1
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
2
|
Zafeiriadou A, Nano K, Thomaidis NS, Markou A. Evaluation of PCR-enhancing approaches to reduce inhibition in wastewater samples and enhance viral load measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176768. [PMID: 39393702 DOI: 10.1016/j.scitotenv.2024.176768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Molecular-based assays are the most commonly used methods for the detection and quantification of viruses in wastewater. The variety of inhibitory substances present in the complex matrix of wastewater hinders downstream analysis and often leads to false negative results and underestimation of viral load. The development of robust and inhibitor-tolerant detection methods is necessary in the context of wastewater-based epidemiology, a valuable tool that has gained further importance since the emergence of the Covid-19 pandemic. Various strategies are used to mitigate inhibition in the polymerase chain reaction (PCR) with the most prevalent of all: the dilution of the sample and the inhibitor removal kits. In this study, we first indicated the presence of inhibitors in wastewater samples and the evaluation of eight different PCR enhancing strategies were further performed using reverse-transcription PCR (RT-qPCR) protocol. False negative results were eliminated through four approaches evaluated, a 10-fold dilution of the extracted sample, addition of T4 gene 32 protein (gp32), addition of Bovine Serum Albumin (BSA), and using an inhibitor removal kit. Among the methods that removed inhibition, the most significant for the removal of inhibition was the addition of gp32 (at a final concentration 0.2 μg/μl). This optimized protocol was further applied to wastewater samples tested for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and a direct comparison study was further performed with reverse-transcription droplet digital PCR (RT-ddPCR). The detection frequency of both methods was 100 % and the obtained viral concentrations were higher by RT-ddPCR; the optimized RT-qPCR assay showed a good correlation (Intraclass Correlation Coefficient: 0,713, p-value <0,007) with RT-ddPCR. This is the first study to directly compare common strategies for eliminating inhibition in wastewater and demonstrates the importance of developing robust assays to accurately assess the recovery rates and viral loads of the targets tested, in a simple, cost-effective and high-throughput manner.
Collapse
Affiliation(s)
- Anastasia Zafeiriadou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Konstantina Nano
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece.
| |
Collapse
|
3
|
Gomes J, Domingues E, Frasson D, Martins RC, Matos AM. Virus Removal from Real Wastewater as an Environmental Management Approach. Molecules 2024; 29:5601. [PMID: 39683758 DOI: 10.3390/molecules29235601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The increased presence of resistant microorganisms in water promotes the need for supplementary measures to mitigate the water source's contamination. Traditional treatments are inefficient in wastewater management at removing some emerging contaminants. Corbicula fluminea, an invasive species, can be used in the treatment due to their resistance and biofiltration capacity, working as a pest management strategy. In this study, this bivalve was used to promote the virus disinfection from the municipal wastewater treatment plant (MWTP) that enters (influent) and after the secondary treatment (effluent leaving the plant). JC virus, norovirus (GI, GII), and hepatitis A (HAV) were identified. C. fluminea promoted norovirus GI and GII removal after 72 h and a slight decrease in the JC virus concentration. These results prove the potential of this pest management approach to be used in virus removal. Furthermore, infectivity assays using mengovirus confirmed the correlation between the presence of the genome detected by PCR and the infectious virus particles. This highlights the potential of PCR as a reliable indicator of the infectious virus's presence. However, such an infectivity assay proved that even when PCR results are undetectable, a reduced number of viruses may remain viable and able to infect susceptible cells in culture.
