1
|
Wang X, Li Z, Li Q, Hu Z. Alleviation of Plant Abiotic Stress: Mechanistic Insights into Emerging Applications of Phosphate-Solubilizing Microorganisms in Agriculture. PLANTS (BASEL, SWITZERLAND) 2025; 14:1558. [PMID: 40431124 PMCID: PMC12115179 DOI: 10.3390/plants14101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Global agricultural productivity and ecosystem sustainability face escalating threats from multiple abiotic stresses, particularly heavy metal contamination, drought, and soil salinization. In this context, developing effective strategies to enhance plant stress tolerance has emerged as a critical research frontier. Phosphate-solubilizing microorganisms (PSMs) have garnered significant scientific attention due to their capacity to convert insoluble soil phosphorus into plant-available forms through metabolite production, and concurrently exhibiting multifaceted plant growth-promoting traits. Notably, PSMs demonstrate remarkable potential in enhancing plant resilience and productivity under multiple stress conditions. This review article systematically examines current applications of PSMs in typical abiotic stress environments, including heavy metal-polluted soils, arid ecosystems, and saline-alkaline lands. We comprehensively analyze the stress-alleviation effects of PSMs and elucidate their underlying mechanisms. Furthermore, we identify key knowledge gaps and propose future research directions in microbial-assisted phytoremediation and stress-mitigation strategies, offering novel insights for developing next-generation bioinoculants and advancing sustainable agricultural practices in challenging environments.
Collapse
Affiliation(s)
- Xiujie Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhe Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhenqi Hu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
2
|
Zhu X, Zhou Y, Yan Z, Yan Y, Li S, Yu M, Yan X, Zhang M. Stabilization effect and mechanism of heavy metals by microbial consortium of phosphate-solubilizing bacteria and urease-producing bacteria. Front Microbiol 2025; 16:1525316. [PMID: 39963496 PMCID: PMC11830682 DOI: 10.3389/fmicb.2025.1525316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Stabilization of heavy metals through phosphate-solubilizing bacteria (PSB) induced phosphate precipitation and urease-producing bacteria (UPB) induced carbonate precipitation are promising bioremediation methods. However, little attention has been conducted on the combined action of the above two bioremediations to stabilize heavy metals. Methods PSB and UPB were isolated from the environment and their growth characteristics and antagonistic properties were studied. A simulated solution of acidic leachate was prepared based on heavy metal contaminated soil. Microbial consortium of PSB and UPB were constructed for the stabilization of heavy metals by optimizing carbon and nitrogen sources. The microstructural and compositional changes during the biostabilization process were more deeply analyzed using XRD, FT-IR and SEM-EDS. Results and discussion The precipitation of heavy metals could be promoted effectively when soluble starch (10.2 g/L) was used as carbon source and urea (7.8 g/L) as nitrogen source. The stabilization rates for Cu, Zn, Cd, and Pb were 98.35, 99.78, 99.09, and 92.26%, respectively. The stabilization rates of the combined action of PSB and UPB were significantly higher than that of the two microorganisms alone. An in-depth analysis showed that the composite metals were precipitated as dense precipitate encased in carbonate and phosphate, and additionally could be stabilized in the form of biosorption. Finally, the stabilization mechanism of heavy metals based on biomineralization and biosorption is proposed. These findings provide new theoretical support for sustainable remediation and management strategies for composite heavy metal polluted areas.
