1
|
Dar SA, Gani KM. Deciphering the source contribution of microplastics in the glaciers of the North-Western Himalayas. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137975. [PMID: 40122009 DOI: 10.1016/j.jhazmat.2025.137975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been largely studied in marine environments, but there lies a significant gap in assessing their occurrence and impacts in glacier environments. This study investigates the occurrence and pollution risks of MPs and NPs in glaciers, suspended air, and dry deposition across the northwestern Himalayas. MPs concentration ranged from 1000 particles m-3 in Kolahai glacier to 151000 particles m-3 in Thajwas glacier. In suspended air, MPs occurred at 5 particles m-3, while dry deposition samples showed a concentration ranging from 1 to 13 particles m-2 d-1. Dynamic light scattering (DLS) confirmed the presence of NPs in all glaciers, with sizes varying between 31 and 689 nm in Thajwas glacier and 360-953 nm in Harmukh glacier. HYSPLIT modelling revealed that air masses reaching Himalayan glaciers predominantly originate from global sources (75 %). The pollution load index (PLI) ranged from 3.9 (hazard category I) to 40 (hazard category IV), indicating moderate to excessive pollution of glaciers. While as polymer hazard index (PHI) ranged from 10 (hazard category II) to 1987 (hazard category V), indicating medium to extreme danger due to presence of polyvinyl chloride (PVC) and polyacrylonitrile (PAN). The presence of MPs and NPs accelerate glacier melting due to their light absorbing properties highlighting need for further studies.
Collapse
Affiliation(s)
- Shahid Ahmad Dar
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India.
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India; Institute for Water and Wastewater Technology, Durban University of Technology, P O Box 1334, Durban 4000, South Africa.
| |
Collapse
|
2
|
P SP, Tanushree P. Synergistic human health risks of microplastics and co-contaminants: A quantitative risk assessment in water. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137809. [PMID: 40081056 DOI: 10.1016/j.jhazmat.2025.137809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The pervasive presence of microplastics (MPs) in aquatic environments, coupled with their potential to act as vectors for toxic contaminants, raises significant concerns for human health. This study quantifies the health risks associated with the ingestion of microplastics and their co-contaminants in aquatic medium, considering both individual and interactive effects. The analysis encompasses four MP types (PP, PS, PET, PE) and prevalent contaminants including heavy metals (Cr, Cu, Ni, Pb), polycyclic aromatic hydrocarbons (PAHs, expressed as BaP equivalents), and plastic additives (DEHP, DBP, BPA)-to calculate individual Hazard Quotient (HQ), interaction-based Hazard Index (HIint), individual Incremental Lifetime Cancer Risk (ILCR), and interaction-based ILCR (ILCRint). The mean concentration of MPs in aqueous media was determined to be 2.19 mg/L (95 % CI), and Chronic Daily Intake (CDI) values were derived from particle counts converted to mass using polymer-specific densities. Reference Dose (RfD) values were calculated using the Weight of Evidence (WoE) approach, which integrates findings from rodent toxicity studies, identifying PP and PS as having low RfD values 25 × 10⁻⁴ mg/kg bw/day and 8 × 10⁻⁴ mg/kg bw/day, respectively. HQ-based toxicity rankings indicated the order of risk as PP > PS > PE > PET. Findings revealed a pronounced HIint of 18.646 × 10³ and 16.649 × 10⁶ at the 50th and 90th percentiles in children, underscoring significant synergistic effects from combined exposure to MPs and leached plastic additives. Co-contaminant scenarios further escalated health risks, with HI values reaching 52.236 in the presence of heavy metals and 53.141 with PAHs. The maximum allowable MP concentration, considering additive leaching, was estimated at 0.011 mg/L. This research highlights the need for firstly understanding the transformations of microplastic in the aquatic medium along with co-contaminants and framing regulatory measures and improved monitoring to protect human health from the growing threat of microplastic pollution. By integrating exposure modeling, dose-response assessment, and Monte Carlo simulations, the study delivers a robust framework for environmental health guidelines. It emphasizes the complex, multifaceted risks MPs pose and their associated contaminants, calling for innovative solutions to safeguard public health against this pervasive environmental challenge.
Collapse
Affiliation(s)
- Swathi Priya P
- Department of Civil Engineering, Indian Institute of Technology Madras, India
| | - Parsai Tanushree
- Department of Civil Engineering, Indian Institute of Technology Madras, India.