Collapse
Affiliation(s)
- João Gomes
- CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Eva Domingues
- CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Danilo Frasson
- CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Miguel Matos
- CERES, Microbiology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Gearhart N, Pagilla K. Indicator and pathogenic virus removal in bench scale soil aquifer treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173997. [PMID: 38879034 DOI: 10.1016/j.scitotenv.2024.173997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The demonstration of enteric virus removal for indirect potable reuse of advanced purified water is necessary to ensure safe water reclamation practices. This study evaluated the efficacy of soil treatment in reducing concentrations of Pepper Mild Mottle Virus (PMMoV), Hepatitis A (HAV), and Norovirus (NoV) gene markers through bench scale unsaturated soil columns. Three different infiltration rates were evaluated to determine their impact on viral gene marker removal. The concentrations of viral markers in the column influent and effluent samples were measured through RNA extraction and then RT-qPCR, and the log reduction values (LRVs) were calculated to quantify the effectiveness of removal across the columns. The LRVs achieved for PMMoV were 2.80 ± 0.36, 2.91 ± 0.48, and 2.72 ± 0.32 for infiltration rates of 4.9 mm/h, 9.4 mm/h, and 14.0 mm/h, respectively. A one-way ANOVA indicated no statistically significant differences in LRVs among the various infiltration rates (p-value = 0.329). All samples measured for HAV were below the detection limit both in the influent and effluent of the soil columns. While NoV GI and GII markers were measurable in the soil column influent, they were removed to below the detection limit in the effluent. The use of half the Limit-of-Detection (LoD) for effluent values enabled the estimation of log removals, which were calculated as 1.42 ± 0.07, 1.64 ± 0.29, and 1.74 ± 0.18 for NoV GI and 1.14 ± 0.19, 1.58 ± 0.21, and 1.87 ± 0.41 for NoV GII at infiltration rates of 4.9 mm/h, 9.4 mm/h, and 14.0 mm/h. This highlights the efficacy of soil treatment in reducing virus gene marker concentrations at various infiltration rates, and that spreading basins employed for reclaimed water recharge to ground water aquifers are an effective method for reducing the presence of viral contaminants in indirect potable reuse systems.
Collapse
Affiliation(s)
- Nicole Gearhart
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
5
|
Ou G, Tang Y, Liu J, Hao Y, Chen Z, Huang T, Li S, Niu S, Peng Y, Feng J, Tu H, Yang Y, Zhang H, Liu Y. Automated robot and artificial intelligence-powered wastewater surveillance for proactive mpox outbreak prediction. BIOSAFETY AND HEALTH 2024; 6:225-234. [PMID: 40078666 PMCID: PMC11895047 DOI: 10.1016/j.bsheal.2024.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 03/14/2025] Open
Abstract
In the wake of the largest-ever recorded outbreak of mpox in terms of magnitude and geographical spread in human history since May 2022, we innovatively developed an automated online sewage virus enrichment and concentration robot for disease tracking. Coupled with an artificial intelligence (AI) model, our research aims to estimate mpox cases based on the concentration of the monkeypox virus (MPXV) in wastewater. Our research has revealed a compelling link between the levels of MPXV in wastewater and the number of clinically confirmed mpox infections, a finding that is reinforced by the ability of our AI prediction model to forecast cases with remarkable precision, capturing 87 % of the data's variability. However, it is worth noting that this high precision in predictions may be related to the relatively high frequency of data acquisition and the relatively non-mobile isolated environment of the hospital itself. In conclusion, this study represents a significant step forward in our ability to track and respond to mpox outbreaks. It has the potential to revolutionize public health surveillance by utilizing innovative technologies for disease surveillance and prediction.
Collapse
Affiliation(s)
- Guanyong Ou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuxuan Tang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518116, China
| | - Yabin Hao
- Shenzhen Metasensing Tech Limited Company, Shenzhen 518000, China
| | - Zhi Chen
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Huang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shaxi Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiaqi Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Hongwei Tu
- Guangdong Provincial Centre for Diseases Control and Prevention, Guangzhou 511430, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Han Zhang
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, the Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
6
|
Ré VE, Ridruejo E, Fantilli AC, Moutinho BD, Pisano MB, Pessoa MG. Hepatitis A in Latin America: The current scenario. Rev Med Virol 2024; 34:e2566. [PMID: 38970225 DOI: 10.1002/rmv.2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
This review aims to gather and disseminate updated information regarding hepatitis A virus (HAV) in Latin America (LA) in the last 11 years, including seroprevalence, post-vaccination studies, virus detection in aqueous matrices and food samples, and outbreak reports. Only 24 seroprevalence studies were published between 2012 and 2023 with 55%-100% reported prevalences of anti-HAV IgG. Among the 25 LA countries, only eight of them have introduced HAV vaccines into their immunisation programs. Outbreaks of hepatitis A occurred between 2017-2019, mainly affecting men who have sex with men in Argentina, Brazil and Chile, probably as a consequence of the abrupt decline of young adults' immunity. This could be due to that young adult have never been infected in childhood (due to socio-health improvements) and are above the cut-off ages to be included when the vaccination programs were introduced. Although scarce, studies focused on environmental and food HAV surveillance have shown viral presence in these samples. Surface waters presented HAV detections between 1.2% and 86.7%, and untreated wastewaters between 2.8% and 70.9%. Genotypes found in all cases were IA and IC. The only wastewater-based epidemiology study showed to be a useful tool as a complement of traditional epidemiological surveillance. Only four LA countries have looked for HAV in food samples, with genome detection rates between 9% and 33%. Latin American HAV circulation scenario is changing. In countries where socioeconomic and sanitary conditions have not improved, the virus persists with high endemicity and the access to the vaccine should be re-evaluated by local governments. In countries where access to clean water, better sanitary conditions and HAV immunisation programs have been implemented, the number of cases among young adults seems to be increasing, alerting health authorities.