Collapse
Affiliation(s)
- Xuezhe Zhu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- School of Metallurgy, Northeastern University, Shenyang, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Yupin Zhou
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
- Guobiao (Beijing) Testing & Certification Co., Ltd., China GRINM Group Co., Ltd., Beijing, China
| | - Zhenghao Yan
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yongfang Yan
- Shougang Group Talent Development Institute, Beijing, China
| | - Shuangquan Li
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiao Yu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Xiao Yan
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, China GRINM Group Corporation Limited, Beijing, China
- GRINM Resources and Environment Tech. Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
- Beijing Engineering Research Center of Strategic Nonferrous Metals Green Manufacturing Technology, Beijing, China
- GRIMAT Engineering Institute Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Yang Z, Tian Y, Zhao J, Liu J, Lin X, Xi Y, Wang H, Kong F, Zhang F, Qiu X. Effect of lignin carbon material on phosphorus solubilisation performance of Bacillus megaterium. Int J Biol Macromol 2025; 290:138858. [PMID: 39706426 DOI: 10.1016/j.ijbiomac.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction. A phosphate-solubilising bacterial agent (BM-LPC) was obtained by low-temperature carbonisation/activation lignin-based porous carbon (LPC) in situ culture/adsorption Bacillus megaterium (BM). The maximum soluble phosphorus capacity of BM-LPC was 744.29 mg/L when 1 % LPC was added. This was a 22 % increase compared with BM alone. The maximum adsorption of BM by LPC was 3.66 × 109 colony-forming units (CFU)/g. At 150 days, the viable bacterial count of BM-LPC was 2.09 × 109 CFU/g. The abundances of -OH, -COOH, -NH2, and CO groups on the surface of LPC provided a stable environment for BM, which in turn, enhanced the solubilisation of phosphorus and extended the viability of BM. The findings of this study can help increase the added value of industrial lignin and provide a theoretical basis for soil remediation research.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yihui Tian
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jianzhi Zhao
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiao Liu
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuliang Lin
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuebin Xi
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Huan Wang
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fangong Kong
- Department of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Guangrao County, Dongying 257335, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Yang C, Li Q, Chen X, Li M, He X, Li G, Shao Y, Wu J. Effects of the combined use of lanthanum carbonate and activated carbon capping materials on phosphorus and dissolved organic matter in lake sediments. ENVIRONMENTAL RESEARCH 2025; 264:120291. [PMID: 39505129 DOI: 10.1016/j.envres.2024.120291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Lanthanum carbonate (LC) represents a novel material for the immobilization of internal phosphorus (P) in sediments. Activated carbon (AC) is a traditional adsorbent that has been employed in the remediation of sediments on a wide scale. The objective of this study is to examine the mechanisms and effects of the combined use of LC and AC capping materials on the immobilization of P and dissolved organic matter (DOM) in sediments, through a 90-day incubation experiment. The results of isotherm experiments showed that the adsorption mechanism of P on LC and AC was mainly chemisorption. The XPS analyses showed the adsorption mechanism of P on LC was mainly ligand exchange and inner-sphere complexation; while the adsorption mechanism of P on AC was mainly ligand exchange and electrostatic adsorption. The results demonstrated that the concentrations of soluble reactive phosphorus (SRP) and DOM in the 0 to -100 mm sediment layer were reduced by 69.79% and 33.93%, respectively, in comparison to the control group with the LC + AC group. Moreover, the HCl-P and Res-P (stable P) in the 0-5 cm sediment layer were increased by 50.07% and 21.04%, respectively, in the LC + AC group. This indicates that the combined application of LC and AC has the potential to reduce the risk of P release. Furthermore, the formation of Fe(III)/Mn(IV) oxyhydroxides by LC + AC treatment resulted in an increased adsorption of SRP and DOM. Moreover, the effect of LC + AC capping on microbial community was smaller than that of LC/AC capping alone. The findings of this study indicated that the combined use of LC and AC represents a novel approach to the effective treatment of internal P and DOM in eutrophic lake sediments.
Collapse
Affiliation(s)
- Chenjun Yang
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Qi Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Minjuan Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Gaoxiang Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Yichun Shao
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Jingwei Wu
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
5
|
Feng B, Xue Y, Wang D, Chen S, Zhang S, Zhang L, Chen X, Tian D, Ye X. Stability of lead immobilization by Aspergillus niger and fluorapatite under different pH conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117706. [PMID: 39799925 DOI: 10.1016/j.ecoenv.2025.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The combination of Aspergillus niger (A. niger) and fluorapatite (FAp) has been applied in lead (Pb) immobilization. However, the different pH can affect the stability of the immobilized Pb minerals. This experiment explored the stability of Pb immobilization by A. niger and FAp under different pH conditions. A. niger can grow normally in a pH range from 2.5 to 6.5 conditions. Meanwhile, more than 99 % of Pb cations were removed by A. niger and FAp under a pH range from 3.5 to 6.5. More importantly, only less than 1.23 % Pb was released again under pH 3.5-5.5. The strong acidic conditions (pH 1.5) inhibited the growth of A. niger and caused a lower Pb removal ratio of 37.86 %. In addition, the formed minerals of lead oxalate and lead/calcium oxalate coprecipitate dominate the Pb remediation by A. niger and FAp. The pH > 5.5 condition could decrease the stability of Pb immobilization via the low calcium/lead ratios. The combination of A. niger and FAp shows great potential in Pb remediation at a pH range from 3.5 to 5.5, suitable for fungal growth and Pb minerals stability. This research provides new insight into Pb remediation by phosphate-solubilizing fungi and FAp in various acidic environments.