| |
Collapse
|
3
|
Chen L, Fu S, Zheng X. Distribution and risks of microplastics and phthalate esters in the transition from inland river systems to estuarine and nearshore regions of the Yellow Sea, China. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107029. [PMID: 40020617 DOI: 10.1016/j.marenvres.2025.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Microplastics (MPs) and phthalate esters (PAEs) are emerging pollutants of significant environmental and health concern. The Yellow Sea, a semi-enclosed marginal sea with dense coastal populations and industrial activities, serves as a critical region for studying MP and PAE pollution due to its ecological sensitivity, role in pollutant transport, and relevance to global marine pollution challenges. The distribution and characteristics of MPs and PAEs in surface water and sediment transitioning from an inland river system to estuarine and nearshore regions of the Yellow Sea in China were investigated. MP concentrations in water samples ranged from 0.89 ± 0.15 to 11.47 ± 1.80 items/L and in sediments from 93.33 ± 23.09 to 653.33 ± 50.33 items/kg dw. The main colors of MPs found in water and sediment samples were white and transparent, with fibers being the predominant shape. The primary size range was 0-0.5 mm, and the main polymer components were rayon and polyethylene. The characteristics of MPs in clams were similar to those in water and sediment, except that their predominant colors were black and blue. The total of six PAEs (Σ6 PAEs) was detected at concentrations between 0.30 and 1.29 μg/L in water and 25.75-163.61 ng/g in sediments. The concentrations of both pollutants demonstrated a distinct spatial gradient, with the highest levels observed in upstream urban areas, followed by progressively decreasing levels in downstream rural zones, and reaching their minimum concentrations in nearshore regions. Variations in the morphological characteristics (color, shape, and size) and polymer composition of MPs were observed between the aquatic phase and sediment phase along the direction of water flow. A significant correlation was found between MP abundance and Σ6 PAEs across both matrices. Ecological risk assessments revealed substantial risks associated with the presence of these pollutants, particularly in urban areas where contamination peaked. Clams collected from the nearshore regions exhibited MP counts of 1.91 ± 0.47 to 2.49 ± 0.63 items/individual and PAEs from 0.51 to 0.91 μg/g, posing high polymer risk from MPs yet no significant health risk from PAEs for human consumers. This study underscores the transition of MP and PAE pollution from riverine to marine environments, providing valuable insights into the critical sources and potential risks associated with marine MPs and PAEs.
Collapse
Affiliation(s)
- Lei Chen
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shiyu Fu
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinyi Zheng
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
4
|
Yang Z, Zhang J, Viyakarn V, Sakaguchi M, Oka S, Isobe A, Arakawa H. Influence of mesh selectivity on risk assessment of marine microplastics. MARINE POLLUTION BULLETIN 2025; 212:117538. [PMID: 39793173 DOI: 10.1016/j.marpolbul.2025.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
In this study, environmental microplastic samples (>30 μm) were collected from surface seawater and the water column, characterized, and used to assess ecological risks. The influence of mesh selectivity on ecological risks was also evaluated through subsampling. Results show that surface microplastic concentrations (>30 μm) range from 92 to 3306 pieces/m3 along Japan's southwest coast, with significant increases at Stas. 2 and 1. Subsurface vertical concentration near Okinawa ranges from 991 to 1992 pieces/m3, with denser, more toxic polymers more frequently observed in deeper waters, suggesting that polymer types may be sorted by marine structure. Risk assessments revealed very high risks near main islands and populated regions, while remote regions had lower risks. Further analysis revealed that ecological risk estimates are significantly influenced by mesh selectivity, with variations in particle size distribution and polymer type composition resulting in changes of up to 100-fold at the same location when different mesh sizes were used, suggesting that current framework is not ideal for risk assessment of microplastics. This study is the first to demonstrate that samplers with different mesh sizes can lead to substantial differences in risk assessments, even at the same location. These findings underscore the critical impact of mesh selectivity on ecological risk estimates and highlight the need for standardized sampling protocols in microplastic research.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Jiaqi Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, 254 Institute Building 3, Pyathai Road, Patumwan, Bangkok, Thailand.
| | - Masayuki Sakaguchi
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Shinya Oka
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Atsuhiko Isobe
- Center for Ocean Plastic Studies, Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan.
| | - Hisayuki Arakawa
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
5
|
Xie A, Chen S, Liang X, Li L, Song Y, Lv M, Liang F, Zhou W. Influence of microplastic aging on the adsorption and desorption behavior of Ni(II) under various aging conditions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:87. [PMID: 39985584 DOI: 10.1007/s10653-025-02403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Plastic products have significantly enhanced convenience in daily life; however, their degradation through weathering and environmental exposure leads to the formation of microplastics. These microplastics can serve as carriers for pollutants, such as heavy metals, through adsorption and desorption processes, posing potential risks to living organisms. This study focuses on the adsorption and desorption characteristics of nickel (Ni) on two representative microplastics-Polystyrene (PS) and Polylactic Acid (PLA)-before and after three aging processes: freeze-thaw cycling, alternating dry-wet conditions, and alkali treatment. Following these aging treatments, both microplastics exhibited increased specific surface area, pore size, and crystallinity, along with the emergence of oxygen-containing functional groups on their surfaces. Adsorption experiments indicated that nickel adsorption kinetics aligned more closely with the proposed second-order model, while adsorption isotherms were best described by the Langmuir model. Aged microplastics demonstrated higher adsorption capacities compared to their unaged counterparts, with adsorption capacity ranking as follows: alkali aging > alternating dry-wet aging > freeze-thaw cycling. Furthermore, PLA exhibited a greater adsorption capacity than PS. Among the aging processes, alkali treatment resulted in the highest nickel desorption rates, whereas freeze-thaw cycling and alternating dry-wet aging produced similar desorption outcomes. These findings contribute to a deeper understanding of microplastic aging mechanisms and their implications for heavy metal adsorption and desorption in environmental systems.
