1
|
Toksoy Köseoğlu S, Doğru A. Physiological response of rapeseed (Brassica napus) to the insecticide imidacloprid. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02883-y. [PMID: 40252137 DOI: 10.1007/s10646-025-02883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2025] [Indexed: 04/21/2025]
Abstract
The widespread and indiscriminate application of insecticides within agricultural systems results in phytotoxic effects on non-target crops. Furthermore, the processes by which plants adapt and develop resistance to these agricultural chemicals are still not fully understood. This study provided a detailed analysis of the antioxidant enzyme responses, growth, photosynthetic activity, and pigment content under insecticide imidacloprid exposure on rapeseed (Brassica napus L.) plants to shed light on this issue. It has been observed that imidacloprid causes phytotoxicity in rapeseed, especially at high concentrations. The insecticide significantly affected growth parameters, pigment amounts, Fv/Fm ratio, H2O2 (hydrogen peroxide) and MDA (malondialdehyde) amount, and some antioxidant (APX-ascorbate peroxidase, CAT-catalase, DHAR-dehydroascorbate reductase, GPOD-guaiacol peroxidase, GR-glutathione reductase, SOD-superoxide dismutase) enzyme activities. These findings indicate that plants can adapt their physiological processes, such as enhancing antioxidant enzyme activities, modulating photosynthetic pigment composition, and adjusting osmoprotectant accumulation to withstand and endure insecticides up to a certain level. This research offers insights into how neonicotinoid insecticides affect plant health, linking directly to crop productivity and quality, as improved stress tolerance can lead to better growth performance, better photosynthetic activity, higher yield, lower reactive oxygen species levels, and enhanced nutritional value of the harvested produce.
Collapse
Affiliation(s)
| | - Ali Doğru
- Department of Biology, Faculty of Science, Sakarya University, Sakarya, Türkiye
| |
Collapse
|
2
|
Zhang X, Zhang C, Liu Y, Huo L, Yang Z, Tong Y, Zhang X, Yu Z, Yang X, Cao Q, Dong Q. Effects of planting patterns on physicochemical properties, metabolites and microbial community structure of rhizosphere soil in perennial cultivated grassland. Sci Rep 2025; 15:12047. [PMID: 40199986 PMCID: PMC11978768 DOI: 10.1038/s41598-025-94366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
Establishing perennial cultivated grasslands on the Qinghai-Tibet Plateau helps address the seasonal imbalance of forage resources and supports the restoration of degraded grasslands. The most common planting patterns-monocropping and mixed cropping-are well-studied in terms of vegetation structure, productivity, and soil nutrients. Despite their significance, the influence of prolonged planting practices on underground soil microbial communities and metabolites has often been neglected. In this study, two characteristic plants, Festuca sinensis 'Qinghai' and Poa pratensis 'Qinghai', from the area around Qinghai Lake were selected as the experimental subjects by employing 16 S and ITS sequencing methods in conjunction with non-targeted metabolomics analysis. The effects of planting patterns (monocropping and mixed cropping) on rhizosphere soil characteristics, metabolites and microbial community structure were examined. The results showed that compared with monocropping, mixed cropping significantly increased the contents of soil nutrients and key metabolites. In addition, it had a greater impact on fungal diversity than bacterial diversity, particularly in terms of β-diversity. While microbial α-diversity and dominant phyla remained stable, soil fungi were more responsive to changes in soil properties and metabolites. These results show that the new niche differentiation between different species in mixed grassland stimulates the secretion of trehalose and valine, which further affects the fungal community structure and enhances the soil nutrients and ecological functions of degraded grasslands. These findings will guide the restoration of degraded grasslands around Qinghai Lake and the selection of planting strategies to improve local sustainable grassland productivity.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Chunping Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Yuzhen Liu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Lian Huo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Zengzeng Yang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongshang Tong
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Xue Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Zehang Yu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiaoxia Yang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Quan Cao
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China
| | - Quanmin Dong
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016, Qinghai, China.
