1
|
Yang G, Li M, Zhang J, Zhou J, Cheah WY, Abdullah R, Ling TC. Evaluation of cultivation conditions in hydrogel systems to enhance Chlorella vulgaris growth. Int Microbiol 2025:10.1007/s10123-025-00670-7. [PMID: 40338463 DOI: 10.1007/s10123-025-00670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/19/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Microalgae have gained significant attention as sustainable alternatives to traditional agriculture and energy resources. The cultivation efficiency of microalgae within hydrogel systems presents a promising avenue for spatially efficient bio-production. However, the optimum cultivation conditions of hydrogel cultivation systems have not been elucidated. This study focused on evaluating the hydrogel-based cultivation of Chlorella vulgaris in symbiosis with Bacillus Strain Salmah Ismail (SI) 139SI. It investigated the impact of hydrogel concentration, pH, light exposure, and system thickness on the growth and chlorophyll production of the algae. Our findings highlighted that, in coculture, a 7% (w/v) hydrogel concentration, pH of 7.4, a 12-h light/dark cycle at a hydrogel concentration of 7% but continuous light exposure under 5% hydrogel concentration, and a system thickness of 10 mm have provided the most favorable environmental conditions for the proliferation and chlorophyll production of C. vulgaris. These conditions significantly enhanced the biomass yields, suggesting that tailored hydrogel environments can substantially improve microalgae productivity.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mingyang Li
- Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jinglin Zhang
- Graduate School of Life Sciences and Health, Faculté Des Sciences, Université Paris-Saclay, 91400, Orsay, France
| | - Jindao Zhou
- Faculty of Computer Science & Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS) Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Bakshi S, Kanetkar P, Bunkar DS, Browne C, Paswan VK. Chlorella sp. as a promising protein source: insight to novel extraction techniques, nutritional and techno-functional attributes of derived proteins. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40244156 DOI: 10.1080/10408398.2025.2491646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amidst the mounting environmental crises and ever-increasing global population, the quest for sustainable food production and resource utilization solutions has taken center stage. Microalgae, with Chlorella species at the forefront, present a promising avenue. They serve as a bountiful protein source and can be conveniently grown in waste streams, thereby tackling food security, environmental sustainability, and economic feasibility. This article embarks on a comprehensive journey through recent research on Chlorella by shedding light on its unique characteristics, its market value, cultivation techniques, and harvesting methods. It also delves into traditional and innovative extraction methods, underscoring the hurdles and breakthroughs in achieving high protein yields from the Chlorella biomass. Moreover, exploration of the protein's nutritional properties, bioactive peptides, and techno-functional attributes, enhance its potential for food applications. Further, this review also examines current market trends in consumer acceptance of this alternative protein and discusses strategies for reducing greenhouse gas emissions in their production. By providing invaluable insights into the current status and future prospects of Chlorella protein, it aspires to make a significant contribution to the ongoing dialogue on sustainable food production and resource management.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prajasattak Kanetkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Durga Shankar Bunkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Vinod Kumar Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Tounsi L, Ben Hlima H, Derbel H, Duchez D, Gardarin C, Dubessay P, Drira M, Fendri I, Michaud P, Abdelkafi S. Enhanced growth and metabolite production from a novel strain of Porphyridium sp. Bioengineered 2024; 15:2294160. [PMID: 38131141 PMCID: PMC10761138 DOI: 10.1080/21655979.2023.2294160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Microalgae are capable of generating numerous metabolites that possess notable biological activities and hold substantial promise for various industrial applications. Nevertheless, the taxonomic diversity of these photosynthetic microorganisms has not received thorough investigation. Using the 18S rRNA encoding gene, a recently discovered strain originating from the Tunisian coast (the governorate of Mahdia) was identified as a member of the Porphyridium genus. The growth response as well as the metabolite accumulation of Porphyridium sp. to different culture media (Pm, F/2, and Hemerick) was investigated over a period of 52 days. The highest biomass production was recorded with Pm medium (2 × 107 cell/mL). The apparent growth rates (µ) and the doubling time (Dt) were about 0.081 day-1 and 12.34 days, respectively. The highest chlorophyll a (0.678 ± 0.005 pg/cell), total carotenoids (0.18 ± 0.003 pg/cell), phycoerythrin (3.88 ± 0.003 pg/cell), and proteins (14.58 ± 0.35 pg/cell) contents were observed with F/2 medium. Cultivating Porphyridium sp. in both F/2 and Hemerick media yielded similar levels of starch accumulation. The Hemerick medium has proven to be the most suitable for the production of lipids (2.23% DW) and exopolysaccharides (5.41 ± 0.56 pg/cell).
