1
|
Kennedy JR, Blain CO. A systematic review of marine macroalgal degradation: Toward a better understanding of macroalgal carbon sequestration potential. JOURNAL OF PHYCOLOGY 2025. [PMID: 40423688 DOI: 10.1111/jpy.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 05/28/2025]
Abstract
Although macroalgae are gaining recognition for their potential role in marine carbon sequestration, critical knowledge gaps related to the fate of macroalgal carbon limit our capacity to quantify rates of macroalgal carbon sequestration. Understanding the degradation dynamics of macroalgal-derived biomaterials-including tissue/wrack, particulate organic matter/carbon (POM/POC), and dissolved organic carbon (DOC)-as well as the environmental drivers of decomposition are critical for assessing the longevity of macroalgal carbon and the potential storage capacity of macroalgae. Thus, a systematic literature review of macroalgal degradation studies was conducted to compile data, estimate the relative recalcitrance (i.e., relative stability) of macroalgal biomaterials, and elucidate key drivers of macroalgal decomposition dynamics. We found that macroalgal decay trajectories are highly variable and not always best described by the often-cited exponential decay models. Our analysis demonstrated that temperature was a notable driver of decomposition, with higher temperatures eliciting faster rates of decomposition. Furthermore, we found that brown algae had significantly higher proportions of recalcitrant biomaterials when compared to red algae. The impact of other factors, including biomaterial type, degradation environment, and tissue carbon and nitrogen content on macroalgal degradation, is variable across contexts, warranting further study. These results help to provide a foundation from which to plan and assess future studies on macroalgal degradation, which will improve our understanding of how macroalgae contribute to marine carbon cycles, trophic subsidies, and, potentially, marine carbon sequestration.
Collapse
Affiliation(s)
- Jessica R Kennedy
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Caitlin O Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
- Coastal People: Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Li H, Feng X, Xiong T, Zhang Z, Huang S, Zhang Y. Herbivore grazing enhances macroalgal organic carbon release and alters their carbon sequestration fate in the ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106842. [PMID: 39547109 DOI: 10.1016/j.marenvres.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Herbivore grazing on macroalgae promotes the release of macroalgal organic carbons into seawater and potentially impacts their bioavailability. However, the influence of herbivores on the fate of macroalgal organic carbon remains unclear, hindering a comprehensive and in-depth understanding of the role of macroalgae in ocean carbon cycle. Here, we cocultured suspended herbivore (Apohyale sp.) and benthic herbivore (Nereis diversicolor) with macroalgae (Ulva prolifera) in the laboratory, and found that the two grazers promote the release of macroalgal organic carbon through different pathways. Apohyale sp. Can simultaneously increase the release of different forms of organic carbon by feeding on U. prolifera thalli, including dissolved organic carbon (DOC), particluate organic carbon (POC), and algal organic detritus; while N. diversicolor demonstrated a preference for ingesting algal detritus and POC, thereby reducing the detrital carbon but greatly promoting their conversion to DOC. The amount of organic carbon released per day after predation by Apohyale sp. is much higher (7.2 vs 0.5 mg C d-1) than by N. diversicolor. Meanwhile, through long-term microbial degradation experiments, we found that herbivores significantly alter the fate of macroalgae organic carbon. Although the proportions of stable carbon (recalcitrant DOC and recalcitrant POC) in different forms of macroalgal organic carbon varied after predation, the absolute amount of their residuals in seawater were 2-3 times higher than those not ingested by herbivores. Our results highlight that herbivores play a pivotal role in promoting carbon flow in marine food webs and have a significant impact on macroalgal carbon sequestration.
Collapse
Affiliation(s)
- Hongmei Li
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Xiuting Feng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianqi Xiong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zenghu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China
| | - Shengrong Huang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongyu Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, 266101, China.
| |
Collapse
|
3
|
Moreda U, Mazarrasa I, Cebrian E, Kaal J, Ricart AM, Serrano E, Serrano O. Role of macroalgal forests within Mediterranean shallow bays in blue carbon storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173219. [PMID: 38750738 DOI: 10.1016/j.scitotenv.2024.173219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Although seaweeds rank among the most productive vegetated habitats globally, their inclusion within Blue Carbon frameworks is at its onset, partially because they usually grow in rocky substrates and their organic carbon (Corg) is mostly exported and stored beyond their habitat and thus, demonstrating its long-term storage is challenging. Here, we studied the sedimentary Corg storage in macroalgal forests dominated by Gongolaria barbata and in adjacent seagrass Cymodocea nodosa mixed with Caulerpa prolifera algae meadows, and bare sand habitats in Mediterranean shallow coastal embayments. We characterized the biogeochemistry of top 30 cm sedimentary deposits, including sediment grain-size, organic matter and Corg contents, Corg burial rates and the provenance of sedimentary Corg throughout stable carbon isotopes (δ13Corg) and pyrolysis analyses. Sediment Corg stocks and burial rates (since 1950) in G. barbata forests (mean ± SE, 3.5 ± 0.2 kg Corg m-2 accumulated at 15.5 ± 1.6 g Corg m-2 y-1) fall within the range of those reported for traditional Blue Carbon Ecosystems. Although the main species contributing to sedimentary Corg stocks in all vegetated habitats examined was C. nodosa (36 ± 2 %), macroalgae contributed 49 % (19 ± 2 % by G. barbata and 30 ± 3 % by C. prolifera) based on isotope mixing model results. Analytical pyrolysis confirmed the presence of macroalgae-derived compounds in the sediments, including N-compounds and α-tocopherol linked to G. barbata and C. prolifera, respectively. The sedimentary Corg burial rate linked to macroalgae within the macroalgal forests examined ranged from 5.4 to 9.5 g Corg m-2 y-1 (7.4 ± 2 g Corg m-2 y-1). This study provides empirical evidence for the long-term (∼70 years) sequestration of macroalgae-derived Corg within and beyond seaweed forests in Mediterranean shallow coastal embayments and thereby, supports the inclusion of macroalgae in Blue Carbon frameworks.
