1
|
Yang Y, Yao T, Balasubramanian R, Chen JP. In situ H 2O 2 production from self-sufficient heterogeneous Fenton reaction over Fe 0/MoS 2-x for potential environmental remediation applications. J Colloid Interface Sci 2025; 683:496-506. [PMID: 39740566 DOI: 10.1016/j.jcis.2024.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of H2O2, slow Fe3+/Fe2+ cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe0/MoS2-x was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe0 and sulfur vacancies sites in MoS2-x played a pivotal role in the generation of H2O2via two-step single-electron reduction process without any energy consumption. The existence of dual active sites resulted in a considerable increase in the H2O2 yield (up to 0.6 mM/g/h) in a pH-neutral aqueous solution. Furthermore, the Fe3+/Fe2+ cycle rate was accelerated by Mo6+/Mo4+/Moδ+ sites. The factors collectively contributed to the impressive performance of the reaction in degrading complex pollutants (e.g., polyethylene, a model plastic matter) under pH-neutral conditions. In addition to its outstanding catalytic performance, Fe0/MoS2-x exhibited superior reusability and stability. Notably, the catalyst reactivity was well sustained in the presence of common competitive factors such as inorganic anions and dissolved organic pollutants, and for other polymer types. This study demonstrates that Fe0/MoS2-x with impressive self-sufficient Fenton reaction capacity has greater potentials for water and wastewater treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Tongjie Yao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China.
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| |
Collapse
|
2
|
Li C, Shi L, Liu T, Dong K, Ren W, Zhang Y. Changes in electron distribution of aged microplastic and their environmental impacts in aquatic environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:124. [PMID: 40113611 DOI: 10.1007/s10653-025-02430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are widespread environmental pollutants. This study primarily examines the changes in electro distribution of aged MPs in aquatic environments and their subsequent impact on the environment. Under the action of natural and artificial aging, the electron cloud arrangement of MPs will change, thus affecting the relevant properties of MPs. Among them, the free radicals formed by advanced oxidation technology will be enriched on the surface of MPs carrying benzene rings, and react with other pollutants (organic pollutants, heavy metals, etc.) adsorbed by MPs to form environmental persistent free radicals (EPFRs). The electron cloud density of MPs carrying EPFRs increases, and the reactivity will also increase. Additionally, the oxygen-containing functional groups on the surface of aged MPs enhance their selective adsorption, altering their environmental impact. MPs can serve as a source of free radicals in the environment, enhance the oxidation capacity of other substances in the environment, and even affect the expression of antibiotic resistance genes. In addition, MPs have a high mobility, which will have a greater negative impact in the environment. Additionally, the high mobility of MPs amplifies their negative environmental impact. This study examines the changes in electron distribution of aged MPs and highlights their effects on aquatic ecosystems, providing insights into pollution control, toxicity, and degradation mechanisms.
Collapse
Affiliation(s)
- Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lixia Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tao Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Keke Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Maliwan T, Do QTT, Nguyen CM, Teo WK, Hu J. Exploring the co-occurrence of microplastics, DOM and DBPs inside PVC pipes undergoing chlorination by correlation analysis and unsupervised learning. CHEMOSPHERE 2025; 373:144171. [PMID: 39884137 DOI: 10.1016/j.chemosphere.2025.144171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Drinking water distribution systems face a multifaceted emerging concern, including in situ microplastic (MP) generation, chemical leaching from plastic pipes, and the formation of disinfection by-products (DBPs). This study investigated the co-release of MPs and chemical leachates from polyvinyl chloride (PVC) pipes exposed to different chlorine concentrations on a lab scale, as well as the subsequent formation of DBP. Results highlighted significant evidence of PVC-derived dissolved organic matter (PVC-DOM) and microplastic (PVC-MP) leaching at higher chlorine concentrations. However, at chlorine residuals of 1 ppm, natural organic matter (NOM) retained its importance, with minimal release of PVC-DOM and PVC-MP from plastic pipes. Correlation analysis highlights the critical role of DOM, including both NOM and PVC-DOM, as a key intermediary between MPs and DBPs. This is evidenced by the strongest observed correlations within the DOM group and its significant associations with both MPs and DBPs. Conversely, the limited direct connections between MPs and DBPs further underscore the importance of DOM as the key link between these two targets. Using unsupervised learning techniques, including clustering and dimensionality reduction, further elucidated the influence of DOM in controlling the data patterns, enabling robust interpretation of complex datasets, and providing valuable insights. This study contributes to advancing understanding of the co-occurrence and behaviors of MP, DOM, and DBP within drinking water distribution systems, as well as propelling the associated risk in this intricate scenario.