Collapse
Affiliation(s)
- Viviana E Ré
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Ridruejo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Department of Medicine. Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno 'CEMIC', Hepatology Section, Viral Hepatitits Special Interest Group, Latin American Association for the Study of the Liver (ALEH), Buenos Aires, Argentina
| | - Anabella C Fantilli
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bruna Damásio Moutinho
- Department of Gastroenterology, Division of Clinical Gastroenterology and Hepatology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - María Belén Pisano
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mário Guimarães Pessoa
- Department of Gastroenterology, Division of Clinical Gastroenterology and Hepatology, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
7
|
Gao H, Zhao H, Chang S, Meng Z, Han Z, Liu Y. Multi-biomimetic Double Interlaced Wetting Janus Surface for Efficient Fog Collection. NANO LETTERS 2024; 24:7774-7782. [PMID: 38847520 DOI: 10.1021/acs.nanolett.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Various methods to solve water scarcity have attracted increasing attention. However, most existing water harvesting schemes have a high demand for preparation methods and costs. Here, a multi-biomimetic double interlaced wetting Janus surface (DIWJS) was prepared by laser for effective fog collection. The as-prepared surfaces are composed of superhydrophilic points/hydrophobic substrates on the A-side and superhydrophilic stripes/hydrophobic substrates on the B-side. The interlaced wettability and superhydrophilic points on the A side are conducive to capture and permeation of droplets. The superhydrophilic stripes and interlaced wettability on the B-side are conducive to transportation and shedding of droplets. Therefore, the overall fog collection process is accelerated. The proposal of smart farm model validates broad application prospects of DIWJS. This work provides an advanced and multi-biomimetic surface and provides important insights for green, low-cost, and versatile strategies to solve water scarcity issues.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Haoyang Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
8
|
Carine MR, Pagilla KR. A mass balance approach for quantifying the role of natural decay and fate mechanisms on SARS-CoV-2 genetic marker removal during water reclamation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11015. [PMID: 38599573 DOI: 10.1002/wer.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The recent SARS-CoV-2 outbreak yielded substantial data regarding virus fate and prevalence at water reclamation facilities (WRFs), identifying influential factors as natural decay, adsorption, light, pH, salinity, and antagonistic microorganisms. However, no studies have quantified the impact of these factors in full scale WRFs. Utilizing a mass balance approach, we assessed the impact of natural decay and other fate mechanisms on genetic marker removal during water reclamation, through the use of sludge and wastewater genetic marker loading estimates. Results indicated negligible removal of genetic markers during P/PT (primary effluent (PE) p value: 0.267; preliminary and primary treatment (P/PT) accumulation p value: 0.904; and thickened primary sludge (TPS) p value: 0.076) indicating no contribution of natural decay and other fate mechanisms toward removal in P/PT. Comparably, adsorption and decomposition was found to be the dominant pathway for genetic marker removal (thickened waste activated sludge (TWAS) log loading 9.75 log10 GC/day); however, no estimation of log genetic marker accumulation could be carried out due to high detections in TWAS. PRACTITIONER POINTS: The mass balance approach suggested that the contribution of natural decay and other fate mechanisms to virus removal during wastewater treatment are negligible compared with adsorption and decomposition in P/PT (p value: 0.904). During (P/PT), a higher viral load remained in the (PE) (14.16 log10 GC/day) compared with TPS (13.83 log10 GC/day); however, no statistical difference was observed (p value: 0.280) indicting that adsorption/decomposition most probably did not occur. In secondary treatment (ST), viral genetic markers in TWAS were consistently detected (13.41 log10 GC/day) compared with secondary effluent (SE), indicating that longer HRT and the potential presence of extracellular polymeric substance-containing enriched biomass enabled adsorption/decomposition. Estimations of total solids and volatile solids for TPS and TWAS indicated that adsorption affinity was different between solids sampling locations (p value: <0.0001).