Collapse
Affiliation(s)
- Baoxin Feng
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Yu Xue
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Dechao Wang
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Shenghao Chen
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuo Zhang
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Liangliang Zhang
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Xiaohui Chen
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China
| | - Da Tian
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China.
| | - Xinxin Ye
- Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
6
|
Wang D, Chen H, Han H, Yang W, Sun Q, Cao C, Ning K, Huang Z, Wu T. Interaction of biochar with extracellular polymers of resistant bacteria restrains Pb(II) adsorption onto their composite: Macro and micro scale investigations. BIORESOURCE TECHNOLOGY 2024; 414:131602. [PMID: 39393646 DOI: 10.1016/j.biortech.2024.131602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Pb(II) sequestration in extracellular polymers-biochar composites (EPS-BC) was explored using macroscopic models and microscopic technology. The results showed that the actual adsorption capacity of EPS-BC was 52.2% lower than the calculated capacity based on adsorption onto pure components due to the interaction of polysaccharide and amide group in extracellular polymers with biochar, which masked the reactive sites related to Pb(II) in EPS-BC. The bond of Pb-O (40.8%) and Pb-OOC (31.5%) mainly contributed to Pb(II) speciation on the EPS-BC surfaces. Furthermore, each Pb atom coordinated with 6O atoms in the first shell and with 0.5C atoms in the second shell, indicating that the carboxyl group in composite was complexed with Pb(II) as a monodentate inner-sphere structure. The findings provide an in-depth understanding of the adsorption mechanism of heavy metals by extracellular polymers coupled with biochar at molecular scale, guiding bioremediation with respect to heavy metal contamination.
Collapse
Affiliation(s)
- Di Wang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
| | - Hui Han
- College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenwen Yang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321000, China
| | - Qi Sun
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Churong Cao
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Kai Ning
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510630, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuochun Huang
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Ting Wu
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| |
Collapse
|
7
|
Zhang Y, Sun J, Bi Y, Gao J, Su J, Zhang S. Innovative bamboo-plastic composites interfacial compatibility design approach: Self-assembled crosslinked structure of polydopamine with acylated chitin fibers. Int J Biol Macromol 2024; 279:134803. [PMID: 39209592 DOI: 10.1016/j.ijbiomac.2024.134803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Achieving interfacial compatibility through sustainable methods is a key objective in natural fiber-plastic composites research, aimed at optimizing mechanical performance. This study introduced an innovative organic bamboo-plastic composite (BPC) interfacial layer, incorporating O-acylated chitin fibers densely coated with polydopamine (PDA) via a mild and facile self-assembly method. Chitin nanofibers were acylated with dodecenylsuccinic anhydride in a deep eutectic solvent in a one-pot process. The resulting BPCs exhibited significantly enhanced mechanical properties, with tensile strength, flexural strength, modulus, and impact strength increased by 73.64 %, 39.19 %, 15.42 %, and 63.57 %, respectively, compared to untreated BPCs. This improvement highlights the effectiveness of tailoring cross-linked networks across heterogeneous interfaces in providing strength, dissipating strain, and promoting interfacial compatibility. Furthermore, these modified BPCs demonstrated enhanced thermal stability, crystallization behavior, and moderate hydrophobicity. This surface treatment strategy offers a distinctive approach to producing high-performance, eco-friendly BPCs, also facilitating the processing and utilization of marine biological resources on a wide scale.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiajing Sun
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yanbin Bi
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jian Gao
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jixing Su
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Chu X, Rao Y, Qu J, Zhang J, Zeng R, Kong Y, Xi Z, Zhu Z, Li D, Li J, Zhao Q. Phosphorus-loaded coconut biochar: A novel strategy for cadmium remediation and soil fertility enhancement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117074. [PMID: 39342758 DOI: 10.1016/j.ecoenv.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The management of cadmium (Cd) contamination in soils poses a significant environmental challenge. This study investigates the effectiveness of phosphorus (P)-loaded coconut biochar, synthesized at various pyrolysis temperatures (450°C, 500°C, 550°C, and 600°C), in immobilizing Cd and enhancing P availability in soil environments. The biochar underwent a series of treatments including activation and P enrichment, followed by incubation trials to evaluate its performance in Cd immobilization and P bioavailability enhancement across varying soil concentrations (0.5 %, 1.0 %, and 2.0 %) over time periods of 15, 30, and 45 days. Remediation progress was monitored using phytotoxicity assessments with radish (Raphanus sativus) root length as a bioindicator, supplemented by urease activity analyses. Notably, the activation process increased the P loading capacity of biochar produced at 450°C, 500°C, and 550°C by 54.6 %, 72.4 %, and 51.8 %, respectively, while reducing the P retention capacity of biochar prepared at 600°C by 31.0 %. The biochar activated at 550°C presented the highest efficiency in remediating Cd-contaminated soils. Key findings indicate that the enhanced specific surface area and oxygenated functional group content of the activated biochar facilitated Cd adsorption and P uptake. The P-loaded biochar exhibited a substantial adsorption capacity for Cd, particularly effective at lower concentrations, rendering it highly suitable for soil remediation purposes. Additionally, the study revealed that the application of biochar led to an increase in soil pH, resulting in precipitation of Cd as hydroxide species and formation of insoluble complexes with phosphate ions, thereby reducing its bioavailability. In summary, incorporating P-loaded biochar into soil significantly improved soil quality and enhanced Cd passivation in contaminated soils. The utilization of biochar produced at 550°C, which exhibited optimal performance, suggests a practical and sustainable approach for soil remediation. Future research endeavors should prioritize the refinement of the biochar production process to enhance cost-effectiveness while maintaining high P loading efficiency.
