1
|
Vial M, Costil K, Agogué J, Gissat L, Gueuné H, Caplat C. A 15 month-monitoring of biofouling in relationship with hydrological parameters and contaminants in three French harbours of the English channel. ENVIRONMENTAL RESEARCH 2025; 269:120925. [PMID: 39864727 DOI: 10.1016/j.envres.2025.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Three French harbours connected to different water masses of the English Channel were chosen to investigate the hydrological parameters, chemical contaminants, and biofouling characteristics for 15 months. The biofouling development on two kinds of coatings, an anticorrosion coating (Epoxy) and a foul-release coating (FRC), was studied to compare micro- and macro-biofouling in harbour environments. Biofouling was investigated by considering wet biofouling biomass and composition, microalgae concentration, and bacterial abundance. The three harbours shared similar characteristics, however, some differed across seasons and in general. Only St Vaast harbour showed eutrophication with the highest nitrogen compound and phosphate concentrations. Of the 308 organic contaminants investigated, PAHs and herbicides were the most frequently measured. Between 7 and 9 metals were common to all harbours. However, these results indicated good quality of the habour waters according to the French Seaport Surveillance Network. Biofouling composition was similar between the three harbours for both soft (e.g. Ulva sp. and Botrylloides sp.) and hard (Spirobis sp. and Austrominius modestus) fouling. A highly significant effect of the coatings on the biofouling biomass was noticed, with the FRC coating being colonised by a few organisms. The FRC coating was, however, not completely efficient at preventing the settlement of bacteria and microalgae that were present only at lower abundance compared to the Epoxy coating. These results provide data useful for scientists and industries to develop a new antifouling coating generation and manage the biofouling threat in the English Channel.
Collapse
Affiliation(s)
- Marion Vial
- Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de La Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de La Paix, 14032 Caen, France; Corrodys, 145 Chemin de La Crespinière, 50100 Cherbourg-en-Cotentin, France.
| | - Katherine Costil
- Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de La Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de La Paix, 14032 Caen, France
| | - Julie Agogué
- Corrodys, 145 Chemin de La Crespinière, 50100 Cherbourg-en-Cotentin, France
| | - Loann Gissat
- SMEL, Synergie Mer et Littoral, Blainville sur Mer, France
| | - Hervé Gueuné
- Corrodys, 145 Chemin de La Crespinière, 50100 Cherbourg-en-Cotentin, France
| | - Christelle Caplat
- Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de La Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de La Paix, 14032 Caen, France
| |
Collapse
|
2
|
Mamy L, Pesce S, Sanchez W, Aviron S, Bedos C, Berny P, Bertrand C, Betoulle S, Charles S, Chaumot A, Coeurdassier M, Coutellec MA, Crouzet O, Faburé J, Fritsch C, Gonzalez P, Hedde M, Leboulanger C, Margoum C, Mougin C, Munaron D, Nélieu S, Pelosi C, Rault M, Sucré E, Thomas M, Tournebize J, Leenhardt S. Impacts of neonicotinoids on biodiversity: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2794-2829. [PMID: 38036909 DOI: 10.1007/s11356-023-31032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.
Collapse
Affiliation(s)
- Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
| | | | | | | | - Carole Bedos
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Philippe Berny
- UR ICE Vetagro Sup, Campus Vétérinaire, 69280, Marcy‑L'Etoile, France
| | - Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, 51100, Reims, France
| | | | | | - Michael Coeurdassier
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, L'Institut Agro, Ifremer, 35042, Rennes, France
| | - Olivier Crouzet
- OFB, Direction de la Recherche et Appui Scientifique (DRAS), 78610, Auffargis, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS-Université de Franche-Comté, 25000, Besançon, France
| | - Patrice Gonzalez
- CNRS, Bordeaux INP, EPOC, UMR 5805, Univ. Bordeaux, 33600, Pessac, France
| | - Mickael Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, 34060, Montpellier, France
| | | | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Sylvie Nélieu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, 84000, Avignon, France
| | - Magali Rault
- Université d'Avignon, Université Aix-Marseille, CNRS, IRD, IMBE, Pôle Agrosciences, 84916, Avignon, France
| | - Elliott Sucré
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34200, Sète, France
- Centre Universitaire de Formation Et de Recherche de Mayotte (CUFR), 97660, Dembeni, Mayotte, France
