1
|
Liu Q, Fang J, Liu Z, Chen Y, Chen Q, Chen Z, Yuan S, Yu H, Yao W. Influence of different food matrices on the abundance, characterization, migration kinetics and hazards of microplastics released from plastic packaging (PP and PET). Food Chem 2025; 478:143691. [PMID: 40058265 DOI: 10.1016/j.foodchem.2025.143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
The effect of food matrix on the release of microplastics from plastic packaging was investigated by treating plastic samples with various food simulants. MPs were released during simulated conditions, and their main source was the separation of plastic samples subjected to ageing. Acidic high oil simulants resulted in the greatest abundance of MPs (1311.33 ± 262.22 and 1414.00 ± 214.52 items/piece). Dual constant kinetic model and Elovich kinetic model described the process well (R2 > 0.9019), indicating the release rate of MPs was mainly controlled by characteristics of plastics and environment. Characterization showed the morphology of plastics became rougher, carbonyl index increased, crystalline shapes changed and proportion of O increased. The release mechanism was deduced to be deterioration of the plastic by oxidative reactions. Finally, hazard assessment methodologies were developed, the results showed these MPs are hazardous to humans. It is hoped that this study will draw more attention to the harmful effects of MPs.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jingkai Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Qiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
2
|
Zhang X, Li N, Li X, Liu C, Wang M, Zhang S, Dong Z, Ma J, Liu S. Reactive oxygen species drive aging-associated microplastic release in diverse infusion ingredients. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137728. [PMID: 40020296 DOI: 10.1016/j.jhazmat.2025.137728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Exposure routes and transport of microplastics (MPs) from the environment into the human bodies deserve considerable attention. Intravenous injection has been reported as a direct MP-intrusion pathway. However, it is unclear whether or how the infusion fluid composition influences polymer degradation and MP release. Here, we determined that the concentrations of MPs shed from infusion bags ranged from 522 to 5455 particles/L. The storage period, mechanical shaking, and storage temperature all contributed to MP release to some extent; however, the infusion fluid composition affected the formation of MPs more than any other factor. Infusion fluids containing moxifloxacin hydrochloride, etimicin sulfate, and sodium bicarbonate ringer's solution generated more reactive oxygen species than those containing sodium chloride, grape sugar, and glucose and sodium chloride. Specifically, the generation of reactive oxygen species (hydroxyl radicals, carbonate radicals, and single oxygen) facilitated oxygen-containing functional group formation and breaking of carbon chains on the surface of the polypropylene plastic, which increased aging and fragmentation. Overall, this study provides knowledge of the mechanisms underlying MP release from infusion bags during storage and transportation. This offers insight for optimizing the use and handling of infusion bags in medical settings to minimize contamination.
Collapse
Affiliation(s)
- Xu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Ning Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Xintong Li
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, PR China
| | - Conghe Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Mo Wang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Zheng Dong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Hu X, Gao Y, Cheng Y, Li X, Wang L, Zhang X, Wang G. Aged rather than pristine polyvinyl chloride microplastic affect the development and structure of Vallisneria natans population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176841. [PMID: 39393697 DOI: 10.1016/j.scitotenv.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
A large number of microplastics have been discharged into freshwater ecosystems, where they age and are deposited in the sediment, posing a risk to primary producers, such as submerged macrophytes. Many macrophytes benefit from clonal integration, which lets the population work as a 'macro' organism. Nonetheless, little is known about the differences in phytotoxicity between aged and pristine microplastics, particularly for clonal populations of macrophytes. In this study, we showed that UV-aging changes the characteristics of polyvinyl chloride microplastics (PVC-MPs). Aged PVC-MPs possessed higher hydrophilicity, less chlorine and crystallinity, and more severe toxicity. The pristine PVC-MPs did not affect Vallisneria natans, while the aged PVC-MPs significantly affected the development and structure of the clonal population. The severely aged PVC-MPs reduced the relative growth rate of V. natans by 26 % at the population