Collapse
Affiliation(s)
- Thitiwut Maliwan
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Quyen Thi Thuy Do
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Environmental Engineering, Faculty of Environment, Vietnam National University Ho Chi Minh City, University of Science, 227 Nguyen Van Cu St., District 5, Ho Chi Minh City, Viet Nam
| | - Chi Mai Nguyen
- Hwa Chong Institution, 661 Bukit Timah Road, 269734, Singapore
| | - Wan Kee Teo
- Hwa Chong Institution, 661 Bukit Timah Road, 269734, Singapore
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
4
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Gao Y, Gao W, Liu Y, Zou D, Li Y, Lin Y, Zhao J. A comprehensive review of microplastic aging: Laboratory simulations, physicochemical properties, adsorption mechanisms, and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177427. [PMID: 39522785 DOI: 10.1016/j.scitotenv.2024.177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a new type of ecological environment problem, microplastic pollution is a severe challenge faced by the world, and its threat and potential risk to the ecosystem have become a hot research spot in the current environmental field. Microplastics (MPs) in the natural environment will experience aging effect, aging will change the physical and chemical properties of MPs and affect the adsorption behavior. Recently reported characterization techniques of MPs and laboratory simulation of aging are reviewed. The aging mechanism between MPs and different pollutants and the intervention mechanism of environmental factors (MPs, pollutants and water quality environment) were revealed. In addition, to further understand the potential ecological toxicity of MPs after aging, the release and harm of additives during aging, produce the environmentally persistent free radicals, and the mechanism of reactive oxygen species (ROS) removal of pollutants adsorbed on the surface of MPs were summarized. Future research efforts should focus more on bridging the disparity between laboratory aging simulations and natural environmental conditions to enhance the authenticity and ecological relevance of such studies. The ROS production mechanism of MPs provides a reference direction for removing pollutants adsorbed by aged MPs.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Wei Gao
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhi Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Donglei Zou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Kumar A, Indhur R, Bux F, Kumari S. Recent advances in mechanistic insights into microplastics mitigation strategies via emerging advanced oxidation processes: Legislation, challenges, and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177150. [PMID: 39486547 DOI: 10.1016/j.scitotenv.2024.177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Microplastics (MPs) pollution has emerged as a global environmental concern due to its detrimental impacts on ecosystems. Conventional wastewater/water treatment methods are inadequate for MPs removal due to their diminutive size ranging from micrometers to nanometers. Advanced oxidation processes (AOPs) have gained attention as a promising green strategy for the efficient and safe elimination of MPs from aqueous systems. In recent years, various AOPs, including direct photo-degradation, photocatalytic oxidation, electrochemical oxidation, sono-chemical oxidation, ozonation, as well as sulfate radicals-based AOPs (SR-AOPs), and the use of hybrid systems have all been extensively investigated for MP elimination. However, the molecular mechanisms of MP polymer chain scission by AOPs have not been thoroughly studied so far. In this review, we have attempted to provide a thorough overview of molecular mechanisms and highlighted recent advances in the degradation of commonly used MP by AOPs. The characteristics and limitations of each technique are thoroughly examined. Additionally, current policies and legislation on plastic pollution are discussed, emphasizing the need for regulatory frameworks to support effective MPs mitigation strategies. To advance the practical application of AOPs for MPs removal, future research direction should address the transition from controlled laboratory environments to complex field conditions, assess the sustainability of AOPs in terms of catalytic material design, selection of effective oxidants, power consumption, and operational costs. Given these challenges, recommendations for future research directions are proposed based on knowledge gaps in the reported literature. This review could offer a coherent summary of the molecular mechanisms involved in different MP elimination techniques, aiding in the advancement of more dependable AOPs technology with superior removal and degradation efficiency.