Collapse
Affiliation(s)
- Madeline R Carine
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
9
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Shrestha S, Malla B, Haramoto E. Estimation of Norovirus infections in Japan: An application of wastewater-based epidemiology for enteric disease assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169334. [PMID: 38103617 DOI: 10.1016/j.scitotenv.2023.169334] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Noroviruses of genogroup I (NoV GI) and NoV GII are the primary causes of acute gastroenteritis (AGE) in developed countries. However, asymptomatic and untested NoV infections lead to an underestimation of AGE cases, and the lack of mandatory viral identification in clinical cases hinders precise estimation of NoV infections. Back estimation of NoV infections in the community using a wastewater-based epidemiology (WBE) approach can provide valuable insights into the disease's extent, progression, and epidemiology, aiding in developing effective control strategies. This study employed a one-step reverse transcription-quantitative PCR to quantify NoVs GI and GII in wastewater samples (n = 83) collected twice a week from June 2022 to March 2023 in Japan. All samples from the Winter-Spring (n = 27) tested positive for NoV GI and GII RNA, while 73 % and 88 % of samples from the Summer-Autumn (n = 56) were positive for NoV GI and NoV GII RNA, respectively. Significantly higher concentrations of NoV GI/GII RNA were found in the Winter-Spring season compared to the Summer-Autumn season. NoV RNA was consistently detected in wastewater throughout the year, demonstrating the persistence of AGE cases in the catchment, suggesting an endemic NoV infection. Estimates of NoV infection incorporated viral RNA concentrations, wastewater parameters, and signal persistence in a mass balance equation using Monte Carlo Simulation. The median estimated NoV GI infections per 100,000 population for Summer-Autumn was 133 and for the Winter-Spring season, it was 881. Estimated NoV GII infections were 1357 for Summer-Autumn and 11,997 for the Winter-Spring season per 100,000 population. The estimated NoV infections exceeded by 3.2 and 23.9 folds than the reported AGE cases in Summer-Autumn and Winter-Spring seasons, respectively. The seasonal trend of estimated NoV infections closely matched that of AGE cases, highlighting the utility of WBE in understanding the epidemiology of enteric infections.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan.
| |
Collapse
|
11
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
12
|
Cutrupi F, Cadonna M, Postinghel M, Foladori P. SARS-CoV-2 removal in municipal wastewater treatment plants: Focus on conventional activated sludge, membrane bioreactor and anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167434. [PMID: 37774861 DOI: 10.1016/j.scitotenv.2023.167434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
This work focuses on the removal of SARS-CoV-2 RNA in the various stages of a full-scale municipal WWTP characterised by two biological processes in parallel: (i) conventional activated sludge (CAS) and (ii) membrane bioreactor (MBR). The monitoring was carried out during the Omicron wave in 2022, a period characterised by a high concentration of SARS-CoV-2 in influent wastewater. The average concentration of SARS-CoV-2 in influent wastewater was 3.7 × 104 GU/L. In the primary sedimentation, the removal of SARS-CoV-2 was not appreciable. The largest log removal value of SARs-CoV-2 occurred in the biological stages, with 1.8 ± 0.9 and 2.2 ± 0.7 logs in CAS and MBR systems. The mean concentrations of SARS-CoV-2 in the CAS and MBR effluents were 6.8 × 102 GU/L and 6.4 × 102 GU/L, respectively. The MBR effluent showed more negative samples, because small particles are retained by membrane and cake layer. The analysis of the different types of sludge confirmed the accumulation of SARS-CoV-2 in primary (5.2 × 104 GU/L) and secondary sludge (3.5 × 104 GU/L), due to the affinity of enveloped viruses towards biosolids. A SARS-CoV-2 concentration in the digested sludge equal to 4.8 × 104 GU/L denotes a negligible reduction in the mesophilic anaerobic digester at temperature of 31-33 °C.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Center Agriculture Food Environment (C3A) - University of Trento, via Edmund Mach 1, 38098 San Michele all' Adige, TN, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Mattia Postinghel
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121 Trento, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123 Trento, Italy.
