1
|
Saeed S, Afzal G, Ali HM, Hussain R, Jabeen R, Kiran S, Iqbal R, Alam S, Jalal A, Nisa ZU, Fouad D, Ataya FS, Li K. Patho-physiological effects of environmental relevant concentrations of lufenuron in male Japanese quails. ENVIRONMENTAL RESEARCH 2025; 274:121203. [PMID: 39988040 DOI: 10.1016/j.envres.2025.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The widespread utilization of synthetic chemicals contaminates the land and water environments. The present investigation determined the effects of sub-lethal concentrations of lufenuron in the male Japanese quail. The birds exposed to lufenuron showed the clinical signs of behavioral, digestive, nervous and reproductive upsets. The drug significantly (p < 0.05) decreased the feed intake, body weight, absolute and relative weights of visceral organs (kidneys, liver, brain, heart, testes), RBCs count, HCT, Hg concentration, serum proteins and anti-oxidants enzymes (SOD, CAT, LPO, GSH) while concentrations of hepatic, cardiac and renal biomarkers were significantly (p < 0.05) increased in the birds treated with higher doses (15 mg/kg and 20 mg/kg) of lufenuron, in a time and dose dependent manner. Comet assay revealed significantly (p < 0.05) increased frequency of DNA damage in the isolated cells of liver, kidneys and intestine along with a significant (p < 0.05) increased frequency of micronucleus in the erythrocytes. The visceral organs showed prominent histo-pathological ailments in the birds exposed to higher doses of lufenuron. Our study is the first comprehensive report that demonstrates the significant physio-biochemical health effects of lufenuron on complete clinico-hematological parameters of free ranging fauna (quail) of the natural ecosystem, even at sub-lethal environment relevant concentrations.
Collapse
Affiliation(s)
- Silwat Saeed
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Riaz Hussain
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Raheela Jabeen
- Department of Biochemistry and Biotechnology, The Women University Multan, 60000, Pakistan
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Rehana Iqbal
- Institute of Pure and Applied Biology, Bhauddin Zakariya University, Multan, Pakistan
| | - Sana Alam
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Amna Jalal
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zaib Un Nisa
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Majhi B, Semwal P, Mishra SK, Chauhan PS. "Strategies for microbes-mediated arsenic bioremediation: Impact of quorum sensing in the rhizosphere". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177321. [PMID: 39489442 DOI: 10.1016/j.scitotenv.2024.177321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are gaining recognition as pivotal agents in bioremediation, particularly in arsenic-contaminated environments. These bacteria leverage quorum sensing, an advanced communication system, to synchronize their activities within the rhizosphere and refine their arsenic detoxification strategies. Quorum Sensing enables PGPR to regulate critical processes such as biofilm formation, motility, and the activation of arsenic-resistance genes. This collective coordination enhances their capacity to immobilize, transform, and detoxify arsenic, decreasing its bioavailability and harmful effects on plants. Furthermore, quorum sensing strengthens the symbiotic relationship between growth-promoting rhizobacteria and plant roots, facilitating better nutrient exchange and boosting plant tolerance to stress. The current review highlights the significant role of quorum sensing in improving the efficacy of PGPR in arsenic remediation. Understanding and harnessing the PGPR-mediated quorum sensing mechanism to decipher the complex signaling pathways and communication systems could significantly advance remediation strategy, promoting sustainable soil health and boosting agricultural productivity.
Collapse
Affiliation(s)
- Basudev Majhi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Semwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Guo J, Liu H, Xu Y, Li L, Xin C. Ectopic expression of the yeast Mn 2+ transporter SMF2 enhances tolerance and resistance to cadmium and arsenic in transgenic Arabidopsis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2103-2112. [PMID: 38973396 DOI: 10.1080/15226514.2024.2373974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Vesicular sequestration is a potential strategy for enhancing plant tolerance to cadmium (Cd) and arsenic (As). In this study, the ectopic overexpression of yeast-derived ScSMF2 in Arabidopsis thaliana was found to enhance the accumulation and tolerance of Cd and As in transgenic plants. ScSMF2 was localized on vacuole membranes and formed puncta structures in plant cells when agro-infiltrated for transient expression. Transgenic Arabidopsis showed less retardation on root elongation and shoot weight and more accumulation of Cd, As (III) and As (V) when cultured on medium containing Cd or As. Overexpression of ScSMF2 promoted accumulation of Cd and arsenic in transgenic Arabidopsis, which were over twice higher than in WT plants when cultured in soil. This study provides insights into the mechanisms involved in the vesicular sequestration of heavy metals in plant and presents a potential strategy for enhancing the phytoremediation capacity of plants toward heavy metals.