level. Furthermore, the mother plant (ortet) and offspring (ramet) responded differently to the aged PVC-MPs. A trade-off was observed between the growth rate and stress resistance in the ortets. The ortets increased investment in the root part to tolerate stress when facing exposure to microplastics. In contrast, the ramets were less resistant, as shown by shorter roots, and lower leaf chlorophyll, carbon, and nitrogen concentrations. Notably, the growth of the ramets was maintained and the investments in stolon structure by the ortets were not lessened. The ortet sacrificed itself for the continuation of the ramet. This clonal integration may safeguard V. natans survival and compensate for vegetative expansion. This study sheds new light on how macrophytes respond to microplastics at the clonal population level and provides direct evidence that existing studies may have underestimated the toxic effect of microplastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaoqing Hu
- School of Environment, Nanjing Normal University, Nanjing, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Cheng
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Xi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Chen L, Tu M, Mao C, Wang J, Shao H, Wang H, Gu J, Xu G. Electron beam synergetic removal of microplastics and hexavalent chromium: Synergetic removal process and mechanism. CHEMOSPHERE 2024; 364:143093. [PMID: 39173834 DOI: 10.1016/j.chemosphere.2024.143093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (Ⅲ), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Collapse
Affiliation(s)
- Lei Chen
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Mengxin Tu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Chengkai Mao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jun Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Haiyang Shao
- School of Future Membrane Technology, Fuzhou University, Fuzhou, 350108, PR China.
| | - Hongyong Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Jianzhong Gu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
7
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
8
|
Chen XC, Wang A, Wang JJ, Zhang ZD, Yu JY, Yan YJ, Zhang JY, Niu J, Cui XY, Liu XH. Influences of coexisting aged polystyrene microplastics on the ecological and health risks of cadmium in soils: A leachability and oral bioaccessibility based study. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133884. [PMID: 38412647 DOI: 10.1016/j.jhazmat.2024.133884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Whether coexisting microplastics (MPs) affect the ecological and health risks of cadmium (Cd) in soils is a cutting-edge scientific issue. In this study, four typical Chinese soils were prepared as artificially Cd-contaminated soils with/without aged polystyrene (PS). TCLP and in vitro PBET model were used to determine the leachability (ecological risk) and oral bioaccessibility (human health risk) of soil Cd. The mechanisms by which MPs influence soil Cd were discussed from direct and indirect perspectives. Results showed that there was no significant difference in the leachability of soil Cd with/without aged PS. Additionally, aged PS led to a significant decrease in the bioaccessibility of soil Cd in gastric phase, but not in small intestinal phase. The increase in surface roughness and the new characteristic peaks (e.g., Si-O-Si) of aged PS directly accounted for the change in Cd bioaccessibility. The change in organic matter content indirectly accounted for the exceptional increase in Cd bioaccessibility of black soil with aged PS in small intestinal phase. Furthermore, the changes in cation exchange capacity and Cd mobility factor caused by aged PS explained the change in Cd leachability. These results contribute to a deeper understanding about environmental and public health in complicated emerging scenarios.
Collapse
Affiliation(s)
- Xiao-Chen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Ao Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jun-Jie Wang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou City Construction Design and Research Institute Co., Ltd., 340 Liuyibei Road, Fuzhou 350001, PR China
| | - Zeng-Di Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China
| | - Jian-Ying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, 1 Kejidong Road, Fuzhou 350108, PR China
| | - Ying-Jie Yan
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, 2 Wulongjiangbei Road, Fuzhou 350108, PR China; Fuzhou University Zhicheng College, 50 Yangqiaoxi Road, Fuzhou 350002, PR China
| | - Jian-Yu Zhang
- Jiangsu Longchang Chemical Co., Ltd., 1 Qianjiang Road, Rugao 226532, PR China
| | - Jia Niu
- Center of Safe and Energy-Saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, 33 Xuefunan Road, Fuzhou 350118, PR China
| | - Xiao-Yu Cui
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China
| | - Xian-Hua Liu
- School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300354, PR China.