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining, 810016, Qinghai, China.
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region, Ministry of Education, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
3
|
Chen S, Bao G, Xu Y, Wang H, Tian L, Hu J, Wu Z, Yano W K. Assessment of the mechanism of combined toxicity of imidacloprid and triadimefon to Secale cereale L. seedlings under freeze-thaw cycle conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124774. [PMID: 40054354 DOI: 10.1016/j.jenvman.2025.124774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
Freeze-thaw (FT) cycles significantly stress crops in Northeast China, exacerbated by pesticide overuse, particularly affecting vulnerable seedlings during these periods. This study investigates the physiological responses of Secale cereale L. seedlings to the insecticide imidacloprid (IMI) and the fungicide triadimefon (T) under simulated FT conditions. Our findings reveal that both pesticides impair photosynthesis in FT environments, resulting in increased malondialdehyde (MDA) and relative conductivity (RC). Furthermore, exposure to IMI and T enhances the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), while decreasing reduced glutathione (GSH) and hydrogen peroxide (H2O2) levels. Notably, combined stress resulted in significant increases of 80.26%, 16.36%, and 87.7% in RC, SOD, and POD activities, respectively, alongside substantial decreases of 65.87%, 46.34%, 63.74%, and 63.78% in net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and water-use efficiency (WUE) in rye seedlings. Molecular docking analyses indicate that IMI and T interact with the active sites of SOD, POD, and APX through hydrogen bonding, compromising membrane integrity and inducing oxidative stress. While Secale cereale L. seedlings exhibit some resistance to IMI and T, FT conditions reduce this resilience. Correlation analysis reveals significant interactions between FT and pesticide stress on seedling physiology, suggesting that the concurrent use of IMI and T should be minimized in FT-prone areas. This study provides new insights into the pathways and mechanisms underlying the combined toxicity of IMI and T, offering a basis for assessing their environmental impacts on crops in regions susceptible to freeze-thaw cycles.
Collapse
Affiliation(s)
- Simeng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Yanan Xu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Huixin Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Lingzhi Tian
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jinke Hu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhaoxing Wu
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, 066003, China
| | - Kaino Yano W
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Li M, Pan C, Zhang Z, Wang J, Wang S, Li W, Zhou T, Wang X, Liu Z, Hu Z, Sun R, Li D. Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:354-369. [PMID: 39731607 DOI: 10.1021/acs.jafc.4c10038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere. Analysis of 2 h─28 d pesticide residue dynamics revealed that coumarin dramatically reduced IMI concentration in pepper fruits. Coumarin upregulated the phenylpropane pathway genes, which increased the levels of flavonoids, phenolic acids, phytohormones, and capsaicinoids. Importantly, phyllosphere and rhizosphere microbial diversity results showed that coumarin improved the abundance of beneficial microorganisms and positively correlated with secondary metabolite secretion. Therefore, coumarin exploited the interaction between the phenylpropane and coumarin synthesis pathways and beneficial microbes to enhance the nutritional quality and IMI degradation.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhijia Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Jialing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Shuai Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Wenzhuo Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Tianbing Zhou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Xiaoyi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ziyi Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Ranfeng Sun
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China
| |
Collapse
|
5
|