Collapse
Affiliation(s)
- Anqi Xie
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Su Chen
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China.
| | - Xiao Liang
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Linjing Li
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Yuting Song
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Meng Lv
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Fangfang Liang
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| | - Wenhui Zhou
- Key Laboratory of Regional Environment and Eco-Remediation, Ministry of Education, College of the Environment, Shenyang University, Shenyang, China
| |
Collapse
|
6
|
Yang H, Sun F, Liao H, Huang L, Zhao Q, Wu F. Pollution characterization and multi-index ecological risk assessment of microplastics in urban rivers from a Chinese megacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136145. [PMID: 39405680 DOI: 10.1016/j.jhazmat.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 12/01/2024]
Abstract
Currently, a comprehensive understanding of the pollution risks of microplastics (MPs) in urban river ecosystems is still lacking. This study investigated the spatial distribution and morphological characteristics of MPs in surface waters of major rivers in Shenzhen, a megacity in China, using laser direct infrared (LDIR) imaging. A promisingly comprehensive risk assessment method, MultiMP, was first proposed in this study, taking into account the multidimensional characteristics of MPs including abundance, size, shapes, and polymer types. The results showed that MPs were widespread and highly heterogeneous, and the abundance of MPs ranged from 38 to 18380 particles/L, with an average of 2305 particles/L. Morphologically, polyamide (PA) (average 53.7 %), 30-50 µm (73.8 %), and pellet (65.7 %) were the predominant MPs types. Driving factors analyses revealed geographical distance, salinity, water temperature, and total nitrogen had relatively higher impacts on the abundance and morphology of MPs. The MultiMP results indicated that most of the river sampling sites and five major basins in Shenzhen were at moderate to high-risk levels. Polymer type and abundance had a relatively high impact on the environmental risk of MPs in the region. These findings contribute to improving the insights and management of the MPs pollution risks in megacity water bodies.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Lingjie Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qianyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
8
|
Guo Q, Ding C, Meng Q, Shen X, Yang K, Li Z, Chen X, Wang C, Wu J, Yu J, Li X, Liang F. Abundance, characteristics and ecological risks of microplastics from South Yellow Sea Mudflat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175374. [PMID: 39122046 DOI: 10.1016/j.scitotenv.2024.175374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Microplastic (MP) pollution in global marine environments has been extensively reported and attracted significant concerns, but MP distribution in mudflat has rarely been studied. In this paper, the abundance, features and ecological risk of MP in South Yellow Sea Mudflat were investigated comprehensively. MP were both detected in waters (5.4 ± 0.38-11.3 ± 0.78 items/L) and sediments (5.1 ± 0.36-10.1 ± 0.69 items/g) from South Yellow Sea Mudflat. There existed different MP abundance tendencies from sampling Group I (coastal estuary or port) and II (purely coastal mudflat), while MP abundance in water from Group II was lower than that from Group I generally, but MP abundance in sediment from Group I was lower than that from Group II generally. This suggested that MP abundance in mudflat water could be associated with frequent human activities significantly, and disturbance might not be beneficial to MP accumulation in sediments. Fragments, transparent, polyethylene (PE), polypropylene (PP) and polystyrene (PS) were major MP features in mudflat water and sediment, and maximum proportion of size of MP was 0.001-0.25 mm in both water and sediment. Furthermore, the primary risk assessment indicated that MP pollution load for mudflat was low level. However, potential MP ecological risk for mudflat could reach dangerous level to very dangerous level by calculating and evaluating polymer risk index (PRI) and potential ecological risk index (PERI), which could be caused by high proportions of polyvinyl chloride (PVC) and polyacrylonitrile (PAN) with high hazard score. For the first time, reference data about MP pollution from South Yellow Sea Mudflat were supplied in this paper, which would be helpful for management and control of MP in mudflat.
Collapse
Affiliation(s)
- Qingyuan Guo
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Cheng Ding
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China.
| | - Qingqin Meng
- Yancheng Luming Road Junior High School, Yancheng, Jiangsu Province 224051, China
| | - Xiaomei Shen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Kai Yang
- China MCC5 Group Limited Corporation, Chengdu 610023, China
| | - Zhaoxia Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Xiao Chen
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinling Wu
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Li
- Yancheng Institute of Technology, Yancheng, Jiangsu Province 224051, China
| | - Feng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Su Q, Li Y, Lu N, Qu L, Zhou X, Yu Y, Lu D, Han J, Han J, Xu X, Wang X. Abundance, characteristics and ecological risk assessment of microplastics in ship ballast water in ports around Liaodong Peninsula, China. MARINE POLLUTION BULLETIN 2024; 207:116812. [PMID: 39154576 DOI: 10.1016/j.marpolbul.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
The development of the shipping industry has led to a large volume of ballast water discharge annually. This accelerates pollutants' transfer and dispersion, such as microplastics. Currently, empirical data on microplastics in ballast water are rarely available. This study innovatively investigated the abundance, morphological characteristics (particle size, shape, and color), and polymer composition of microplastics in ballast water from ports surrounding the Liaodong Peninsula. The results revealed that the average abundance of microplastics in 13 ships' ballast water was 6071.30 ± 1313.85 items/m3. Notably, the small microplastics (0.06-2.50 mm) were most abundant, accounting for 94.52 % of the total microplastics. Transparent, fiber, and polyethylene glycol terephthalate were the most prevalent color, shape, and polymer composition of microplastics detected in the ballast water. The risk assessment indicated that these microplastics present ecological risks to organisms. These findings suggest that ship ballast water is the potential "hotspot" for marine microplastics transport.