| |
Collapse
|
13
|
Valdivia-Carrera CA, Ho-Palma AC, Munguia-Mercado A, Gonzalez-Pizarro K, Ibacache-Quiroga C, Dinamarca A, Stehlík M, Rusiñol M, Girones R, Lopez-Urbina MT, Basaldua Galarza A, Gonzales-Gustavson E. Surveillance of SARS-CoV-2, rotavirus, norovirus genogroup II, and human adenovirus in wastewater as an epidemiological tool to anticipate outbreaks of COVID-19 and acute gastroenteritis in a city without a wastewater treatment plant in the Peruvian Highlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167161. [PMID: 37730068 DOI: 10.1016/j.scitotenv.2023.167161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has demonstrated that Wastewater Based Epidemiology is a fast and economical alternative for monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the community level in high-income countries. In the present study, wastewater from a city in the Peruvian Highlands, which lacks a wastewater treatment plant, was monitored for one year to assess the relationship between the concentration of SARS-CoV-2 and the reported cases of COVID-19 in the community. Additionally, we compared the relationship between rotavirus (RV), norovirus genogroup II (NoV GGII), and human adenovirus (HAdV) with the number of reported cases of acute gastroenteritis. Before commencing the analysis of the samples, the viral recovery efficacy of three processing methods was determined in spiked wastewater with SARS-CoV-2. This evaluation demonstrated the highest recovery rate with direct analysis (72.2 %), as compared to ultrafiltration (50.8 %) and skimmed milk flocculation (5.6 %). Wastewater monitoring revealed that 72 % (36/50) of the samples tested positive for SARS-CoV-2, with direct analysis yielding the highest detection frequency and quantification of SARS-CoV-2. Furthermore, a strong correlation was observed between the concentration of SARS-CoV-2 in wastewater and the reported cases of COVID-19, mainly when we shift the concentration of SARS-CoV-2 by two weeks, which allows us to anticipate the onset of the fourth and fifth waves of the pandemic in Peru up to two weeks in advance. All samples processed using the skimmed milk flocculation method tested positive and showed high concentrations of RV, NoV GGII, and HAdV. In fact, the highest RV concentrations were detected up to four weeks before outbreaks of acute gastroenteritis reported in children under four years of age. In conclusion, the results of this study suggest that periodic wastewater monitoring is an excellent epidemiological tool for surveillance and can anticipate outbreaks of infectious diseases, such as COVID-19, in low- and middle-income countries.
Collapse
Affiliation(s)
- Cesar A Valdivia-Carrera
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Ana C Ho-Palma
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru.
| | - Astrid Munguia-Mercado
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru.
| | - Karoll Gonzalez-Pizarro
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Claudia Ibacache-Quiroga
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Alejandro Dinamarca
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile; Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso, Chile.
| | - Milan Stehlík
- Institute of Statistics, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaiso, Chile; Linz Institute of Technology & Department of Applied Statistics, Johannes Kepler University in Linz, Altenberger Straße 69, 4040 Linz, Austria.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Maria T Lopez-Urbina
- Laboratory of Veterinary Epidemiology and Economics, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| | - Anani Basaldua Galarza
- Department of Human Medicine, School of Human Medicine, Universidad Nacional del Centro del Peru, Av. Mariscal Castilla 3909, Huancayo, Peru; Dirección Ejecutiva de Epidemiología, Dirección Regional de Salud, Jr. Julio Cesar Tello 488, Huancayo 12004, Junin, Peru.
| | - Eloy Gonzales-Gustavson
- Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Jr. 28 de Julio s/n, Km 34, margen izquierda, Carretera Central, El Mantaro, Jauja, Junin, Peru; Department of Animal Health and Public Health, School of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalacion 2800, San Borja, Lima, Peru.