Gorshkov AP, Kusakin PG, Vorobiev MG, Tsyganova AV, Tsyganov VE. Effect of Insecticides Imidacloprid and Alpha-Cypermethrin on the Development of Pea ( Pisum sativum L.) Nodules. PLANTS (BASEL, SWITZERLAND) 2024; 13:3439. [PMID: 39683232 DOI: 10.3390/plants13233439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Insecticides are used commonly in agricultural production to defend plants, including legumes, from insect pests. It is a known fact that insecticides can have a harmful effect on the legume-rhizobial symbiosis. In this study, the effects of systemic seed treatment insecticide Imidor Pro (imidacloprid) and foliar insecticide Faskord (alpha-cypermethrin) on the structural organization of pea (Pisum sativum L.) nodules and their transcriptomic activity were investigated. The plants were treated as recommended by the manufacturer (10 mg/mL for Imidor Pro and 50 µg/mL for Faskord) and twofold concentrations were used for both insecticides. Insecticides had no visible effect on the growth of pea plants. The nodules also showed no visible changes, except for the variant treated with twofold concentration of Imidor Pro. However, the dry weight of shoots and roots differed significantly in insecticide-treated plants compared to untreated plants in almost all treatments. The number of nodules decreased in variants with Imidor Pro treatment. At the ultrastructural level, both insecticides caused cell wall deformation, poly-β-hydroxybutyrate accumulation in bacteroids, expansion of the peribacteroid space in symbiosomes, and inclusions in vacuoles. Treatment with Faskord caused chromatin condensation in nucleus. Imidor Pro treatment caused hypertrophy of infection droplets by increasing the amount of matrix, as confirmed by immunofluorescence analysis of extensins. Transcriptome analysis revealed upregulation of expression of a number of extensin-like protein-coding genes in nodules after the Imidor Pro treatment. Overall, both insecticides caused some minor changes in the legume-rhizobial system when used at recommended doses, but Faskord, an enteric contact insecticide, has fewer negative effects on symbiotic nodules and legume plants; of these two insecticides, it is preferred in pea agricultural production.
Collapse
Affiliation(s)
- Artemii P Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Pyotr G Kusakin
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Maxim G Vorobiev
- Research Resource Centre "Molecular and Cell Technologies", Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anna V Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia
| | - Viktor E Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia
| |
Collapse
|
6
|
Wang W, Long J, Wang H, Huang W, Zhang Y, Duan T. Insights into the effects of anilofos on direct-seeded rice production system through untargeted metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124668. [PMID: 39103033 DOI: 10.1016/j.envpol.2024.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Weed infestation is the major biological threat in direct-seeded rice production and can cause significant yield losses. The effective use of herbicides is particularly important in direct-seeded rice production. Anilofos, a pre-emergence herbicide, has been shown to be effective against the weed barnyardgrass. However, its impacts on crop yield and the direct-seeded rice production ecosystem remain underexplored. In this study, we conducted field trials and used untargeted metabolomics to investigate systemic effects of two different treatments (40 g/acre and 60 g/acre) on rice shoot and root as well as the rhizosphere soil during the critical tillering stage. Here, a total of 400 metabolites were determined in the crop and soil, with differential metabolites primarily comprising lipids and lipid-like molecules as well as phenylpropanoids and polyketides. Spearman correlation network analysis and a Zi-Pi plot revealed 7 key differential metabolites with significant topological roles, including succinic acid semialdehyde and riboflavin. KEGG pathway analysis showed that anilofos downregulated the amino acid metabolism while mainly promoted carbohydrate metabolism and secondary metabolites biosynthesis of the crop, which made minimal disruption on soil metabolism. Notably, we found 40 g/acre anilofos application could significantly improve the rice yield, potentially linked to the improved activity of flavonoid biosynthesis and starch and sucrose metabolism. This research provides a comprehensive evaluation of anilofos effects in the direct-seeded rice production system, offering new insights into optimizing herbicide use to improve agricultural sustainability and productivity.
Collapse
Affiliation(s)
- Weitao Wang
- Earth, Ocean and Atmospheric Sciences Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511457, China; Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Jiahuan Long
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenyuan Huang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Ying Zhang
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China.
| | - Tingting Duan
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550025, China
| |
Collapse
|
7
|
Touzout N, Bouchibane M, Tahraoui H, Mihoub A, Zhang J, Amrane A, Ahmad I, Danish S, Alahmadi TA, Ansari MJ. Silicon-mediated resilience: Unveiling the protective role against combined cypermethrin and hymexazol phytotoxicity in tomato seedlings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122370. [PMID: 39236605 DOI: 10.1016/j.jenvman.2024.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria.