Collapse
Affiliation(s)
- Xiao Chu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yingzhi Rao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jizhen Qu
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Jingmin Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ri Zeng
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Yipeng Kong
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zimin Xi
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China
| | - Zhiqiang Zhu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Danzhou 571700, China.
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571700, China.
| |
Collapse
|
9
|
Li Z, Xiao X, Xu T, Chu S, Wang H, Jiang K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules 2024; 29:4757. [PMID: 39407684 PMCID: PMC11477854 DOI: 10.3390/molecules29194757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Lead (Pb) and cadmium (Cd) are toxic pollutants that are prevalent in wastewater and pose a serious threat to the natural environment. In this study, a new immobilized bacterial microsphere (CYB-SA) was prepared from corn stalk biochar and Klebsiella grimontii by sodium alginate encapsulation and vacuum freeze-drying technology. The removal effect of CYB-SA on Pb(II) and Cd(II) in a monometallic contaminated solution was studied. The results showed that the removal of Pb(II) and Cd(II) by CYB-SA was 99.14% and 83.35% at a dosage of 2.0 g/L and pH = 7, respectively, which was 10.77% and 18.58% higher than that of biochar alone. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb(II) and Cd(II) by CYB-SA at 40 °C were 278.69 mg/g and 71.75 mg/g, respectively. A combination of the kinetic model, the isothermal adsorption model, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main adsorption mechanisms of CYB-SA encompass functional group complexation, ion exchange, electrostatic attraction and physical adsorption. The findings of this study offer practical and theoretical insights into the development of highly efficient adsorbents for heavy metals.
Collapse
Affiliation(s)
- Zaiquan Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Xu Xiao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Tao Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Shiyu Chu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Hui Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Ke Jiang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
10
|
Peng D, Chen X, Zhang S, Zeng G, Yan C, Luo H, Liu H, Xu H. Biochar enhances Cd mineralization through microbially induced carbonate precipitation as a soil remediation strategy for rice paddies. CHEMOSPHERE 2024; 366:143441. [PMID: 39362375 DOI: 10.1016/j.chemosphere.2024.143441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Microbial induced carbonate precipitation (MICP) is a promising technique for remediating Cd-contaminated soils. However, the high cost and potential disruption to soil micro-ecology due to the excessive urea addition remain significant challenges, limiting the broader application of MICP technology in agricultural soils. This study aims to improve the efficiency of Cd immobilization by MICP under low urea levels by investigating the stimulatory effect of porous materials on urease secretion by ureolytic bacteria. Results demonstrate that these materials, including biochar, activated carbon, zeolite, and oyster shell, can stimulate the growth of ureolytic bacteria strain kp-22, but not diatomite. Urease activity was greatly improved within 12 h, and the Cd removal rate reached over 82.12% within 0.5 h. Notably, biochar supported urealytic bacterium strain kp-22 (BCM) can steadily remove Cd in solution, with the Cd removal rate remaining close to 99% even after multiple additions of Cd. XRD analysis shows that Cd was removed by BCM due to the formation of CdCO3. Soil experiment reveals that BCM significantly decreased the bioavailable Cd content in both flooded and unflooded paddy soils, even when the urea addition was at a dosage suitable for agricultural production. 16S rRNA gene sequencing shows that the disturbance caused by BCM to the soil bacterial community was lower than that caused by strain kp-22 alone. These findings offer new insights into enhancing the efficiency of MICP for Cd remediation, increasing the potential for broader application of MICP technology in sustainable agriculture.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Shuling Zhang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
11
|
Gong ZX, Steven M, Chen YT, Huo LZ, Xu H, Guo CF, Yang XJ, Wang YX, Luo XP. High adsorption to methylene blue based on Fe 3O 4-N-banana-peel biomass charcoal. RSC Adv 2024; 14:25619-25628. [PMID: 39148761 PMCID: PMC11325343 DOI: 10.1039/d4ra04973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
This research focused on utilizing banana peel as the primary material for producing mesoporous biomass charcoal through one-step potassium hydroxide activation. Subsequently, the biomass charcoal underwent high-temperature calcination with varying impregnation ratios of KOH : BC for different durations in tubular furnaces set at different temperatures. The resultant biomass charcoal was then subjected to hydrothermal treatment with FeCl3·6H2O to produce biochar/iron oxide composites. The adsorption capabilities of these composites towards methylene blue (MB) were examined under various conditions, including pH (ranging from 3 to 12), temperature variations, and initial MB concentrations (ranging from 50 to 400 mg L-1). The adsorption behavior aligned with the Langmuir model and demonstrated quasi-secondary kinetics. After five adsorption cycles, the capacity decreased from 618.64 mg g-1 to 497.18 mg g-1, indicating considerable stability. Notably, Fe3O4-N-BC exhibited exceptional MB adsorption performance.