Collapse
Affiliation(s)
- Qing Su
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Na Lu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ling Qu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xin Zhou
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yue Yu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Daping Lu
- Liaoning Maritime Safety Administration, PRC, Dalian 116026, China
| | - Junsong Han
- Liaoning Maritime Safety Administration, PRC, Dalian 116026, China
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaotong Xu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
10
|
Li Y, Kong L, Li Z, Su Q, Qu L, Wang X, Han J, Cheng J, Wu L, Zhang N. Distribution characteristics and ecological risk analysis of microplastics in sediments and effluents related to offshore oil and gas activities in the Bohai Sea, China. MARINE POLLUTION BULLETIN 2024; 206:116731. [PMID: 39067233 DOI: 10.1016/j.marpolbul.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Oil and gas activities are sources of marine microplastics (MPs) but have received less attention globally. This study assessed the distribution characteristics and ecological risks of MPs in 31 sediment samples and effluent samples of 5 oil and gas platforms related to offshore oil and gas activities in the Bohai Sea. The results showed that the mean abundance of MPs in sediment, produced water, and domestic sewage was 205.7 ± 151.5 items/kg d.w., 18 ± 11 items/L, and 26 ± 39 items/L, respectively. The MPs in sediments and effluents were dominated by transparent, rayon, and fibers <1 mm. Oil and gas activities may influence the abundance of MPs in the sediments. The sediments in the area were at a low level of risk, but some samples exhibited indexes beyond low levels. The mass of MPs carried by the effluents from oil and gas platforms in the Bohai Sea was less than that of other sources.
Collapse
Affiliation(s)
- Yuxia Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lingna Kong
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhongxiu Li
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Qing Su
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ling Qu
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaomeng Wang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Jianbo Han
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jiayi Cheng
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Liang Wu
- China Offshore Environmental Service Ltd., Tianjin 300450, China
| | - Naidong Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
11
|
Xu X, He L, Huang F, Jiang S, Dai Z, Sun R, Li C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. CHEMOSPHERE 2024; 364:143112. [PMID: 39153532 DOI: 10.1016/j.chemosphere.2024.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160‒12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20‒1000 μm, larger MPs of 50-1000 μm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Collapse
Affiliation(s)
- Xiaohan Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fei Huang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
12
|
Samrat Hossain M, Saifullah ASM, Uddin MJ, Hasibur Rahaman M. Assessment of microplastics in coastal ecosystem of Bangladesh. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116622. [PMID: 38917586 DOI: 10.1016/j.ecoenv.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Microplastics (MPs) pose one of the major environmental threats to marine organisms and ecosystems on a global scale. The present study investigated MPs in surface water, beach sediments, and fish in two coastal areas of Bangladesh namely Cox's Bazar and Kuakata. The MPs were identified and characterized using three different techniques, including the binocular microscope, the ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy), and SEM-EDS (Scanning Electron Microscopy- Energy Dispersive Spectroscopy). The number of MPs in seawater was 10.1 ± 3.10 and 8.52 ± 3.92 items/100 L and in beach sediment, 13.2 ± 3.68 and 9.48 ± 3.63 items/100 g in Cox's Bazar and Kuakata, respectively. In fish samples, the abundance of MPs was 7.82 ± 1.28 and 6.82 ± 1.87 items/individual species of Cox's Bazar and Kuakata, respectively, where the highest quantities of MP were found in Euthynnus affinisand Sillago sihama and the lowest in Terapon jarbua and Pampus chinensisin Cox's Bazar and Kuakata, respectively. The number of MPs in GITs (Gastrointestinal tracts) was 1.63 ± 0.991 and 1.25 ± 0.546 items/g GIT and in BW (Body Weight) were 0.042 ± 0.014 and 0.037 ± 0.014 items/g BW in Cox's Bazar and Kuakata, respectively. There revealed a positive correlation between MP abundance and GIT weight and body weight in fish species. MPs were predominantly fiber-shaped, white/transparent, and small size. The most common MP polymers were polyethylene and polypropylene. SEM images of MPs demonstrate surface roughness, cracks, mechanical weathering and oxidative weathering, demonstrating their ongoing environmental exposure. The EDS spectrum unearthed that the MPs contained several elements (C, N, O, Na, Al, Fe, and Si). Findings from this study might be useful in coastal plastic particle management and to mitigate the potential risks associated with them.