| |
Collapse
|
14
|
Alamin M, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Tanaka H, Watanabe T, Honda R. Reduction of SARS-CoV-2 by biological nutrient removal and disinfection processes in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165097. [PMID: 37356766 PMCID: PMC10290167 DOI: 10.1016/j.scitotenv.2023.165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; Faculty of Agriculture and Marine Science, Kochi University, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
15
|
de Melo T, Islam G, Simmons DBD, Desaulniers JP, Kirkwood AE. An alternative method for monitoring and interpreting influenza A in communities using wastewater surveillance. Front Public Health 2023; 11:1141136. [PMID: 37575124 PMCID: PMC10413874 DOI: 10.3389/fpubh.2023.1141136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Seasonal influenza is an annual public health challenge that strains healthcare systems, yet population-level prevalence remains under-reported using standard clinical surveillance methods. Wastewater surveillance (WWS) of influenza A can allow for reliable flu surveillance within a community by leveraging existing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) WWS networks regardless of the sample type (primary sludge vs. primary influent) using an RT-qPCR-based viral RNA detection method for both targets. Additionally, current influenza A outbreaks disproportionately affect the pediatric population. In this study, we show the utility of interpreting influenza A WWS data with elementary student absenteeism due to illness to selectively interpret disease spread in the pediatric population. Our results show that the highest statistically significant correlation (Rs = 0.96, p = 0.011) occurred between influenza A WWS data and elementary school absences due to illness. This correlation coefficient is notably higher than the correlations observed between influenza A WWS data and influenza A clinical case data (Rs = 0.79, p = 0.036). This method can be combined with a suite of pathogen data from wastewater to provide a robust system for determining the causative agents of diseases that are strongly symptomatic in children to infer pediatric outbreaks within communities.
Collapse
Affiliation(s)
| | - Golam Islam
- Faculty of Science, Ontario Tech University, Oshawa, ON, Canada
| | | | | | | |
Collapse
|
16
|
Ou G, Tang Y, Niu S, Wu L, Li S, Yang Y, Wang J, Peng Y, Huang C, Hu W, Hu Q, Li Y, Ping Y, Lin C, Yu B, Han Q, Hao Y, Luo Z, Tian W, Zhang H, Liu Y. Wastewater surveillance and an automated robot: effectively tracking SARS-CoV-2 transmission in the post-epidemic era. Natl Sci Rev 2023; 10:nwad089. [PMID: 37181088 PMCID: PMC10171627 DOI: 10.1093/nsr/nwad089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Wastewater-based epidemiology (WBE) has exhibited great utility in the early and rapid identification of SARS-CoV-2. However, the efficacy of wastewater surveillance under China's previous strict epidemic prevention policy remains to be described. We collected the WBE data of wastewater treatment plants (WWTPs) in the Third People's Hospital of Shenzhen and several communities to determine the significant effectiveness of routine wastewater surveillance in monitoring the local spread of SARS-CoV-2 under tight containment of the epidemic. The results of 1 month of continuous wastewater surveillance showed that positive signals for SARS-CoV-2 RNA were detected in the wastewater samples, and a significant positive correlation was observed between the virus concentration and the number of daily cases. In addition, the community's domestic wastewater surveillance results were confirmed even 3 days before, or simultaneously with, the infected patient being confirmed as having the virus. Meanwhile, an automated sewage virus detection robot, ShenNong No.1 robot, was developed, showing a high degree of agreement with experimental data, offering the possibility of large-scale multi-point surveillance. Overall, our results illustrated the clear indicative role of wastewater surveillance in combating COVID-19 and provided a practical basis for rapidly expanding the feasibility and value of routine wastewater surveillance for future emerging infectious diseases.
Collapse
Affiliation(s)
- Guanyong Ou
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Tang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shiyu Niu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Wu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaxi Li
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yang Yang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jun Wang
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yun Peng
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chuanfu Huang
- Shenzhen Longhua Drainage Co., Ltd., Shenzhen 518060, China
| | - Wei Hu
- Shenzhen Longhua Drainage Co., Ltd., Shenzhen 518060, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yinghui Li
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yang Ping
- Power China Eco-Environmental Group Co., Ltd., Shenzhen 518102, China
| | - Chao Lin
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518022, China
| | - Boping Yu
- Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Qi Han
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Institute of Solid Wastes and Physical Environment Research, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Yabin Hao
- Shenzhen Metasensing Technology Co., Ltd., Shenzhen 518000, China
| | - Zhiguang Luo
- Zhongmin (Shenzhen) intelligent ecology Co., Ltd., Shenzhen 518055, China
| | - Wende Tian
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, The Third People's Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
17
|