| |
Collapse
|
9
|
Kaur H, Bhuvan K, Padmawar R, Hore DK. Surface Structural Changes in Silicone Rubber Due to Electrical Tracking. APPLIED SPECTROSCOPY 2024:37028241238248. [PMID: 38499996 DOI: 10.1177/00037028241238248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
There is a growing interest in the use of silicone composite insulators for electrical power transmission and distribution applications. However, such materials are susceptible to degradation as they are exposed to electrical and environmental stresses during operating conditions. Therefore, it is crucial to gain a thorough understanding of the degradation mechanism through changes in the material structure that may provide insight into potential failures in the electrical grid. Attenuated total reflection Fourier transform infrared spectroscopy and two-dimensional correlation spectroscopy (2D-COS) were used along with contact angle measurements to characterize changes in silicone rubber samples from actual insulators subjected to tracking wheel testing. The results showed a decrease in absorbance of different infrared bands representing different functional groups, such as Si-O-Si, methyl functional groups, and both Al-O and hydroxyl groups of alumina trihydrate as a function of the number of tracking cycles. The sequence of changes in the functional groups was determined by 2D-COS as Al-O and OH followed by Si-O-Si polymer backbone modes, followed by polymer methyl side chains. An enhancement in the average contact angle with the number of tracking cycles revealed a concomitant increase in surface roughness with electrical tracking.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Kavin Bhuvan
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- ASAsoft (Canada) Inc., Victoria, British Columbia, Canada
| | | | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
- Department of Computer Science, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
10
|
Cao Y, Zhao Q, Jiang F, Geng Y, Song H, Zhang L, Li C, Li J, Li Y, Hu X, Huang J, Tian S. Interactions between inhalable aged microplastics and lung surfactant: Potential pulmonary health risks. ENVIRONMENTAL RESEARCH 2024; 245:117803. [PMID: 38043900 DOI: 10.1016/j.envres.2023.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O2•-), hydrogen peroxide (HOOH), and hydroxyl radicals (•OH); this would lead to LS lipid peroxidation and protein damage and increase the risk of respiratory disease. Our investigation was the first-ever to reveal a potential toxic effect of aged MPs and their actions on the human respiratory system, of great significance in understanding the risk of inhaled MPs on lung health.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fanshu Jiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
11
|
Liang J, Chen X, Duan X, Gu X, Zhao X, Zha S, Chen X. Natural aging and adsorption/desorption behaviors of polyethylene mulch films: Roles of film types and exposure patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133588. [PMID: 38290328 DOI: 10.1016/j.jhazmat.2024.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Polyethylene (PE) mulch films are an important source of microplastics (MPs) in agricultural soils, which may further affect the bioavailability of coexisting pollutants. In this study, white (WM), black (BM), and silver-black (SM) PE mulch films were aged on the soil surface and under soil burial to simulate the two exposure patterns of abandoned mulch films in the field. Results indicated that the soil-surface exposure induced more pronounced aging characteristics, and WM seemed the most susceptible. Serious surface deterioration by aging led to a drastic decrease in the tensile properties of the films, suggesting the tendency to fragment. Oxygen-containing functional groups were generated on the film surfaces, with oxygen/carbon ratios increasing by up to 29 times, which contributed to the prominent increase in Pb adsorption on the film-derived MPs. Additionally, the film surface became more hydrophobic when exposed to the soil surface but more hydrophilic in the soil-burial exposure, which was in agreement with the change in triclosan adsorption, i.e., promotion and suppression, respectively. Aging generally decreased the desorption potential of the adsorbed pollutants in simulated gastrointestinal solutions due to increased interactions. By comparison, exposure patterns were revealed to be the critical factor for these changes, regardless of film types.