Collapse
Affiliation(s)
- Md Samrat Hossain
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - A S M Saifullah
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| | - Muhammad Jasim Uddin
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
13
|
Shokunbi OS, Idowu GA, Aiyesanmi AF, Davidson CM. Assessment of Microplastics and Potentially Toxic Elements in Surface Sediments of the River Kelvin, Central Scotland, United Kingdom. ENVIRONMENTAL MANAGEMENT 2024; 73:932-945. [PMID: 38367028 DOI: 10.1007/s00267-024-01947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Contamination of the environment by microplastics (MPs), polymer particles of <5 mm in diameter, is an emerging concern globally due to their ubiquitous nature, interactions with pollutants, and adverse effects on aquatic organisms. The majority of studies have focused on marine environments, with freshwater systems only recently attracting attention. The current study investigated the presence, abundance, and distribution of MPs and potentially toxic elements (PTEs) in sediments of the River Kelvin, Scotland, UK. Sediment samples were collected from eight sampling points along the river and were extracted by density separation with NaCl solution. Extracted microplastics were characterised for shape and colour, and the polymer types were determined through attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Pollution status and ecological risks were assessed for both the microplastics and PTEs. Abundance of MPs generally increased from the most upstream location (Queenzieburn, 50.0 ± 17.3 particles/kg) to the most downstream sampling point (Kelvingrove Museum, 244 ± 19.2 particles/kg). Fibres were most abundant at all sampling locations, with red, blue, and black being the predominant colours found. Larger polymer fragments were identified as polypropylene and polyethylene. Concentrations of Cr, Cu, Ni, Pb and Zn exceeded Scottish background soil values at some locations. Principal component and Pearson's correlation analyses suggest that As, Cr, Pb and Zn emanated from the same anthropogenic sources. Potential ecological risk assessment indicates that Cd presents a moderate risk to organisms at one location. This study constitutes the first co-investigation of MPs and PTEs in a river system in Scotland.
Collapse
Affiliation(s)
- Oluwatosin Sarah Shokunbi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
- Department of Basic Sciences, Babcock University, P. M. B. 4003, Ilishan Remo, Ogun State, Nigeria
| | - Gideon Aina Idowu
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria.
| | - Ademola Festus Aiyesanmi
- Department of Chemistry, School of Physical Sciences, Federal University of Technology Akure, P.M. B. 704, Akure, Ondo State, Nigeria
| | - Christine Margaret Davidson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| |
Collapse
|
14
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
15
|
Gu YG, Jordan RW, Jiang SJ. Probabilistic risk assessment of microplastics on aquatic biota in coastal sediments. CHEMOSPHERE 2024; 352:141411. [PMID: 38350515 DOI: 10.1016/j.chemosphere.2024.141411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
As an emerging form of pollution, microplastic contamination of the coastal ecosystems is one of the world's most pressing environmental concerns. Coastal sediments have been polluted to varying degrees by microplastics, and their ubiquitous presence in sediments poses a threat to marine organisms. However, there is currently no ecological risk assessment of microplastics on aquatic biota in sediments. This study, for the first time, established a new procedure to evaluate the toxicity of microplastics on aquatic biota in sediments, based on the probabilistic risk assessment (PRA) concept. The choice of Zhelin Bay as the case study site was based on its severe pollution status. The average content of microplastics in the sediments of Zhelin Bay was 2054.17 items kg-1 dry weight, and these microplastics consisted of 46 different species. Microplastics in sediments exist in five different forms, with the film form being the main composition, and the majority of microplastics have particle sizes ranging from 100 to 500 μm. Correlation analysis (CA) reveals significant negative correlations between microplastic abundance, and Al2O3 and SiO2. The toxicity of microplastics, based on the PRA concept, suggests that Zhelin Bay surface sediments had a low probability (3.43%) of toxic effects on aquatic biota.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, 510300, China; Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 572025, China.
| | - Richard W Jordan
- Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Shi-Jun Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; College of Oceanography, Hohai University, Nanjing, 245700, China
| |
Collapse
|
16
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
17
|
Protyusha GB, B K, Robin RS, A N, Ineyathendral TR, Shivani SS, I A, Sivasamy S, Samuel VD, R P. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123118. [PMID: 38092338 DOI: 10.1016/j.envpol.2023.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The environmental input of microplastics from personal care products has received significant attention; however, less focus has been paid to oral healthcare products. The present study assessed the occurrence of microplastics in commercially available oral healthcare products such as toothbrushes, toothpastes, toothpowder, mouthwash, dental floss, and mouth freshener spray that have a pan-India distribution. The extracted microplastics were quantified and characterised using a microscope and ATR-FTIR. All products showed microplastic contamination, where toothbrushes showed the maximum particles (30-120 particles/brush) and mouth freshener sprays (0.2-3.5 particles/ml) had the least abundance. Fragments, fibres, beads, and films were the various shapes of microplastics observed, where fragments (60%) were dominant. Various colours such as pink, green, blue, yellow, black, and colourless were observed, where colourless (40%) particles were dominant. Microplastics were categorized into three sizes: <0.1 mm (63%), 0.1-0.3 mm (35%), and >0.3 mm (2%). Four major types of polymers, such as polyethylene (52%), polyamide (30%), polyethylene terephthalate (15%), and polybutylene terephthalate (3%), were identified. Risk assessment studies such as Daily Microplastics Emission (DME), Annual Microplastics Exposure (AME), and Polymer Hazard Index (PHI) were carried out. The DME projection for India was the highest for mouthwash (74 billion particles/day) and the least for mouth freshener sprays (0.36 billion particles/day). The AME projection for an individual was the highest in toothbrushes (48,910 particles ind.-1 yr.-1) and the least in mouth freshener sprays (111 particles ind.-1 yr.-1). PHI shows that the identified polymers fall under the low-to high-risk categories. This study forecasts the community health risks linked to microplastics in oral healthcare products and suggests mitigation strategies. It has the potential to shape environmental policy development in response.