Collapse
Affiliation(s)
- Uxue Moreda
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Inés Mazarrasa
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain; Instituto de Hidráulica Ambiental de la Universidad de Cantabria (IHCantabria), Santander, Spain
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Joeri Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - Aurora M Ricart
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Eduard Serrano
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain
| | - Oscar Serrano
- Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain.
| |
Collapse
|
4
|
James K, Macreadie PI, Burdett HL, Davies I, Kamenos NA. It's time to broaden what we consider a 'blue carbon ecosystem'. GLOBAL CHANGE BIOLOGY 2024; 30:e17261. [PMID: 38712641 DOI: 10.1111/gcb.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 05/08/2024]
Abstract
Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.
Collapse
Affiliation(s)
| | - Peter I Macreadie
- Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Heidi L Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Nicholas A Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Attard K, Singh RK, Gattuso JP, Filbee-Dexter K, Krause-Jensen D, Kühl M, Sejr MK, Archambault P, Babin M, Bélanger S, Berg P, Glud RN, Hancke K, Jänicke S, Qin J, Rysgaard S, Sørensen EB, Tachon F, Wenzhöfer F, Ardyna M. Seafloor primary production in a changing Arctic Ocean. Proc Natl Acad Sci U S A 2024; 121:e2303366121. [PMID: 38437536 PMCID: PMC10945780 DOI: 10.1073/pnas.2303366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Collapse
Affiliation(s)
- Karl Attard
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Rakesh Kumar Singh
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
- Center for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore119076, Singapore
| | - Jean-Pierre Gattuso
- CNRS-Sorbonne Université, Laboratoire d’Océanographie, Villefranche-sur-Mer06230, France
- Institute for Sustainable Development and International Relations, Paris75337, France
| | - Karen Filbee-Dexter
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- Benthic Communities Group/Institute of Marine Research, His4817, Norway
- School of Biological Science and Indian Oceans Marine Research Centre, University of Western Australia, Perth6009, WA, Australia
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, 3000Helsingør, Denmark
| | - Mikael K. Sejr
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Philippe Archambault
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- ArcticNet, Department of Biology, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Marcel Babin
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Simon Bélanger
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA400123
| | - Ronnie N. Glud
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 108-8477Tokyo, Japan
| | - Kasper Hancke
- Norwegian Institute for Water Research, 0579Oslo, Norway
| | - Stefan Jänicke
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jing Qin
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Søren Rysgaard
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment Earth, and Resources, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esben B. Sørensen
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Foucaut Tachon
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven27515, Germany
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Max-Planck-Institute for Marine Microbiology, Bremen28359, Germany
| | - Mathieu Ardyna
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
6
|
van der Mheen M, Wernberg T, Pattiaratchi C, Pessarrodona A, Janekovic I, Simpkins T, Hovey R, Filbee-Dexter K. Substantial kelp detritus exported beyond the continental shelf by dense shelf water transport. Sci Rep 2024; 14:839. [PMID: 38191572 PMCID: PMC10774291 DOI: 10.1038/s41598-023-51003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
Kelp forests may contribute substantially to ocean carbon sequestration, mainly through transporting kelp carbon away from the coast and into the deep sea. However, it is not clear if and how kelp detritus is transported across the continental shelf. Dense shelf water transport (DSWT) is associated with offshore flows along the seabed and provides an effective mechanism for cross-shelf transport. In this study, we determine how effective DSWT is in exporting kelp detritus beyond the continental shelf edge, by considering the transport of simulated sinking kelp detritus from a region of Australia's Great Southern Reef. We show that DSWT is the main mechanism that transports simulated kelp detritus past the continental shelf edge, and that export is negligible when DSWT does not occur. We find that 51% per year of simulated kelp detritus is transported past the continental shelf edge, or 17-29% when accounting for decomposition while in transit across the shelf. This is substantially more than initial global estimates. Because DSWT occurs in many mid-latitude locations around the world, where kelp forests are also most productive, export of kelp carbon from the coast could be considerably larger than initially expected.
Collapse
Affiliation(s)
- Mirjam van der Mheen
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia.
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Charitha Pattiaratchi
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Ivica Janekovic
- Oceans Graduate School and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Taylor Simpkins
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Renae Hovey
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|
7
|
Pessarrodona A, Franco-Santos RM, Wright LS, Vanderklift MA, Howard J, Pidgeon E, Wernberg T, Filbee-Dexter K. Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review. Biol Rev Camb Philos Soc 2023; 98:1945-1971. [PMID: 37437379 DOI: 10.1111/brv.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61-268 Tg C year-1 ), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Rita M Franco-Santos
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Luka Seamus Wright
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Mathew A Vanderklift
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Jennifer Howard
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Emily Pidgeon
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|