Collapse
Affiliation(s)
- Jingcheng Liang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xian Chen
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China.
| | - Xiaotong Duan
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xueyuan Gu
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Xiaopeng Zhao
- School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Simin Zha
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| | - Xingming Chen
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou 213001, China
| |
Collapse
|
12
|
Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J. Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: Current progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167785. [PMID: 37852500 DOI: 10.1016/j.scitotenv.2023.167785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Microplastics (MPs) are small plastic debris (<5 mm) that result from the fragmentation of plastic due to physical and physiochemical processes. MPs are emerging pollutants that pose a significant threat to the environment and human health, primarily due to their pervasive presence and potential bioaccumulation within the food web. Despite their importance, there is a lack of comprehensive studies on the fate, toxicity, and aging behavior of MPs. Therefore, this review aims to address this gap by providing a cohesive understanding of several key aspects. Firstly, it summarizes the sources and fate of MPs, highlighting their ubiquitous presence and the potential pathways through which they enter ecosystems. Secondly, it evaluates the aging process of MPs and the factors influencing it, including the morphological and physiological changes observed in crops and the release of pollutants from aged MPs, which can have detrimental effects on the environment and human health. Furthermore, the impacts of aging MPs on various processes are discussed, such as the mobilization of other pollutants in the environment. The influence of aged MPs on the soil environment, particularly their effect on heavy metal adsorption, is examined. Finally, the review explores strategies for the prevention technologies and remediation of MPs, highlighting the importance of developing effective approaches to tackle this issue. Overall, this review aims to contribute to our understanding of MPs, their aging process, and their impacts on the environment and human health. It underscores the urgency of addressing the issue of MPs and promoting research and remediation efforts to mitigate their adverse effects.
Collapse
Affiliation(s)
- Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
13
|
Zhou T, Wu J, Hu X, Cao Z, Yang B, Li Y, Zhao Y, Ding Y, Liu Y, Xu A. Microplastics released from disposable medical devices and their toxic responses in Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2023; 239:117345. [PMID: 37821065 DOI: 10.1016/j.envres.2023.117345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Owing to accelerated urbanization and industrialization, many plastic products have been manufactured and discharged into the environment, causing environmental and public health problems. Plastics in environmental media are further degraded by prolonged exposure to light, heat, mechanical friction, and other factors to form new pollutants called microplastics (MPs). Medical plastics have become a crucial source of plastics in environmental media. However, the release profiles of MPs from medical plastics and their potential ecological and health risks remain unclear. We used optical photothermal infrared spectroscopy to explore the release profiles of eight typical disposable medical devices under high-temperature steam disinfection (HSD). We also evaluated the toxicity of disposable medical devices-derived MPs in Caenorhabditis elegans (C. elegans). Our results showed that the changes in the surface morphology and modification of the disposable medical devices were mainly associated with the material. Polypropylene (PP) and polystyrene (PS) materials exhibited high aging phenomena (e.g., bumps, depressions, bulges and cracks), and HSD broke their oxygen-containing functional groups and carbon chains. By contrast, minor changes in the chemical and physical properties were observed in the polyvinyl chloride (PVC)-prepared disposable medical devices under the same conditions. Further physicochemical characterization indicated that the amount of MPs released from PP-prepared disposable medical devices (P4: 1.27 ± 0.34 × 106) was greater than that from PVC-prepared disposable medical devices (P7: 1.08 ± 0.14 × 105). The particle size of the released MPs was the opposite, PVC-prepared disposable medical devices (P7: 11.45 ± 1.79 μm) > PP-prepared disposable medical devices (P4: 7.18 ± 0.52 μm). Toxicity assessment revealed that disposable medical devices-released MPs significantly increased germ cell apoptosisin C. elegans. Moreover, MPs from PP-prepared disposable medical devices disrupted the intestinal barrier of worms, decreasing their lifespan. Our findings provided novel information regarding the profiles and mechanisms of MP release from disposable medical devices and revealed their potential risks to ecological environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Xi Hu
- Quantum Design (Beijing) Co., Ltd, Beijing, China
| | - Zhenxiao Cao
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Baolin Yang
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yang Li
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yanan Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuting Ding
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Hefei, Anhui, 230031, PR China; University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
14
|
Zhou T, Wu J, Liu Y, Xu A. Seawater Accelerated the Aging of Polystyrene and Enhanced Its Toxic Effects on Caenorhabditis elegans. Int J Mol Sci 2023; 24:17219. [PMID: 38139049 PMCID: PMC10743734 DOI: 10.3390/ijms242417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|