Collapse
Affiliation(s)
- G B Protyusha
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India.
| | - Kavitha B
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Nithin A
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | | | - S Shruthi Shivani
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - Anandavelu I
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Shyam Sivasamy
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - V Deepak Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Purvaja R
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| |
Collapse
|
18
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Seasonal variations of microplastic in sediment, Chironomus sp. larvae, and chironomid tubes in two wastewater sites in Sohag Governorate, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125846-125865. [PMID: 38008829 PMCID: PMC10754750 DOI: 10.1007/s11356-023-30855-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Microplastic (MP) contamination is an acknowledged global problem that poses a severe risk to aquatic ecosystem biota. Nevertheless, little is known about their prevalence in animal construction. The main objective of our study was to reduce the gap information of seasonal abundance, distribution, composition, and risk assessment of MP contamination. The concentrations of MPs in sediment, Chironomus sp. larvae, and their tubes were found to be higher in site 2 (S2) than in site 1 (S1) during the four seasons of the year. However, MP concentrations ranged from 312 ± 64.7 to 470 ± 70 items/kg dry weight, 0.79 ± 0.16 to 1.1 ± 0.3 particles/individual, and 0.5 ± 0.04 to 0.9 ± 0.04 particles/tube in sediment, Chironomus, and chironomid tubes, respectively. Blue and red polyester fibers are the most dominant MPs which are distributed in sediment, Chironomus, and chironomid tubes. The length of the dominant fiber accumulates in Chironomus, and their tubes are highly varied compared to that of the substrate. Additionally, we found that the mean number of MPs/individual larvae in the fourth instar was significantly higher than that in the second instar. Risk indicators for the environment, polymer risk assessment, and pollution load were estimated, where they were higher in S2 than in S1 correlated to MPs abundance and polymer type. The seasonal fluctuation in MP concentration, characterization, and risk in the two sites could depend on the amount of sewage effluent discharged into the wastewater treatment plants (WWTPs), which was reflected by Chironomus sp. larvae. Therefore, further research should be done to adopt the applicability of Chironomus as MP bioindicators in various freshwater environments throughout the world.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
19
|
Chen CF, Ju YR, Chen CW, Albarico FPJB, Lim YC, Ke C, Cheng YR, Dong CD. Microplastics in coral reef sediments underestimated? They may hide in biominerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165708. [PMID: 37482351 DOI: 10.1016/j.scitotenv.2023.165708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Microplastics (MPs) may be underestimated in coral reef sediments. Current pretreatments for determining MPs in the sediments are mainly density separation and organic matter removal, ignoring MPs that may be embedded or encrusted in biominerals. This could lead to discrepancies in assessing the potential risk of MPs contamination. To confirm whether MPs in coral reef sediments are underestimated, a two-step sequential digestion, including organic matter removal (H2O2 digestion) and biomineral removal (HCl digestion), was performed on sediments from the coral reef area of the South Penghu Marine National Park (SPMNP, Taiwan). The MPs abundance and characteristics of the two steps were analyzed separately. The results showed that the average MPs abundance after HCl digestion (78 ± 42 MPs/kg) was significantly higher than that of H2O2 digestion (38 ± 25 MPs/kg). The MPs diversity integrated index (MPDII) in coral reef sediments was low (MPDII = 0.35), and MPs were mainly small (<2.0 mm, 91.3 %), fibrous (93.5 %), colored (60.9 %), and rayon polymers (73.9 %). Correlation analysis showed that MPs in biominerals mainly dominated MPs in the sediments. These results confirm that current assessments of MPs contamination levels in biomineral-rich sediments may be underestimated and uncertain. In addition, the mineralization of organisms in SPMNP reef regions was affected by MPs from moderate to high levels, depending on the proportion of MPs in biominerals.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chongtai Ke
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
20
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. A holistic approach on the impact of microplastic discharge from WWTPs to the neighboring environment in Southeast Spain. WATER RESEARCH 2023; 244:120516. [PMID: 37651865 DOI: 10.1016/j.watres.2023.120516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