Collapse
Affiliation(s)
- Zhu-Xiang Gong
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Mfitumucunguzi Steven
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Yan-Ting Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Li-Zhu Huo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Hao Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Chao-Fei Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Xue-Juan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Yu-Xuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| | - Xi-Ping Luo
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass Hangzhou 311300 China
| |
Collapse
|
12
|
Shu D, Gan L, Zhang Y, Sun X, Tan C, Ruan R, Dai L, Wang Y, Huo E, Jiang Q, Zhao Y, Zhang J. A solid acid derived from fishbone catalyzes the hydrolysis of cellulose into nanocellulose. Int J Biol Macromol 2024:133903. [PMID: 39084995 DOI: 10.1016/j.ijbiomac.2024.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024]
Abstract
The necessity to look into waste biomass resource regeneration has increased due to growing environmental and energy-related problems. This study successfully developed an innovative fishbone-derived carbon-based solid acid catalyst using the carbonation-sulfonation method, which was subsequently applied to catalyze the hydrolysis of cellulose to produce nanocellulose. The data analysis reveals that the sulfonation treatment affects the microstructure of the catalyst, resulting in a decline in its specific surface area (134.48 m2/g decreased to 9.66 m2/g). However, this treatment doesn't hinder the introduction of acidic functional groups. In particular, the solid acid catalyst derived from fishbone exhibited a total acid content of 3.76 mmol/g, with a concentration of -SO3H groups at 0.48 mmol/g. Furthermore, the solid acids originating from fishbones manifested remarkable thermal stability, exhibiting a mass loss of <15 % at temperatures up to 600 °C. Moreover, the catalyst displayed exceptional catalytic performance during the cellulose hydrolysis reaction, achieving an optimum nanocellulose yield of 45.7 % at an optimized reaction condition. An additional noteworthy feature is the solid acid catalyst's impressive recyclability, maintaining a nanocellulose yield of 44.87 % even after undergoing five consecutive usage cycles. This research outcome underscores an innovative approach to for the sustainable utilization of waste biomass resources.
Collapse
Affiliation(s)
- Dong Shu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lu Gan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuan Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chentao Tan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Erguang Huo
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qixuan Jiang
- Department of Electrical Engineering Computer Science, Washington State University, Pullman, WA 99164, USA
| | - Yunfeng Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jian Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
13
|
Zhang J, Tang S, Li Y, Zhang J, Peng Y, Peng J, Cen Y, Shi P. Combined metabolomics and proteomics to reveal the mechanism of S. oneidensis MR-1 degradation malathion enhanced by FeO/C. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135162. [PMID: 39002482 DOI: 10.1016/j.jhazmat.2024.135162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Iron oxide @ biochar (FeO/C) promotes bacterial growth and facilitates electron transfer, thereby effectively promoting malathion degradation by Shewanella oneidensis MR-1 (S. oneidensis MR-1). This study elucidated the underlying mechanism of FeO/C-enhanced malathion degradation by S. oneidensis MR-1 through a combination of metabolomics and proteomics analysis. The kinetic fitting results from the degradation experiment indicated that 0.1 g/L FeO/C exerted the most significant enhancement effect on malathion degradation by S. oneidensis MR-1. Observations from Scanning Electron Microscopy and Laser Scanning Confocal Microscopy, along with physiological and biochemical analysis, showed that FeO/C enhanced the growth and oxidative response of S. oneidensis MR-1 under malathion stress. In addition, metabolomics and proteomics analysis revealed an increase in certain electron transfer related metabolites, such as coenzymes, and the upregulation of proteins, including coenzyme A, sdhD, and petC. Overall, spectroscopic analysis suggested that Fe2+, which was reduced from Fe3+ by S. oneidensis MR-1 in FeO/C, promoted electron transfer in S. oneidensis MR-1 to enhance the degradation of malathion. This study offers enhanced strategies for efficient removal of malathion contaminants.