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Hajer Ben Hlima
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Hana Derbel
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - David Duchez
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Christine Gardarin
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Pascal Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Team. National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Ramandani AA, Sun YM, Lan JCW, Lim JW, Chang JS, Srinuanpan S, Khoo KS. Upcycling food waste as a low-cost cultivation medium for Chlorella sp. microalgae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39319876 DOI: 10.1002/jsfa.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Global food loss and waste have raised environmental concerns regarding the generation of greenhouse gases (e.g., carbon dioxide and methane gas), which directly contribute to climate change. To address these concerns, the present research aims to upcycle food waste into an alternative culture medium for the cultivation of microalgae. Various parameters including pretreatment of food waste (i.e., autoclave and non-autoclave), concentration of food waste culture medium (i.e., 10%, 30%, 50%, 70%, 90% and 100%), harvesting efficiency and biochemical compounds of Chlorella sp. microalgae were carried out. RESULTS Based on the preliminary findings, the highest biomass concentration obtained from 10% food waste culture medium in the autoclave for Chlorella sp., including strains FSP-E, ESP-31 and CY-1, were 2.869 ± 0.022, 2.385 ± 0.018 and 0.985 ± 0.0026 g L-1, respectively. Since Chlorella vulgaris FSP-E exhibited the highest biomass concentration, this microalgal strain was selected to examine the subsequent parameters. Cultivation of C. vulgaris FSP-E in 100FW achieves a biomass concentration of 4.465 ± 0.008 g L-1 with biochemical compounds of 6.94 ± 1.396, 248.24 ± 0.976 and 406.23 ± 0.593 mg g-1 for lipids, carbohydrates and proteins, respectively. CONCLUSION This study shows that using food waste as an alternative culture medium for C. vulgaris FSP-E can achieve substantial biomass productivity and biochemical content. This research work would contribute to the concept of net zero emission and transitioning toward a circular bioeconomy by upcycling food waste as an alternative culture medium for the cultivation of microalgae. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adityas Agung Ramandani
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yi-Ming Sun
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Chiang Mai Research Center for Carbon Capture and Storage, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai, Thailand
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Ahmad A, Amin KA, Ashraf SS. Biological effects of culture medium on Tetraselmis chuii and Dunaliella tertiolecta: Implications for emerging pollutants degradation. CHEMOSPHERE 2024; 363:142868. [PMID: 39025305 DOI: 10.1016/j.chemosphere.2024.142868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, laboratory-scale cultivation of T. chuii and D. tertiolecta was conducted using Conway, F/2, and TMRL media to evaluate their biochemical composition and economic costs. The highest cell density (30.36 × 106 cells/mL) and dry weight (0.65 g/L) for T. chuii were achieved with Conway medium. This medium also produced biomass with maximum lipid content (25.65%), proteins (27.84%), and total carbohydrates (8.45%) compared with F/2 and TMRL media. D. tertiolecta reached a maximum cell density of 17.50 × 106 cells/mL in F/2 medium, which was notably lower than that of T. chuii. Furthermore, the media cost varied from US$0.23 to US$0.74 for each 1 L of media, primarily due to the addition of Na3PO4, KNO3, and cyanocobalamin. Thus, biomass production rates varied between US$38.81 and US$128.80 per kg on a dry weight basis. These findings comprehensively compare laboratory conditions and the costs associated with biomass production in different media. Additionally, this study explored the potential of T. chuii and D. tertiolecta strains, as well as their consortia with bacteria, for the degradation of various emerging pollutants (EPs), including caffeine, salicylic acid, DEET, imidacloprid, MBT, cimetidine, venlafaxine, methylparaben, thiabendazole, and paracetamol. Both microalgal strains demonstrated effective degradation of EPs, with enhanced degradation observed in microalgae-bacterial consortia. These results suggest that the symbiotic relationship between microalgae and bacteria can be harnessed for the bioremediation of EPs, thereby offering valuable insights into the environmental applications of microalgal cultivation.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Khadije Ahmad Amin
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Xu H, Chen Y, Yang D, Wang H, Tang Z, Dai X, Chen H. Improved microalgae growth and lipid production in anaerobic digestate with ultraviolet radiation pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171339. [PMID: 38428595 DOI: 10.1016/j.scitotenv.2024.171339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.
Collapse
Affiliation(s)
- Haolian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Marques F, Pereira F, Machado L, Martins JT, Pereira RN, Costa MM, Genisheva Z, Pereira H, Vicente AA, Teixeira JA, Geada P. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate. Foods 2024; 13:1018. [PMID: 38611325 PMCID: PMC11011475 DOI: 10.3390/foods13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.
Collapse
Affiliation(s)
- Fabiana Marques
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Francisco Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Luís Machado
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Monya M. Costa
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | | | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Vellaiyan S. An integrated approach for wastewater treatment and algae cultivation: Nutrient removal analysis, biodiesel extraction, and energy and environmental metrics enhancement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120410. [PMID: 38402784 DOI: 10.1016/j.jenvman.2024.120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Human urine is rich in nitrogen and phosphorus, and the presence of these elements in wastewater significantly disrupts the biogeochemical cycle. Meanwhile, green algal biomass cultivation is unfeasible without these nutrients. Hence, the present study integrates wastewater treatment and algae cultivation to extract biodiesel and improve its performance through fuel modification. Chlorella vulgaris algae was cultivated in different dilution ratios of water and urine, and the nutrient removal rate was analyzed. Chlorella vulgaris algae biodiesel (CAB) was derived through Bligh and Dyer's method followed by transesterification, and its functional and elemental groups were analyzed. The various volume concentrations of CAB were blended with regular diesel fuel (RDF), and 10% water was added to a 30% CAB blended RDF to evaluate the combustion performance and environmental impacts. The results of the experiments demonstrated that the algae cultivation effectively removed the wastewater nutrients. The functional and elemental groups of CAB are identical to those of RDF. The engine characteristics of test fuels report that the CAB-blend RDF fuel mixtures generate low carbon footprints, whereas negative impacts have been drawn for performance metrics and oxides of nitrogen emissions. The water-emulsified fuel outweighed the unfavorable effects and promoted more efficient and cleaner combustion.
Collapse
Affiliation(s)
- Suresh Vellaiyan
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India.
| |
Collapse
|