Collapse
Affiliation(s)
- Jiangbo Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Hanyang Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Yang Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Lu Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Cuihua Xin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| |
Collapse
|
4
|
Deng Y, Xiao W, Xiong Z, Sha A, Luo Y, Chen X, Li Q. Assembly Mechanism of Rhizosphere Fungi in Plant Restoration in Lead Zinc Mining Areas. Genes (Basel) 2024; 15:1398. [PMID: 39596598 PMCID: PMC11593579 DOI: 10.3390/genes15111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND So far, the assembly and response mechanism of soil fungi in the ecological restoration process of lead zinc mines is still unclear. METHODS In this study, we selected three plants for the ecological restoration of abandoned lead zinc mining areas and explored the community assembly mechanism by which soil fungi assist plants in adapting to the environment during the ecological restoration process. RESULTS The results revealed that the mining of lead zinc mines led to a significant decrease in soil fungal diversity, whereas the planting of three plants significantly increased the diversity of rhizosphere fungi. Mining activities significantly reduced the abundance of soil Fusarium, Macroventuria, Cladosporium, and Solicocozyma and increased the abundance of soil Helvella. After three ecologically restored plants were planted, the abundances of Fusarium and Cladosporium increased significantly, whereas the abundance of Helvella decreased significantly. In addition, Capronia was significantly enriched in the rhizosphere soils of three plant species in the mining area. β diversity and fungal guild analysis revealed that mining activities had a great impact on fungal communities and guilds. The ecological restoration of plants changed the guilds of rhizosphere fungi, making them closer to those of the control sample. In addition, the endophyte guild was significantly enriched in the rhizosphere soil of three ecologically restored plants, increasing their adaptability. CONCLUSIONS The results provide a reference for screening lead zinc mine bioremediation strains and developing fungal plant joint remediation strategies.
Collapse
Affiliation(s)
- Yue Deng
- School of China Alcoholic Drinks, Luzhou Vocational and Technology College, Luzhou 646000, China;
| | - Wenqi Xiao
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Zhuang Xiong
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Ajia Sha
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Yingyong Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Xiaodie Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| | - Qiang Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Z.X.); (A.S.); (Y.L.); (X.C.)
| |
Collapse
|
5
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
6
|
Prasad M, Madhavan A, Babu P, Salim A, Subhash S, Nair BG, Pal S. Alleviating arsenic stress affecting the growth of Vigna radiata through the application of Klebsiella strain ASBT-KP1 isolated from wastewater. Front Microbiol 2024; 15:1484069. [PMID: 39386362 PMCID: PMC11461332 DOI: 10.3389/fmicb.2024.1484069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Arsenic contamination of soil and water is a major environmental issue. Bioremediation through plant growth-promoting bacteria is viable, cost-effective, and sustainable. Along with arsenic removal, it also improves plant productivity under stressful conditions. A crucial aspect of such a strategy is the selection of bacterial inoculum. The described study demonstrates that the indigenous wastewater isolate, ASBT-KP1, could be a promising candidate. Identified as Klebsiella pneumoniae, ASBT-KP1 harbors genes associated with heavy metal and oxidative stress resistance, production of antimicrobial compounds and growth-promotion activity. The isolate efficiently accumulated 30 μg/g bacterial dry mass of arsenic. Tolerance toward arsenate and arsenite was 120 mM and 70 mM, respectively. Plant biomass content of Vigna radiata improved by 13% when grown in arsenic-free soil under laboratory conditions in the presence of the isolate. The increase became even more significant under the same conditions in the presence of arsenic, recording a 37% increase. The phylogenetic analysis assigned ASBT-KP1 to the clade of Klebsiella strains that promote plant growth. Similar results were also observed in Oryza sativa, employed to assess the ability of the strain to promote growth, in plants other than V. radiata. This study identifies a prospective candidate in ASBT-KP1 that could be employed as a plant growth-promoting rhizoinoculant in agricultural practices.