Collapse
Affiliation(s)
- Jie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shen Tang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area (Guilin University of Technology, Guilin 541006, China.
| | - Jing Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuqing Peng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - JingJing Peng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yu Cen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Peizhu Shi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
14
|
Hou R, Zhang J, Fu Q, Li T, Gao S, Wang R, Zhao S, Zhu B. The boom era of emerging contaminants: A review of remediating agricultural soils by biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172899. [PMID: 38692328 DOI: 10.1016/j.scitotenv.2024.172899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Emerging contaminants (ECs) are widely sourced persistent pollutants that pose a significant threat to the environment and human health. Their footprint spans global ecosystems, making their remediation highly challenging. In recent years, a significant amount of literature has focused on the use of biochar for remediation of heavy metals and organic pollutants in soil and water environments. However, the use of biochar for the remediation of ECs in agricultural soils has not received as much attention, and as a result, there are limited reviews available on this topic. Thus, this review aims to provide an overview of the primary types, sources, and hazards of ECs in farmland, as well as the structure, functions, and preparation types of biochar. Furthermore, this paper emphasizes the importance and prospects of three remediation strategies for ECs in cropland: (i) employing activated, modified, and composite biochar for remediation, which exhibit superior pollutant removal compared to pure biochar; (ii) exploring the potential synergistic efficiency between biochar and compost, enhancing their effectiveness in soil improvement and pollution remediation; (iii) utilizing biochar as a shelter and nutrient source for microorganisms in biochar-mediated microbial remediation, positively impacting soil properties and microbial community structure. Given the increasing global prevalence of ECs, the remediation strategies provided in this paper aim to serve as a valuable reference for future remediation of ECs-contaminated agricultural lands.
Collapse
Affiliation(s)
- Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jian Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shijun Gao
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang 150080, China
| | - Rui Wang
- Heilongjiang Province Five building Construction Engineering Co., LTD, Harbin, Heilongjiang 150090, China
| | - Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Bingyu Zhu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
15
|
Gao G, Yan L, Tong K, Yu H, Lu M, Wang L, Niu Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169618. [PMID: 38157902 DOI: 10.1016/j.scitotenv.2023.169618] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Soil salinization has become a global problem that threatens farmland health and restricts crop production. Salt-affected soils seriously restrict the development of agricultural, mainly because of sodium ion (Na+) toxicity, nutrient deficiency, and structural changes in the soil. Biochar is a carbon (C)-based substance produced by heating typical biomass waste at high temperatures in anaerobic circumstances. It has high cation exchange capacity (CEC), adsorption capacity, and C content, which is often used as a soil amendment. Biochar generally reduces the concentration of Na+ in soil colloids through its strong adsorption, or uses the calcium (Ca) or magnesium (Mg) rich on its surface to exchange sodium ions (Ex-Na) from soil colloids through cation exchange to accelerate salt leaching during irrigation. Nowadays, biochar is widely used for acidic soils improvement due to its alkaline properties. Although the fact that biochar has gained increasing attention for its significant role in saline alkali soil remediation, there is currently a lack of systematic research on biochar improvers and their potential mechanisms for identifying physical, chemical, and biological indicators of soil eco-environment assessment and plant growth conditions affected by salt stress. This paper reviews the preparation, modification, and activation of biochar, the effects of biochar and its combination with beneficial salt-tolerant strains on salt-affected soils and plant growth. Finally, the limitations, benefits, and future needs of biochar-based soil health assessment technology in salt-affected soils and plant were discussed. This article elaborates on the future opportunities and challenges of biochar in the treatment of saline land, and a green method was provided for the integrate control to salt-affected soils.