The present study investigated the release of microplastics (MPs) from wastewater treatment plants (WWTPs) to the neighboring environment, including marine and coastal sediments, and fish. Here, we comprehensively investigated MP abundance in 34 samples of marine sediment, corresponding to 5,530.5 g of sediment (d.w.) collected at -8.0 m, -12.5 m, and -24.0 m, 69 samples of coastal sediment, accounting for 13,617.4 g (d.w.) from 17 different beaches from Mar Menor, and stomach and intestine of 17 fish samples of Sparus aurata, in the vicinity of Cartagena, a port city in Southeast Spain. The results showed that MPs were detected in all marine sediment samples, with an average abundance of 19.4 ± 2.4 items/kg (d.w.), in coastal sediments, with an average abundance of 52.5 ± 5.3 items/kg (d.w.), and fish samples, with an average of 8.2 ± 1.4 items per individual. The contribution of MPs from WWTPs to marine sediments is expected to be slow, as effluents were mostly dominated by fiber and film shapes, and by polymers less dense than seawater. There were no significant variations in the MP abundance of marine sediments after the atmospheric phenomenon named DANA, although a significant smaller MP size was reported, indicating a high mobility for tiny sizes. The same results were revealed for coastal sediment, although variations after DANA were statistically significant. Coastal sediment samples closer to WWTPs and agricultural fields with plastic mulching displayed higher MP concentrations, and an increase in the removal rate of MPs from WWTP effluents was negatively correlated with a decrease in MPs from fish collected. This study highlights the importance of sewage treatment plants in transporting MPs to the aquatic and terrestrial surrounding environment, which warrants further research on human health risks associated to MP pollution.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| |
Collapse
|
21
|
Sari Erkan H, Takatas B, Ozturk A, Gündogdu S, Aydın F, Koker L, Ozdemir OK, Albay M, Onkal Engin G. Spatio-temporal distribution of microplastic pollution in surface sediments along the coastal areas of Istanbul, Turkey. MARINE POLLUTION BULLETIN 2023; 195:115461. [PMID: 37659384 DOI: 10.1016/j.marpolbul.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Microplastics (MPs) have become prevalent in various environmental compartments, including air, water, and soil, attracting attention as significant pollutant parameters. This study investigated the prevalence of MP pollution in surface sediments along Istanbul's Marmara Sea, encompassing the megacity and the Bosphorus. A comprehensive sampling approach was employed, covering 43 stations across four seasons and depths ranging from 5 to 70 m. The objective was to assess the impact of terrestrial, social, and industrial activities on MPs. The average concentrations varied per season, with fall, winter, spring, and summer values recorded as 2000 ± 4100, 1600 ± 3900, 4300 ± 12,000, and 9500 ± 20,300 particles/kg-DW. The study identified river stations in the Golden Horn and sea discharge locations as hotspots for high concentrations. Notably, the dominant shape shifted from fibers in fall, winter, and spring to fragments during summer, coinciding with mucilage occurrences. The study identified 11 different polymers, with polyethylene (44 %) and polypropylene (31 %) being the most common.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye.
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| | - Alihan Ozturk
- Yildiz Technical University, Control and Automation Engineering Department, 34349 Istanbul, Turkiye
| | - Sedat Gündogdu
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkiye
| | - Fatih Aydın
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Latife Koker
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Oguz Kaan Ozdemir
- Yıldız Technical University, Department of Metallurgical and Materials Engineering, 34220 İstanbul, Turkiye
| | - Meric Albay
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| |
Collapse
|
22
|
Yang H, Sun F, Liao H, Guo Y, Pan T, Wu F. The pollution of microplastics in sediments of the Yangtze River Basin: Occurrence, distribution characteristics, and basin-scale multilevel ecological risk assessment. WATER RESEARCH 2023; 243:120322. [PMID: 37451127 DOI: 10.1016/j.watres.2023.120322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) pollution in the Yangtze River Basin (YRB) of China has grown to be a serious issue, yet there is a lack of understanding of the environmental risks of MPs in the sediment of the entire basin. This work revealed the spatial distribution characteristics of MPs in YRB sediments, and it methodically assessed the ecological risks of MPs by taking into consideration their abundance, toxic effects, and polymer types. The results showed a high heterogeneity in the abundance of MPs in YRB sediments, with an average of 611 particles/kg dry weight (DW) sediment. Small-sized MPs (<1 mm), fibrous, transparent-colored and polypropylene (PP) accounted for the majority with 71.6%, 68%, 37% and 30.8%, respectively. Correlation analysis indicated significant influences of human activities such as population, industrial structure, and urban wastewater discharge on the abundance and morphological types of MPs in sediments. Based on chronic toxicity data exposed to sediments, a predicted no-effect concentration (PNEC) of 539 particles/kg DW was calculated using the species susceptibility distribution (SSD). Multiple deterministic risk assessment indices indicated that MPs in YRB sediments exhibited primarily low pollution load levels, moderate-to-low potential ecological risk levels, and high levels of polymer pollution. However, probabilistic risk assessment revealed an overall low risk of MPs in YRB sediments. Monte Carlo simulation results demonstrated that polyvinyl chloride (PVC) and polycarbonate (PC) made a great contribution to ecological risk and should be considered as priority control pollutants in MPs. In addition, various assessments showed that the ecological risk of MPs in river sediments was higher than that in lake reservoir sediments. This is the first study to comprehensively assess the ecological risk of MPs in sediments of the YRB, which improves the understanding of the basin-wide occurrence characteristics and environmental risks of MPs in freshwater systems.