| | - Marielle Thomas
- Université de Lorraine, INRAE, UR AFPA, 54000, Nancy, France
| | | | | |
Collapse
|
3
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2975-2992. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
4
|
Conseil G, Milla S, Cardoso O, Pasquini L, Rosin C, Banas D. Occurrence, dispersal, and associated environmental risk assessment of pesticides and their transformation products in small water bodies of Northeastern France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66643-66666. [PMID: 39636537 DOI: 10.1007/s11356-024-35573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of pesticides, specifically plant protection products (PPPs), has led to their transformation products (TPs) being increasingly detected in various environmental compartments, notably surface waters. This study integrates field-detected TPs into an environmental risk assessment of lentic small water bodies (LSWBs). For this purpose, measured environmental concentrations (MECs) of PPPs and TPs in 12 LSWBs, influenced by tributaries under varying agricultural pressures, were collected. Ecotoxicological data from multiple sources were compiled to calculate risk quotients (RQs) and identify potentially harmful PPPs and TPs. Among 86 molecules investigated, 17 PPPs and 30 TPs were detected, representing nearly half of those initially targeted. Ponds exhibited diverse PPP and TP compositions and levels with 12 substances posing high pesticide risk, primarily atrazine-2-hydroxy, MCPA, and metolachlor. Various pond conditions indicated moderate to high risk to aquatic organisms at corresponding MECs. Despite diverse agricultural pressures, only one site was deemed low-risk, highlighting widespread contamination risk due to co-occurring molecules. Given the prevalence of TPs in water bodies, urgent efforts are needed to gather ecotoxicological data on these contaminants to enhance environmental risk assessments. This study provides novel insights into pesticide risks in a less-studied yet common European landscape, focusing on TPs.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France.
- LTSER-Zone Atelier Moselle, 57000, Nancy, France.
| | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
| | - Olivier Cardoso
- Office Français de La Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 Avenue Buffon, 45071, Orléans, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
- LTSER-Zone Atelier Moselle, 57000, Nancy, France
| |
Collapse
|
5
|
Rodríguez-Aguilar BA, Peregrina-Lucano AA, Martínez-Rivera LM, Ceballos-Magaña SG, Muñiz-Valencia R. Assessing the environmental pesticides impact of river sediments from a basin in western Mexico: Spatiotemporal distribution, risk assessment of aquatic invertebrates and pesticides prioritization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172860. [PMID: 38688377 DOI: 10.1016/j.scitotenv.2024.172860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The intensive use of pesticides in Mexican agriculture has contributed significantly to the increase in food production, but at the same time represents potential risk to biota. This situation creates a dilemma between the need to increase food production and the preservation of the environment and human health. Aquatic invertebrates play a vital role in the balance of aquatic ecosystems but are sensitive to pesticides contamination. The sensitivity of aquatic invertebrates to pesticides contamination has led them to be used to assess the potential impact of this contamination on aquatic ecosystems. In the present study, conducted in the Ayuquila-Armería basin, the following aims were achieved: 1) quantifying the presence of 20 pesticides in river sediments, 2) assessing the spatiotemporal distribution of pesticides in river sediments, 3) determining the potential risk to aquatic invertebrates, and 4) prioritizing pesticides based on their potential risk. Twelve pesticides were consistently quantified in 192 river sediments samples. The pesticides with the highest concentrations were ametrine, malathion and picloram. The temporal analysis showed seasonality in pesticide concentrations, with higher detection frequencies during the wet season. The risk assessment showed that aquatic invertebrates may be affected by the concentrations of carbofuran, malathion, diazinon and ametrine. Pesticides prioritization identified ametrine, carbofuran, and diazinon as major concerns based on the methodology that considers the Frequency and Extent of Exceedance. This study provides valuable insights into the current pesticides scenario in the Ayuquila-Armería River sediments. The findings underscore the need for sustainable alternatives to mitigate the ecological risks associated with pesticides contamination in this aquatic ecosystem.