| | - Malika Bouchibane
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of MÉDÉA, ALGERIA, Nouveau Pôle Urbain, Médéa University, 26000, Médéa, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, India, 244001.
| |
Collapse
|
8
|
Zhou C, Li D, Miao P, Cheng H, Zhang H, Wan X, Yu H, Jia Y, Dong Q, Pan C. Bensulfuron methyl induced multiple stress responses in the field wheat plants: Microbial community and metabolic network disturbance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134874. [PMID: 38901259 DOI: 10.1016/j.jhazmat.2024.134874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Sulfonylurea (SU) herbicides are widely used and often detected in environmental matrices and have toxic effects on ecosystems and plant development. However, the interaction between SU and soil-plant metabolism during the whole wheat growth cycle remains poorly investigated. Field trials demonstrated that bensulfuron methyl exposure reduced wheat height and a thousand grains' weight, disrupting the critical metabolic pathways, including linoleic acid and amino acid metabolism in the maturity stage. During different growth processes, bensulfuron methyl exposure decreases wheat soil and plants' defense-related indole alkaloid compounds, such as benzoxazinoids and melatonin. Microbial sequencing results showed that bensulfuron methyl treated decreased the abundance of beneficial microorganisms (Gammaproteobacteria, Bacteroidia, and Blastocatella) in the rhizosphere soil, which positively correlated with the inhibition of soil enzyme activity and the secretion of allelopathic substances (benzoxazinoids and melatonin). Molecular docking further confirmed that bensulfuron methyl affects protein molecular structure by establishing hydrogen bonds, which disequilibrate wheat benzoxazinoids and melatonin metabolism. Therefore, bensulfuron methyl exposure disrupted the interaction between soil microorganisms and indole alkaloid metabolism, hindering plant development. This study provides constructive insights into the environmental risks of herbicides and agricultural product safety throughout wheat development.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, PR China.
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Hui Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Xiaoying Wan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, PR China.
| |
Collapse
|
9
|
Touzout N, Mihoub A, Ahmad I, Jamal A, Danish S. Deciphering the role of nitric oxide in mitigation of systemic fungicide induced growth inhibition and oxidative damage in wheat. CHEMOSPHERE 2024; 364:143046. [PMID: 39117087 DOI: 10.1016/j.chemosphere.2024.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Consento (CON) poses a significant environmental hazard as a systemic fungicide, adversely affecting the health of non-target organisms. Nitric oxide (NO), a signaling molecule, is known to play a crucial role in plant physiology and abiotic stress tolerance. However, whether NO plays any role to enhance fungicide CON tolerance in wheat seedlings is yet unclear. Therefore, we conducted a hydroponic experiment i) to investigate the morpho-physio-biochemical changes of wheat seedlings to fungicide CON stress, and ii) to examine the effects of NO and fungicide CON treatments on oxidative damage, antioxidant system, secondary metabolism and detoxification of systemic fungicide in wheat seedlings. The results showed that CON fungicide at the highest (4X) concentration significantly decreased wheat seedlings fresh weight (46.89%), shoot length (40.26%), root length (56.11%) and total chlorophyll contents (67.44%) in a dose response relationship. Moreover, CON significantly increased hydrogen peroxide, malondialdehyde, catalase, ascorbate peroxidase, glutathione-S-transferase, and peroxidase activities while decreased reduced glutathione (GSH) content. This ultimately impaired the redox homeostasis of cells, leading to oxidative damage in cell membrane. Under fungicide treatment, the addition of NO reduced the fungicide phytotoxicity, with an increase of over 60% in seedling growth. The NO application mitigated CON phytotoxicity as reflected by significantly increased chlorophyll pigments (69.88%) and decreased oxidative damage in wheat leaves. Indeed, the NO alleviatory effect was able to increase the tolerance of seedlings to fungicide, which resulted increments in antioxidant and detoxification enzymes activity, with the enhanced GSH level (78.54%). Interestingly, NO alleviated CON phytotoxicity through the phenylpropanoid pathway by enhancing the activity of secondary metabolism enzymes such as phenylalanine ammonia-lyase (47.28%), polyphenol oxidase (9%), and associated metabolites such as phenolic acids (77.62%), flavonoids (34.33%) in wheat leaves. Our study has provided evidence that NO plays a key role in the metabolism and detoxification of systemic fungicide in wheat through enhanced activity of antioxidants, detoxifications and secondary metabolic enzymes.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Aftab Jamal