Collapse
Affiliation(s)
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | | | | | | | | | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
7
|
Gao X, Su Q, Pan H, You Y, Ruan Z, Wu Y, Tang Z, Hu L. Arsenic-Induced Ferroptosis in Chicken Hepatocytes via the Mitochondrial ROS Pathway. Biol Trace Elem Res 2024; 202:4180-4190. [PMID: 38102534 DOI: 10.1007/s12011-023-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Arsenic has been shown to be highly toxic and can cause liver damage. Previous studies have shown that arsenic causes severe liver damage and induces accumulation of reactive oxygen species (ROS). This study aimed to investigate the effects of ferroptosis on the liver in arsenic trioxide (ATO) and to explore the underlying mechanisms. We confirmed the hepatotoxic effects of arsenic by in vivo and in vitro experiments. After 28 days of administration of arsenic trioxide (4-mg/kg, 8-mg/kg) by gavage, chickens exhibited body weight loss and liver damage in a dose-dependent manner. In addition, in vivo and in vitro western blot and real-time fluorescence quantitative PCR analyses simultaneously indicated that ferroptosis might be the main pathway of arsenic-induced liver injury. Finally, Mito-TEMPO effectively eliminated the ROS accumulation in mitochondria, significantly attenuating the process of cellular ferroptosis. In summary, the hepatotoxic effects of arsenic are related to ferroptosis, and the hepatic ferroptosis process of arsenic is regulated by mitochondrial ROS (MtROS). Our study reveals new mechanisms of arsenic toxicity to the liver, which may deepen our understanding of arsenic toxicology.
Collapse
Affiliation(s)
- Xinglin Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong Province, People's Republic of China
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
9
|
Guo Y, Liu W, Xiao D, Zhang S, Li Z, Luo K, Luo G, Tan H. A novel multitrophic biofloc technology for duckweed and Megalobrama amblycephala integrated culture: Improving nutrient utilization and animal welfare. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173239. [PMID: 38750742 DOI: 10.1016/j.scitotenv.2024.173239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Biofloc technology (BFT) is an eco-friendly aquaculture model that utilizes zero-exchange water. In this study, we investigated the integration of duckweed into BFT in an effort to enhance nitrogen, phosphorus, and carbon utilization and to improve animal welfare for cultivating Megalobrama amblycephala. The experiment spanned 75 days, comparing a group of M. amblycephala supplemented with duckweed (DM) to a control group (CG) with no supplementation, where duckweed consumption relied solely on the feeding behavior of the fish. The concentrations of nitrate, total nitrogen, and phosphorus accumulation were lower in the DM than in the CG from day 45 onwards, with differences of 16.19, 26.90, and 1.45 mg/L, respectively, at the end of the experiment. The DM showed simultaneous increases of 5.77, 11.20, and 5.07 % in the absolute utilization of nitrogen, phosphorus, and carbon, respectively. The abundance of TM7a (10.27 %), linked to nitrate absorption, became the dominant genus in the water of the DM. Additionally, the abundance of Cetobacterium, associated with carbohydrate digestion, was significantly higher in gut of the DM (23.83 %) than in the gut of CG (1.24 %, P < 0.05). Supplementing the diet of M. amblycephala with duckweed improved digestion and antioxidant enzyme activity. Transcriptome data showed that duckweed supplementation resulted in an increase in the expression of genes related to protein digestion and absorption and carbohydrate metabolism in M. amblycephala, and analysis of the significantly enriched pathways further supported improved antioxidant capacity. Based on the above results, we concluded that as M. amblycephala consumes more duckweed, the differences in nitrogen and phosphorus levels between the DM and CG would continue to increase, along with a simultaneous increase in fixed carbon. Thus, this study achieved the goal of recycling BFT resources and improving animal welfare by integrating duckweed.