Collapse
Affiliation(s)
- Brian A Rodríguez-Aguilar
- Faculty of Chemical Sciences, University of Colima, Colima-Coquimatlán km 9, 28400 Coquimatlán, Colima, Mexico
| | - Alejandro A Peregrina-Lucano
- Department of Pharmacobiology, University Center for Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara, Jalisco, Mexico
| | - Luis M Martínez-Rivera
- Department of Ecology and Natural Resources, University Center of the South Coast, University of Guadalajara, Independencia Nacional 151, 48900 Autlán de Navarro, Jalisco, Mexico
| | | | - Roberto Muñiz-Valencia
- Faculty of Chemical Sciences, University of Colima, Colima-Coquimatlán km 9, 28400 Coquimatlán, Colima, Mexico; Center for Research in Natural Resources and Sustainability, University Bernardo O'Higgins, Fabrica 1990, Santiago, Chile.
| |
Collapse
|
6
|
das Mercês Pereira Ferreira A, de Matos JM, Silva LK, Viana JLM, Dos Santos Diniz Freitas M, de Amarante Júnior OP, Franco TCRDS, Brito NM. Assessing the spatiotemporal occurrence and ecological risk of antifouling biocides in a Brazilian estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3572-3581. [PMID: 38085476 DOI: 10.1007/s11356-023-31286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.
Collapse
Affiliation(s)
- Adriana das Mercês Pereira Ferreira
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - Jhuliana Monteiro de Matos
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil.
| | - Lanna Karinny Silva
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| | - José Lucas Martins Viana
- Universidade Estadual de Campinas, Instituto de Química, P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Marta Dos Santos Diniz Freitas
- Postgraduate Program in Technological and Environmental Chemistry, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ozelito Possidônio de Amarante Júnior
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
- Institute of Oceanography, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Natilene Mesquita Brito
- Department of Chemistry, Campus São Luís - Monte Castelo, Federal Institute of Education, Science and Technology of Maranhão (IFMA), São Luís, MA, 65030-005, Brazil
| |
Collapse
|
7
|
Roland RM, Bhawani SA, Ibrahim MNM. Synthesis of molecularly imprinted polymer by precipitation polymerization for the removal of ametryn. BMC Chem 2023; 17:165. [PMID: 38001543 PMCID: PMC10668388 DOI: 10.1186/s13065-023-01084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ametryn (AME) is a triazine herbicide which is mainly used to kill unwanted herbs in crops. Despite its importance in agriculture, the usage of AME also poses a risk to humans and the ecosystem due to its toxicity. Hence, it is important to develop a method for the effective removal of AME from various water sources which is in the form of molecular imprinting polymer (MIP). In this study, MIP of AME was synthesized via precipitation polymerization using AME as the template molecule with three different functional monomers including methacrylic acid (MAA), acrylamide (AAm) and 2-vinylpyridine (2VP). The three different synthesized polymers namely MIP (MAA), MIP (AAm) and MIP (2VP) were characterized using Fourier Infra-red spectroscopy (FTIR) and Field Emission Electron Microscopy (FESEM). Then, the batch binding study was carried out using all three MIPs in which MIP (MAA) attained the highest rebinding efficiency (93.73%) among the synthesized polymers. The Energy-Dispersive X-ray spectroscopy (EDX) analysis, Brunauer-Emmett-Teller (BET) analysis and thermogravimetric analysis (TGA) were also conducted on the selected MIP (MAA). Adsorption studies including initial concentration, pH and polymer dosage were also conducted on MIP (MAA). In this study, the highest adsorption efficiency was attained at the optimum condition of 6 ppm of AME solution at pH 7 with 0.1 g of MIP (MAA). MIP (MAA) was successfully applied to remove AME from spiked distilled water, tap water and river water samples with removal efficiencies of 95.01%, 90.24% and 88.37%, respectively.
Collapse
Affiliation(s)
- Rachel Marcella Roland
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
| | | |
Collapse
|
8
|
Schull Q, Beauvieux A, Viblanc VA, Metral L, Leclerc L, Romero D, Pernet F, Quéré C, Derolez V, Munaron D, McKindsey CW, Saraux C, Bourjea J. An integrative perspective on fish health: Environmental and anthropogenic pathways affecting fish stress. MARINE POLLUTION BULLETIN 2023; 194:115318. [PMID: 37542925 DOI: 10.1016/j.marpolbul.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.
Collapse
Affiliation(s)
- Quentin Schull
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France.
| | | | | | - Luisa Metral
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Lina Leclerc
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Campus Regional de Excelencia Internacional Campus Mare Nostrum, Universidad de Murcia, Espinardo, 30071, Murcia, Spain
| | - Fabrice Pernet
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | - Claudie Quéré
- Ifremer/LEMAR UMR 6539, Technopole de Brest-Iroise, Plouzané, France
| | | | | | | | - Claire Saraux
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France; Université de Strasbourg, CNRS, IPHC, UMR, 7178 Strasbourg, France
| | - Jerôme Bourjea
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Sète, France
| |
Collapse
|