Collapse
Affiliation(s)
- Guang Gao
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Kaiqing Tong
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Hualong Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Mu Lu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Lu Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China; School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Liu XM, Huan WW, Kang Y, Guo JZ, Wang YX, Li FH, Li B. Effects of cation types in persulfate on physicochemical and adsorptive properties of biochar prepared from persulfate-pretreated bamboo. BIORESOURCE TECHNOLOGY 2024; 393:130140. [PMID: 38043687 DOI: 10.1016/j.biortech.2023.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The adsorption behaviors of biochar are largely impacted by biomassfeedstock. In this study, two biochars were prepared from torrefaction of ammonium persulfate- and potassium persulfate-pretreated bamboo and then activated by cold alkali, which are named as ASBC and KSBC, respectively. The two biochars were characterized by different instruments, and their adsorption properties over cationic methylene blue (MB) were compared. The type of persulfates little affected the specific surface areas, but significantly impacted O (29.54 % vs. 35.113 %) and N (12.13 % vs. 3.74 %) contents, functional groups, and zeta potentials of biochars. MB adsorption onto ASBC/KSBC is a single-layer chemical endothermic process and ASBC/KSBC exhibit high adsorption capacity over MB (475/881 mg·g-1) at 303 K. Obviously, the sorption capacity of MB onto KSBC much surpasses that of MB onto ASBC. These results indicate biomass pre-treatment is a cheap and convenient method to prepare biochars with unique physicochemical and adsorptive properties.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Ying Kang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Yu-Xuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Feng-Hua Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
17
|
Guan R, Wang L, Zhao Y, Huang F, Zhang Y, Wang X, Chen Y, Li M, Wang D. The mechanism of DEHP degradation by the combined action of biochar and Arthrobacter sp. JQ-1: Mechanisms insight from bacteria viability, degradation efficiency and changes in extracellular environment. CHEMOSPHERE 2023; 341:140093. [PMID: 37678595 DOI: 10.1016/j.chemosphere.2023.140093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) has been widely detected in soil, water, and sediment as a priority control pollutant. Immobilized microorganism technology is gradually mature and applied in production. Biochar prepared from agricultural wastes is an excellent immobilized carrier because of its porous structure and abundant functional groups. Environmental acidification was caused by degrading bacteria Arthrobacter sp. JQ-1 (JQ-1) respiration and acidic metabolites during DEHP degradation, which affected the passage life of microorganisms and the removal efficiency of DEHP. The mechanism of DEHP degradation by the combined action of JQ-1 and corn straw biochar (BC) at 600 °C was investigated, and bacterial viability, microenvironmental changes, and kinetic tests were performed in this research. Compared with biodegradation group alone, the degradation rate of DEHP in 1% biochar unloaded and loaded with JQ-1 increased by 18.3% and 30.9%, and its half-life decreased to 23.90 h and 11.95h, a reduction of 31.37 h. The percentage of detected living JQ-1 increased as biochar content increased when loading capacity was less than 1%. In which, (JQ-1-BC2) group was 4.1% higher than (JQ-1-BC1) group. Biochar has the ability to neutralize acidifying environmental pH due to its alkaline functional groups, including lactone group, -OH, -COO-. 1% biochar loaded with JQ-1 increased the pH of the microenvironment by 0.57 and alkaline phosphatase (AKP) activity by 0.0063 U·mL-1, which promoted the reduction of PA. Study suggested that biochar loaded with JQ-1 could simultaneously adsorb and degrade DEHP during the process of DEHP removal. Biochar could be used as a biological stimulant to increase abundance and metabolism, enhance the utilization of DEHP by JQ-1. Biochar (1% (w/v)) loaded with JQ-1 as DEHP removal material showed good performance. Biochar not only as an immobilized carrier, but also as a biostimulant, providing an effective strategy for the collaborative remediation of PAEs contaminated.
Collapse
Affiliation(s)
- Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Ying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiaodong Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Yuxin Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Mingze Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Didi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
18
|
Jin C, Yang J, Chen B, Qu G, Li H, Wu F, Liu X, Liu Y, Kuang L, Li J. Soilization utilization of solid waste: Ecological regulation of phosphorus tailings-based soil with physicochemical improvement and Bacillus_cereus-addition. ENVIRONMENTAL RESEARCH 2023; 236:116856. [PMID: 37574102 DOI: 10.1016/j.envres.2023.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Extraction and utilization of effective phosphorus from solid waste have been an important approach for alleviating phosphorus resource shortage. The extraction of available phosphorus by microbial method with low cost, mild conditions and simple process has been drawing attention from the majority of research scholars. However, relevant studies on special microbial communities for effective phosphorus extraction from solid waste are less. In this work,a functional Bacillus_cereus strain screened from phosphate tailings, phosphate ore and forest rhizosphere soil was inoculated into phosphate tailings (PT), modified phosphate tailings (IS) and highland red soil (SS). Compared with SS, the water-holding properties, fertility, leaching toxicity and microbial community diversity of PT and IS with and without bacteria were analyzed. PT+, SS+ and IS+ (after adding bacteria to PT, SS and IS) showed moderately alkaline pH, and the available phosphorus content enhanced by 31.73%, 20.05% and 39.41% respectively. The leaching toxicity phosphate of PT+ and IS + decreased by 4.89 mg/kg and 2.61 mg/kg respectively, while that of SS + increased by 5.45 mg/kg, indicating differences in the phosphorus solubilization mechanism of Bacillus_cereus for different soils. Furthermore, the modification and bacteria treatment improved the relative abundance of Pedobacter, Alcaligenaceae and Pseudomonas, thus enhancing the phosphorus solubility of the PT bacterial community. This work may achieve efficient utilization and ecological restoration of phosphorus tailings-based soil and contribute to long-term sustainable agricultural development.