Collapse
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Riona Indhur
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
7
|
Ojha PC, Satpathy SS, Ojha R, Dash J, Pradhan D. Insight into the removal of nanoplastics and microplastics by physical, chemical, and biological techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1055. [PMID: 39404908 DOI: 10.1007/s10661-024-13247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
Plastic pollutants create health crises like physical damage to tissues, upset reproductive processes, altered behaviour, oxidative stress, neurological disorders, DNA damage, gene expression, and disrupt physiological functions, as the biosphere accumulates them inadvertently through the food web. Water resources have become the generic host of plastic wastes irrespective of their particle size, resulting in widespread distribution in aquatic environments. The pre-treatment step of the traditional water treatment process can easily remove coarse-sized plastic wastes. However, the fine plastic particles, with sizes ranging from nanometres to millimetres, are indifferent to the traditional water treatment. To address the escalating problems, the upgradation of different traditional physical, chemical, and biological remediation techniques offers a promising avenue for tackling tiny plastic particles from the water environment. Further, new techniques and hybrid incorporations to the existing water treatment techniques have been explored, specifically removing tiny plastic debris. A detailed understanding of the sources, fate, and impact of plastic wastes in the environment, as well as an evaluation of the above treatment techniques and their limitations and challenges, can only show the way for their upgradation, hybridization, and development of new techniques. This review paper provides a comprehensive overview of the current knowledge and techniques for the remediation of nanoplastics and microplastics.
Collapse
Affiliation(s)
- Priti Chhanda Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Swati Sucharita Satpathy
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ritesh Ojha
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Jyotilagna Dash
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Debabrata Pradhan
- Biofuels and Bioprocessing Research Center, ITER, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|
8
|
Liu S, Chen Q, Ding H, Song Y, Pan Q, Deng H, Zeng EY. Differences of microplastics and nanoplastics in urban waters: Environmental behaviors, hazards, and removal. WATER RESEARCH 2024; 260:121895. [PMID: 38875856 DOI: 10.1016/j.watres.2024.121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the aquatic environment and have caused widespread concerns globally due to their potential hazards to humans. Especially, NPs have smaller sizes and higher penetrability, and therefore can penetrate the human barrier more easily and may pose potentially higher risks than MPs. Currently, most reviews have overlooked the differences between MPs and NPs and conflated them in the discussions. This review compared the differences in physicochemical properties and environmental behaviors of MPs and NPs. Commonly used techniques for removing MPs and NPs currently employed by wastewater treatment plants and drinking water treatment plants were summarized, and their weaknesses were analyzed. We further comprehensively reviewed the latest technological advances (e.g., emerging coagulants, new filters, novel membrane materials, photocatalysis, Fenton, ozone, and persulfate oxidation) for the separation and degradation of MPs and NPs. Microplastics are more easily removed than NPs through separation processes, while NPs are more easily degraded than MPs through advanced oxidation processes. The operational parameters, efficiency, and potential governing mechanisms of various technologies as well as their advantages and disadvantages were also analyzed in detail. Appropriate technology should be selected based on environmental conditions and plastic size and type. Finally, current challenges and prospects in the detection, toxicity assessment, and removal of MPs and NPs were proposed. This review intends to clarify the differences between MPs and NPs and provide guidance for removing MPs and NPs from urban water systems.
Collapse
Affiliation(s)
- Shuan Liu
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 123456, China
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qixin Pan
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Dawas A, Rubin AE, Sand N, Ben Mordechay E, Chefetz B, Mordehay V, Cohen N, Radian A, Ilic N, Hubner U, Zucker I. Negligible adsorption and toxicity of microplastic fibers in disinfected secondary effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124377. [PMID: 38897276 DOI: 10.1016/j.envpol.2024.124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Wastewater treatment plants play a crucial role in controlling the transport of pollutants to the environment and often discharge persistent contaminants such as synthetic microplastic fibers (MFs) to the ecosystem. In this study, we examined the fate and toxicity of polyethylene terephthalate (PET) MFs fabricated from commercial cloth in post-disinfection secondary effluents by employing conditions that closely mimic disinfection processes applied in wastewater treatment plants. Challenging conventional assumptions, this study illustrated that oxidative treatment by chlorination and ozonation incurred no significant modification to the surface morphology of the MFs. Additionally, experimental results demonstrated that both pristine and oxidized MFs have minimal adsorption potential towards contaminants of emerging concern in both effluents and alkaline water. The limited adsorption was attributed to the inert nature of MFs and low surface area to volume ratio. Slight adsorption was observed for sotalol, sulfamethoxazole, and thiabendazole in alkaline water, where the governing adsorption interactions were suggested to be hydrogen bonding and electrostatic forces. Acute exposure experiments on human cells revealed no immediate toxicity; however, the chronic and long-term consequences of the exposure should be further investigated. Overall, despite the concern associated with MFs pollution, this work demonstrates the overall indifference of MFs in WWTP (i.e., minor effects of disinfection on MFs surface properties and limited adsorption potential toward a mix of trace organic pollutants), which does not change their acute toxicity toward living forms.