Collapse
Affiliation(s)
- Hao Yang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Yiding Guo
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ting Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
23
|
Khalid AR, Shah T, Asad M, Ali A, Samee E, Adnan F, Bhatti MF, Marhan S, Kammann CI, Haider G. Biochar alleviated the toxic effects of PVC microplastic in a soil-plant system by upregulating soil enzyme activities and microbial abundance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121810. [PMID: 37201571 DOI: 10.1016/j.envpol.2023.121810] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/15/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Plastics have become an emerging pollutant threatening the sustainability of agroecosystems and global food security. Biochar, a pro-ecosystem/negative carbon emission technology can be exploited as a circular approach for the conservation of plastics contaminated agricultural soils. However, relatively few studies have focused on the effects of biochar on plant growth and soil biochemical properties in a microplastic contaminated soil. This study investigated the effects of a cotton stalk (Gossypium hirsutum L.) biochar on plant growth, soil microbes, and enzyme activity in PVC microplastic (PVC-MPs) contaminated soil. Biochar amendment increased shoot dry matter production in PVC-MPs contaminated soil. However, PVC-MPs alone significantly reduced the soil urease and dehydrogenase activity, soil organic and microbial biomass carbon, bacterial/fungal community percentage, and their abundance (16S rRNA and 18S rRNA genes, respectively). Interestingly, biochar amendment with PVC-MPs significantly alleviated the hazardous effects. Principal component and redundancy analysis of the soil properties, bacterial 16S rRNA genes, and fungal ITS in the biochar-amended PVC-MPs treatments revealed that the observed traits formed an obvious cluster compared to non-biochar treatments. To sum up, this study indicated that PVC-MPs contamination was not benign, while biochar shielded the hazardous effects and sustained soil microbial functionality.
Collapse
Affiliation(s)
- Attia Rubab Khalid
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Pakistan; Plant Science Research Unit, USDA-ARS, Raleigh, NC, USA
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ahmad Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Eisha Samee
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fazal Adnan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sven Marhan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
| | - Claudia I Kammann
- Department of Applied Ecology, Hochschule Geisenheim University, Geisenheim, Germany
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
24
|
Trindade LDS, Gloaguen TV, Benevides TDSF, Valentim ACS, Bomfim MR, Gonzaga Santos JA. Microplastics in surface waters of tropical estuaries around a densely populated Brazilian bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121224. [PMID: 36754197 DOI: 10.1016/j.envpol.2023.121224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Brazil is the fourth largest producer of plastic waste in the world, but studies on pollution of rivers and estuaries by microplastics are still scarce. This study is located in the state of Bahia (Northeast region) in ten estuarine environments around Todos dos Santos Bay (TDB), the largest Brazilian bay, where more than 3 million Brazilians live. The aim of the study was the evaluation of the input of microplastics into the TSB by river. Microplastic abundance, size, morphology and water quality were determined during three sampling campaigns. All river samples were highly polluted with microplastics (mostly <150 μm), up to 33,000 items m-3, exceeding values observed in most estuaries worldwide. The poor quality of the river water reflect the deficient treatment of domestic wastewater in the state of Bahia (49% are not treated), and in this study is shown a correlation with the abundance of microplastics, indicating their possible main source. Artisanal fishing can also contribute locally to this pollution. Morover, the results highlight the importance of sampling small microplastics (<100 μm) to avoid important underestimation of this pollution. Based on these data, the three major rivers would discharge 3.88 trillion items into the Bay each year, equivalent to 4.75 × 105 m2 of plastic. Further research in surface water systems is essential, given that the average wastewater treatment rates in the country and in the Northeast and North regions are only 43%, 32%, and 12%, respectively.
Collapse
Affiliation(s)
- Laiana Dos Santos Trindade
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil
| | - Thomas Vincent Gloaguen
- Center for Technology and Exact Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| | | | | | - Marcela Rebouças Bomfim
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| | - Jorge Antônio Gonzaga Santos
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| |
Collapse
|
25
|
Akkan T, Gedik K, Mutlu T. Protracted dynamicity of microplastics in the coastal sediment of the Southeast Black Sea. MARINE POLLUTION BULLETIN 2023; 188:114722. [PMID: 36860017 DOI: 10.1016/j.marpolbul.2023.114722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
This study provided the first evaluation of microplastic abundance, features, risk assessment, and decade-changing status in sediment along the southeastern Black Sea coast. Sediment samples were collected from thirteen stations in the Southeast Black Sea in 2012 and 2022. >70 % of the detected microplastics had a length of up to 2.5 mm and consisted of fragments and fibers in shape. The average microplastic abundance in the sediment samples was 108 MP/kg. The composition in the sediment (particles/kg) was dominated by polyethylene (PE) (44.9 %), polyethylene terephthalate (PET) (27.2 %), and polypropylene PP (15.2 %). Remarkable results for contamination factors, polymeric risk assessment and contamination risk indices. The sharp rise in MPS highlighted the heavily populated stations and stream discharge locations. The data shed light on anthropogenic and basal microplastic pollution in the Southeast Black Sea, assisting in developing effective policies for preserving and managing the Black Sea environment.
Collapse
Affiliation(s)
- Tamer Akkan
- Giresun University, Arts and Science Faculty, Biology Department, Giresun, Turkiye.
| | - Kenan Gedik
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| | - Tanju Mutlu
- Recep Tayyip Erdogan University, Vocational School of Technical Sciences, Rize, Turkiye
| |
Collapse
|