Collapse
Affiliation(s)
- Yanshuo Guo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Wenchang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China,.
| | - Dingdong Xiao
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Sihui Zhang
- College of Food Science & Technology, Shanghai Ocean University, 201306 Shanghai, China
| | - Zhifan Li
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Kunfeng Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China
| | - Guozhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China
| | - Hongxin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 201306 Shanghai, China; China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, 201306 Shanghai, China,.
| |
Collapse
|
10
|
D'Ermo G, Audebert S, Camoin L, Planer-Friedrich B, Casiot-Marouani C, Delpoux S, Lebrun R, Guiral M, Schoepp-Cothenet B. Quantitative proteomics reveals the Sox system's role in sulphur and arsenic metabolism of phototroph Halorhodospira halophila. Environ Microbiol 2024; 26:e16655. [PMID: 38897608 DOI: 10.1111/1462-2920.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
The metabolic process of purple sulphur bacteria's anoxygenic photosynthesis has been primarily studied in Allochromatium vinosum, a member of the Chromatiaceae family. However, the metabolic processes of purple sulphur bacteria from the Ectothiorhodospiraceae and Halorhodospiraceae families remain unexplored. We have analysed the proteome of Halorhodospira halophila, a member of the Halorhodospiraceae family, which was cultivated with various sulphur compounds. This analysis allowed us to reconstruct the first comprehensive sulphur-oxidative photosynthetic network for this family. Some members of the Ectothiorhodospiraceae family have been shown to use arsenite as a photosynthetic electron donor. Therefore, we analysed the proteome response of Halorhodospira halophila when grown under arsenite and sulphide conditions. Our analyses using ion chromatography-inductively coupled plasma mass spectrometry showed that thioarsenates are chemically formed under these conditions. However, they are more extensively generated and converted in the presence of bacteria, suggesting a biological process. Our quantitative proteomics revealed that the SoxAXYZB system, typically dedicated to thiosulphate oxidation, is overproduced under these growth conditions. Additionally, two electron carriers, cytochrome c551/c5 and HiPIP III, are also overproduced. Electron paramagnetic resonance spectroscopy suggested that these transporters participate in the reduction of the photosynthetic Reaction Centre. These results support the idea of a chemically and biologically formed thioarsenate being oxidized by the Sox system, with cytochrome c551/c5 and HiPIP III directing electrons towards the Reaction Centre.
Collapse
Affiliation(s)
- Giulia D'Ermo
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Centre for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany
| | | | - Sophie Delpoux
- Laboratoire HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Régine Lebrun
- Aix-Marseille Université, CNRS, IMM-FR3479, Marseille Protéomique, Marseille, France
| | - Marianne Guiral
- Aix-Marseille Université, CNRS, BIP-UMR 7281, Marseille, France
| | | |
Collapse
|
11
|
Chen Y, Zuo M, Yang D, He Y, Wang H, Liu X, Zhao M, Xu L, Ji J, Liu Y, Gao T. Synergistically Effect of Heavy Metal Resistant Bacteria and Plants on Remediation of Soil Heavy Metal Pollution. WATER, AIR, & SOIL POLLUTION 2024; 235:296. [DOI: 10.1007/s11270-024-07100-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/19/2024] [Indexed: 03/06/2025]
|
12
|
Kaya C, Uğurlar F, Ashraf M, Hou D, Kirkham MB, Bolan N. Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170297. [PMID: 38272079 DOI: 10.1016/j.scitotenv.2024.170297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Arsenic poisoning in agricultural soil is caused by both natural and man-made processes, and it poses a major risk to crop production and human health. Soil quality, agricultural production, runoff, ingestion, leaching, and absorption by plants are all influenced by these processes. Microbial consortia have become a feasible bioremediation technique in response to the urgent need for appropriate remediation solutions. These diverse microbial populations collaborate to combat arsenic poisoning in soil by facilitating mechanisms including oxidation-reduction, methylation-demethylation, volatilization, immobilization, and arsenic mobilization. The current state, problems, and remedies for employing microbial consortia in arsenic bioremediation in agricultural soils are examined in this review. Among the elements affecting their success include diversity, activity, community organization, and environmental conditions. Also, we emphasize the sensitivity and accuracy limits of existing assessment techniques. While earlier reviews have addressed a variety of arsenic remediation options, this study stands out by concentrating on microbial consortia as a viable strategy for arsenic removal and presents performance evaluation and technical problems. This work gives vital insights for tackling the major issue of arsenic pollution in agricultural soils by explaining the potential methods and components involved in microbial consortium-mediated arsenic bioremediation.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mary Beth Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