Fantilli A, Cola GD, Castro G, Sicilia P, Cachi AM, de Los Ángeles Marinzalda M, Ibarra G, López L, Valduvino C, Barbás G, Nates S, Masachessi G, Pisano MB, Ré V. Hepatitis A virus monitoring in wastewater: A complementary tool to clinical surveillance. WATER RESEARCH 2023; 241:120102. [PMID: 37262946 DOI: 10.1016/j.watres.2023.120102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Monitoring wastewater is an effective tool for tracking information on trends of enteric viral dissemination. This study aimed to perform molecular detection and genetic characterization of HAV in wastewater and to correlate the results with those obtained from clinical surveillance. Wastewater samples (n=811) of the second most populous city in Argentina were collected from the main wastewater treatment plant (BG-WWTP, n=261), and at 7 local neighborhood collector sewers (LNCS, n=550) during 2017-2022. Clinical samples of acute hepatitis A cases (HA, n=54) were also analyzed. HAV molecular detection was performed by real time RT-PCR, and genetic characterization by RT-Nested PCR, sequencing and phylogenetic analysis. RNA-HAV was detected in sewage samples throughout the entire period studied, and detection frequencies varied according to the location and year (2.9% - 56.5%). In BG-WWTP, 23% of the samples were RNA-HAV+. The highest detection rates were in 2017 (30.0%), 2018 (41.7%) and 2022 (56.5%), which coincides with the highest number of HA cases reported. Twenty-eight (28) sequences were obtained (from clinical and sewage samples), and all were genotype IA. Two monophyletic clusters were identified: one that grouped clinical and wastewater samples from 2017-2018, and another with specimens from 2022, evidencing that environmental surveillance might constitute a replica of viral circulation in the population. These findings evidence that WBE, in a centralized and decentralized sewage monitoring, might be an effective strategy to track HAV circulation trends over time, contributing to the knowledge of HAV in the new post-vaccination epidemiological scenarios in Argentina and in Latin America.
Collapse
Affiliation(s)
- Anabella Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Gonzalo Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba ´ X5000HVE, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba ´ X5000HVE, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina
| | - María de Los Ángeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Laura López
- Área de Epidemiología, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Celina Valduvino
- Área de Epidemiología, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Gabriela Barbás
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina. Ministerio de Salud de la Provincia de Córdoba, Argentina Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Silvia Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - Gisela Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Viviana Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| |
Collapse
|
18
|
Anand U, Pal T, Zanoletti A, Sundaramurthy S, Varjani S, Rajapaksha AU, Barceló D, Bontempi E. The spread of the omicron variant: Identification of knowledge gaps, virus diffusion modelling, and future research needs. ENVIRONMENTAL RESEARCH 2023; 225:115612. [PMID: 36871942 PMCID: PMC9985523 DOI: 10.1016/j.envres.2023.115612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, Madhya Pradesh, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO, 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona, 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona, 1826, Barcelona, 08034, Spain
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| |
Collapse
|
19
|
Costa-Conceicao K, Villamar Ayala CA, Dávila T, Gallardo MC. Performance of hybrid biofilter based on rice husks/sawdust treating grey wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2416-2431. [PMID: 37257100 PMCID: wst_2023_132 DOI: 10.2166/wst.2023.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An innovative nature-based technology for wastewater treatment is the hybrid biofiltration, which combines complex symbiotic relationships between plants, earthworms and microorganisms with adequate support components. This latter could be optimized using organic supports. The aim of this research was to evaluate the performance of hybrid biofilters based on rice husks/sawdust treating grey wastewater from mining camps. Four biofilters using an active layer (rice husks/sawdust: 50/50%, v/v) at 60(B60) and 45(B45) cm height and operating for 64 days at a hydraulic loading rate between 1 and 5 m3/m2d were monitored. Eisenia foetida Savigny and Cyperus papyrus L. were used as a biotic component. COD, N-NH4+, NO3-, NO2-, PO43- and fecal coliforms were weekly monitored. Results showed that the most efficient HB was using 60 cm as an active layer and operating at 3 m3/m2d, which reported average removal efficiencies for COD, NH4+, NO3-, PO43- and fecal coliforms up to 85, 89, 47, 49 and 99.9%, respectively. Organic support improved the rate growth for Cyperus papirus L. and E. foetida Savigny up to 50%. Hybrid biofiltration using organic residues is low-cost, providing all-encompassing operational and performance features, improving the wastewater reclamation opportunities.
Collapse
Affiliation(s)
- Kennedy Costa-Conceicao
- Departamento de Ingeniería Civil Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo ÓHiggins 3363, Estación Central, Santiago, Chile
| | - Cristina Alejandra Villamar Ayala
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile E-mail: ; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago
| | - Tatiana Dávila
- Departamento de Ingeniería Civil y Ambiental, Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253, Quito, Ecuador
| | - María Cristina Gallardo
- Departamento de Ingeniería Civil y Ambiental, Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253, Quito, Ecuador
| |
Collapse
|