Collapse
Affiliation(s)
- Anwar Dawas
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 85820, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Sand
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evyatar Ben Mordechay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Vered Mordehay
- Department of Soil and Water Sciences, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Nirit Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Nebojsa Ilic
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany
| | - Uwe Hubner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany; Xylem Services GmbH, Boschstr. 4-14, Herford 32051, Germany
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
11
|
Sun H, Hu J, Wu Y, Gong H, Zhu N, Yuan H. Leachate from municipal solid waste landfills: A neglected source of microplastics in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133144. [PMID: 38056251 DOI: 10.1016/j.jhazmat.2023.133144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.
Collapse
Affiliation(s)
- Haoyu Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huabo Gong
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Liu P, Shao L, Zhang Y, Silvonen V, Oswin H, Cao Y, Guo Z, Ma X, Morawska L. Comparative study on physicochemical characteristics of atmospheric microplastics in winter in inland and coastal megacities: A case of Beijing and Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169308. [PMID: 38101632 DOI: 10.1016/j.scitotenv.2023.169308] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Atmospheric microplastics (MPs) have received global attention across various sectors of society due to their potential negative impacts. This study aims to understand the physicochemical characteristics of MPs in inland and coastal megacities for raising awareness about the urgent need to reduce plastic pollution. Laser Direct Infrared Imaging (LDIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDX) techniques were employed to characterize atmospheric MPs in megacities (inland megacity Beijing and coastal megacity Shanghai) in China, focusing on their physicochemical characteristics, including compositional types, number concentration, morphology, size, possible sources, and potential health risks. The LDIR analysis identified sixteen different types of MPs present in the atmospheres of Beijing and Shanghai. The number concentration of atmospheric MPs in Beijing (3.0 items/m3) is 1.8 times that of Shanghai (1.7 items/m3). The study found that the variations in MP pollution between Beijing and Shanghai are influenced by the urban industrial structure and geographical location. Morphological analysis indicates that fragment MPs have the highest relative abundance in Beijing, while fibrous MPs dominate the atmosphere of Shanghai. Additionally, the study assessed the potential health risks of atmospheric MPs to urban residents. The results suggest that residents of Beijing face more severe health risks from atmospheric MPs compared to those in Shanghai. These findings underscore the urgency to address the issue of atmospheric MPs and provide crucial evidence for the formulation of relevant environmental and health policies.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxing Zhang
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Henry Oswin
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ziyu Guo
- State Key Laboratory of Coal Resources and Safe Mining & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
13
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
14
|
Li Z, Liu W, Rahaman MH, Chen Z, Yan J, Zhai J. Polystyrene microplastics accumulation in lab-scale vertical flow constructed wetlands: impacts and fate. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132576. [PMID: 37738848 DOI: 10.1016/j.jhazmat.2023.132576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that significantly threaten organisms and ecosystems. Constructed wetlands (CWs), a nature-based treatment technology, can effectively remove MPs from wastewater. However, the responses of CWs when exposed to MPs remain unclear. In this study, lab-scale vertical flow constructed wetlands (VFCWs) were installed for receiving polystyrene (PS) MPs at concentrations of 100 μg/L and 1000 μg/L. The results showed that exposure to PS-MPs has no effects on COD and TP removal in VFCWs, but TN removal decreased by 3.69-5.37 %. Further investigation revealed that PS-MPs significantly impacted microbial communities and metabolic functions. The abundances of predominant nitrifiers (Nitrospira and Nitrosomonas) and denitrifiers (Nakamurella, Bradyrhizobium, and Bacillus) in VFCWs were significantly reduced, aligning with the responses of key enzymes. The presence of PS-MPs also decreased nitrogen removal by plant uptake, leading to decreased plant biomass and chlorophyll by 39.32-48.75 % and 5.92-32.19 %, respectively. Notably, > 90 % removal rates were observed for PS-MPs within VFCWs. In addition to PS-MPs interception by VFCWs substrate, the increase of released benzenes indicated that the PS-MPs biodegradation occurred. Such insights are vital for developing sustainable solutions to mitigate MPs' adverse effects on ecosystems.