13
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
15
|
Sher S, Tahir Ishaq M, Abbas Bukhari D, Rehman A. Brevibacterium sp. strain CS2: A potential candidate for arsenic bioremediation from industrial wastewater. Saudi J Biol Sci 2023; 30:103781. [PMID: 37680980 PMCID: PMC10480674 DOI: 10.1016/j.sjbs.2023.103781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
A multiple metal-resistant Brevibacterium sp. strain CS2, isolated from an industrial wastewater, resisted arsenate and arsenate upto 280 and 40 mM. The order of resistance against multiple metals was Arsenate > Arsenite > Selenium = Cobalt > Lead = Nickel > Cadmium = Chromium = Mercury. The bacterium was characterized as per morphological and biochemical characteristics at optimum conditions (37 ℃ and 7 pH). The appearance of brownish color precipitation was due to the interaction of silver nitrate confirming its oxidizing ability against arsenic. The strain showed arsenic processing ability at different temperatures, pH, and initial arsenic concentration which was 37% after 72 h and 48% after 96 h of incubation at optimum conditions with arsenite 250 mM/L (initial arsenic concentration). The maximum arsenic removal ability of strain CS2 was determined for 8 days, which was 32 and 46% in wastewater and distilled water, respectively. The heat-inactivated cells of the isolated strain showed a bioremediation efficiency (E) of 96% after 10 h. Genes cluster (9.6 kb) related to arsenite oxidation was found in Brevibacterium sp. strain CS2 after the genome analysis of isolated bacteria through illumine and nanopore sequencing technology. The arsenite oxidizing gene smaller subunit (aioB) on chromosomal DNA locus (Prokka_01508) was identified which plays a role in arsenite oxidation for energy metabolism. The presence of arsenic oxidizing genes and an efficient arsenic oxidizing potential of Brevibacterium sp. strain CS2 make it a potential candidate for green chemistry to eradicate arsenic from arsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- Florida A&M University, School of Environment, Tallahassee, FL, USA
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
16
|
Mujawar SY, Shamim K, Vaigankar DC, Naik MM, Dubey SK. Rapid arsenite oxidation by Paenarthrobacter nicotinovorans strain SSBW5: unravelling the role of GlpF, aioAB and aioE genes. Arch Microbiol 2023; 205:333. [PMID: 37712976 DOI: 10.1007/s00203-023-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
A novel arsenite resistant bacterial strain SSBW5 was isolated from the battery waste site of Corlim, Goa, India. This strain interestingly exhibited rapid arsenite oxidation with an accumulation of 5 mM arsenate within 24 h and a minimum inhibitory concentration (MIC) of 18 mM. The strain SSBW5 was identified as Paenarthrobacter nicotinovorans using 16S rDNA sequence analysis. Fourier-transformed infrared (FTIR) spectroscopy of arsenite-exposed cells revealed the interaction of arsenite with several important functional groups present on the cell surface, possibly involved in the resistance mechanism. Interestingly, the whole genome sequence analysis also clearly elucidated the presence of genes, such as GlpF, aioAB and aioE encoding transporter, arsenite oxidase and oxidoreductase enzyme, respectively, conferring their role in arsenite resistance. Furthermore, this strain also revealed the presence of several other genes conferring resistance to various metals, drugs, antibiotics and disinfectants. Further suggesting the probable direct or indirect involvement of these genes in the detoxification of arsenite thereby increasing its tolerance limit. In addition, clumping of bacterial cells was observed through microscopic analysis which could also be a strategy to reduce arsenite toxicity thus indicating the existence of multiple resistance mechanisms in strain SSBW5. In the present communication, we are reporting for the first time the potential of P. nicotinovorans strain SSBW5 to be used in the bioremediation of arsenite via arsenite oxidation along with other toxic metals and metalloids.
Collapse
Affiliation(s)
- Sajiya Yusuf Mujawar
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Kashif Shamim
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
- National Centre for Natural Product Research, University of Mississippi, Oxford, MS, USA
| | - Diviya Chandrakant Vaigankar
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
- Marine Microbiology, School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Milind Mohan Naik
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Santosh Kumar Dubey
- Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India.
- Center of Advanced Study in Botany, Banaras Hindu University, Varanasi, U.P., 221005, India.
| |
Collapse
|