were revealed by the detection of the enzyme activity. The respective dominant enzyme in summer Daqu (SUD) was protease and amylase, while cellulase and glucoamylase in spring Daqu (SPD). The underlying causes of this phenomenon were then investigated through an evaluation of nonbiological variables and microbial community structure. A greater absolute number of microorganisms, particularly Thermoactinomyces, were created in the SPD as a result of the superior growth environment (higher water activity). Additionally, the correlation network and discriminant analysis hypothesized that the volatile organic compound (VOC) guaiacol, which had a different content between SUD and SPD, may be a contributing element to the microbial composition. In contrast to SUD, the enzyme system activity related to guaiacol production in SPD was significantly higher. To support this notion that the volatile flavor chemicals mediate microbial interactions in Daqu, the growth effect of guaiacol on several bacteria isolated from the Daqu was examined in both a contact and non-contact manner. This study emphasized that VOCs not only have the basic characteristics of flavor compounds but also have ecological significance. Because the strains' varied structures and enzyme activities affected how the microorganisms interacted, the VOCs produced in this way ultimately had a synergistic effect on the various effects of Daqu fermentation.
Collapse
|