Collapse
Affiliation(s)
- Caiyue Jin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Jieqian Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
| | - Hailin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Ye Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Lingrui Kuang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Junyan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| |
Collapse
|
19
|
Li A, Ye C, Jiang Y, Deng H. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129515. [PMID: 37468011 DOI: 10.1016/j.biortech.2023.129515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
In this study, a series of biochar products with different active functional groups were developed by one-pot coprecipitation method, including magnesium-modified biochar (MgBC) and functional group-grafted MgBC (Cys@MgBC, Try@MgBC, and Glu@MgBC), for effective adsorption of cadmium (Cd(II)) from wastewaters. These biochars exhibited excellent removal performance for Cd(II), particularly Cys@MgBC, whose maximum Cd(II) adsorption capacity reached 223.7 mg g-1. The highly active and weakly crystalline Mg could adsorb Cd(II) through precipitation and ion exchange, which was further promoted by the introduced functional groups through complexation and precipitation. After 120 d of natural process, the immobilization efficiency of Cd(II) by Cys@MgBC, Try@MgBC, and Glu@MgBC was still maintained at 98.7%, 95.2%, and 82.7% respectively. This study proposes and clarifies the complexation mechanism of functional group-grafted Mg-modified biochar for heavy metals, providing new insights into the practical application of these biochars.
Collapse
Affiliation(s)
- Anyu Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Chenghui Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yanhong Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Hua Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
20
|
Huang K, Sun X, Sun J, Guo Y, Hu X, Hu C, Tan Q. The role of phosphorus speciation of biochar in reducing available Cd and phytoavailability in mining area soil: Effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164868. [PMID: 37343850 DOI: 10.1016/j.scitotenv.2023.164868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The effect of phosphorus (P) speciation in biochar on soil available Cd and its mechanism to alleviate plant Cd stress remain largely unknown. Here, ammonium polyphosphate (PABC)-, phosphoric acid (PHBC)-, potassium dihydrogen phosphate (PKBC)-, and ammonium dihydrogen phosphate (PNBC)-modified biochar were used to investigate P speciation. The Cd immobilization mechanism of biochar was analyzed by XPS and 31P NMR, and the soil quality and the mechanism for the biochar to alleviate Cd stress were also determined. The results demonstrated that PBC (pristine biochar), PABC, PHBC, PKBC, and PNBC reduced the content of soil DTPA-Cd by 14.96 % - 32.19 %, 40.44 % - 47.26 %, 17.52 % - 41.78 %, and 21.90 % - 36.64 %, respectively. The XPS and 31P NMR results demonstrated that the orthophosphate on the surface of PABC, PHBC, PKBC, and PNBC accounted for 82.06 %, 62.77 %, 33.1 %, and 54.46 %, respectively, indicating that PABC has the highest passivation efficiency on soil Cd, which was ascribed to the highest orthophosphate content on the biochar surface. Pot experiments revealed that PABC could reduce the Cd content by 4.18, 4.41, 4.43, 2.94, and 2.57 folds in roots, stems, leaves, pods, and grains, respectively, and at the same time increase the dry and fresh weight of soybean and decrease Cd toxicity to soybean by improving the antioxidant system. In addition, application of the P-modified biochars improved the enzyme activity and physicochemical properties of the soil. This study provides a new perspective for studying the effect of P-modified biochars on soil Cd immobilization.
Collapse
Affiliation(s)
- Kan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Jingguo Sun
- Hubei Academy of Tobacco Science, Wuhan 430030, China
| | - Yali Guo
- Guizhou Provincial Tobacco Company Qianxinan Branch, Xingyi, Guizhou 562400, China
| | - Xiaoming Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|