- Department of Soil and Environmental Sciences, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Punjab, Pakistan; Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan
| |
Collapse
|
10
|
Zhao X, Zhang T, Yang J, Zhang H, Yang L, Li Q, Hou N. Recovery capacity of constructed wetlands in response to multiple disturbances: Microbial interaction perspective. BIORESOURCE TECHNOLOGY 2024; 408:131155. [PMID: 39053595 DOI: 10.1016/j.biortech.2024.131155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Previous studies have predominantly explored the response mechanisms of constructed wetlands (CWs) to singular disturbances. In practical applications, CWs are frequently subject to multiple disturbances, resulting in complex interference mechanisms. Therefore, this study aims to select harmful algal blooms and microalga ZM-5 as disturbances to investigate the response mechanisms of CWs. Results revealed a dynamic pattern in COD removal efficiency of CWs, with fluctuations at 39.0 ± 6.2 % and 80.1 ± 4.7 % during the disturbances, followed by a recovery to approximately 65.7 ± 3.2 %. Additionally, the CWs exhibited a capacity for self-recovery and enhanced stability by selectively promoting specific microbial communities through the regulation of the genes responsible for indole-3-acetic acid (IAA) and vitamin production. Importantly, this study underscored the establishment of a resilient microbial community structure within CWs following multiple disturbances, characterized by a more interconnected microbial network. These findings shed light on the adaptive mechanisms of CWs in the face of complex environmental challenges.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinyi Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Han Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lan Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinglin Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Ding Y, Tao M, Xu L, Wang C, Wang J, Zhao C, Xiao Z, Wang Z. Impacts of nano-acetamiprid pesticide on faba bean root metabolic response and soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171976. [PMID: 38547984 DOI: 10.1016/j.scitotenv.2024.171976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.
Collapse
Affiliation(s)
- Ying Ding
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Chunjie Zhao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
12
|
Jiang W, Cheng Z, Zhai W, Ma X, Gao J, Liu X, Liu D, Zhou Z, Wang P. Oxytetracycline Increases the Residual Risk of Imidacloprid in Radish ( Raphanus sativus) and Disturbs the Plant-Rhizosphere Microbiome Holobiont Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6167-6177. [PMID: 38500001 DOI: 10.1021/acs.jafc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Antibiotics can be accidentally introduced into farmland by wastewater irrigation, and the environmental effects are still unclear. In this study, the effects of oxytetracycline on the residue of imidacloprid in soil and radishes were investigated. Besides, the rhizosphere microbiome and radish metabolome were analyzed. It showed that the persistence of imidacloprid in soil was unchanged, but the content of olefin-imidacloprid was increased by oxytetracycline. The residue of imidacloprid in radishes was increased by nearly 1.5 times, and the hazard index of imidacloprid was significantly raised by 1.5-4 times. Oxytetracycline remodeled the rhizosphere microbiome, including Actinobe, Elusimic, and Firmicutes, and influenced the metabolome of radishes. Especially, some amino acid metabolic pathways in radish were downregulated, which might be involved in imidacloprid degradation. It can be assumed that oxytetracycline increased the imidacloprid residue in radish through disturbing the plant-rhizosphere microbiome holobiont and, thus, increased the pesticide dietary risk.
Collapse
Affiliation(s)
- Wenqi Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Zheng Cheng
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Xiaoran Ma
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Jing Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| |
Collapse
|