Collapse
Affiliation(s)
- Zhenchen Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| | - Jixia Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Zhai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China.
| |
Collapse
|
15
|
Li J, Dagnew M, Ray MB. Microfibers in anaerobic digestion: Effect of ozone pretreatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118792. [PMID: 37738723 DOI: 10.1016/j.jenvman.2023.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Wastewater treatment plants receive significant microplastics, which are eventually discharged into the environment. Previous studies indicated that over 90% of microplastics, especially microfibers from laundry wastewater, are retained in primary sludge. The effect of microfibers from household laundry on anaerobic digestion has yet to be fully understood, which is the objective of the present study. The results in this study showed a positive correlation between methane production and the presence of microfibers. Compared to the control, the methane production increased by 2%, 27% and 43% with 20 mg/L, 100 mg/L and 1000 mg/L microfibers spiked into primary sludge, respectively. The present study suggests that microfibers at 20 mg/L insignificantly affected methane production in controlled anaerobic digestion. In contrast, ozone pretreatment of microfibers enhanced gas production by 12% in the same concentration level. Interestingly, ozone pretreatment at a higher concentration (100 mg/L-1000 mg/L) of microfibers did not affect methane production. SEM/EDX results imply that the ozone pretreatment has changed the surface characteristics of the microfibers, which provide more surface area for adsorption. The significant reduction of soluble phosphorus by 58% indicates that microfibers potentially act as a site for adsorption during anaerobic digestion. Overall, the presence of microfibers had a positive effect on anaerobic digestion. However, this work also indicated that the microfibers were not biodegraded during anaerobic digestion. Therefore, microfibers accumulate on biosolids, potentially affecting the final disposal of microfibers.
Collapse
Affiliation(s)
- Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada
| | - Martha Dagnew
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A5B9, Canada.
| |
Collapse
|
16
|
Zhang X, Chen R, Li Z, Yu J, Chen J, Zhang Y, Chen J, Yu Q, Qiu X. The influence of various microplastics on PBDEs contaminated soil remediation by nZVI and sulfide-nZVI: Impedance, electron-accepting/-donating capacity and aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163233. [PMID: 37019223 DOI: 10.1016/j.scitotenv.2023.163233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The microplastics (MPs) existed in the environment widely has resulted in novel thinking about in-situ remediation techniques, such as nano-zero-valent iron (nZVI) and sulfided nZVI (S-nZVI), which were often compromised by various environmental factors. In this study, three common MPs such as polyvinyl chloride (PVC), polystyrene (PS), and polypropylene (PP) in soil were found to inhibit the degradation rate of decabromodiphenyl ether (BDE209) by nZVI and S-nZVI to different degrees due to MPs inhibiting of electron transfer which is the main way to degrade BDE209. The inhibition strength was related to its impedance (Z) and electron-accepting (EAC)/-donating capacity (EDC). Based on the explanation of the inhibition mechanism, the reason for different aging degrees of nZVI and S-nZVI in different MPs was illustrated, especially in PVC systems. Furthermore, the aging of reacted MPs, functionalization and fragmentation in particular, indicated that they were involved in the degradation process. Moreover, this work provided new insights into the field application of nZVI-based materials for removing persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ran Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinyi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinhong Chen
- Hainan Provincial Ecological and Environmental Monitoring Centre, Hainan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan 430205, China.
| |
Collapse
|
17
|
Jiang S, Yin M, Ren H, Qin Y, Wang W, Wang Q, Li X. Novel CuMgAlTi-LDH Photocatalyst for Efficient Degradation of Microplastics under Visible Light Irradiation. Polymers (Basel) 2023; 15:polym15102347. [PMID: 37242921 DOI: 10.3390/polym15102347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Microplastics (MPs) in the water system could easily enter the human body and pose a potential threat, so finding a green and effective solution remains a great challenge. At present, the advanced oxidation technology represented by photocatalysis has been proven to be effective in the removal of organic pollutants, making it a feasible method to solve the problem of MP pollution. In this study, the photocatalytic degradation of typical MP polystyrene (PS) and polyethylene (PE) by a new quaternary layered double hydroxide composite photomaterial CuMgAlTi-R400 was tested under visible light irradiation. After 300 h of visible light irradiation, the average particle size of PS decreased by 54.2% compared with the initial average particle size. The smaller the particle size, the higher the degradation efficiency. The degradation pathway and mechanism of MPs were also studied by GC-MS, which showed that PS and PE produced hydroxyl and carbonyl intermediates in the process of photodegradation. This study demonstrated a green, economical, and effective strategy for the control of MPs in water.
Collapse
Affiliation(s)
- Shengyun Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Mingshan Yin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Huixue Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yaping Qin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weiliang Wang
- Beicheng Environmental Engineering Co., Ltd., Jinan 250101, China
| | - Quanyong Wang
- Shandong Huacheng Urban Construction Design Engineering Co., Ltd., Jinan 250101, China
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|