1
|
Marizzi Del Olmo A, López-Doval JC, Hidalgo M, Serra T, Colomer J, Salvadó V, Escolà Casas M, Medina JS, Matamoros V. Holistic assessment of chemical and biological pollutants in a Mediterranean wastewater effluent-dominated stream: Interactions and ecological impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125833. [PMID: 39952585 DOI: 10.1016/j.envpol.2025.125833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
The discharge of treated wastewater from wastewater treatment plants (WWTPs) into river systems is a significant source of pollution, introducing a range of chemical and biological pollutants that impact the chemical and ecological quality status of rivers. This study evaluates the effect of a secondary treated wastewater effluent on the Onyar River, in the northeast of Spain. Water and biofilm samples were collected at one upstream and four downstream sampling points (up to 2.8 km from the discharge point) across four seasons. A wide array of pollutants, including metals, pharmaceuticals, microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), antibiotic resistance genes (ARGs), among other emerging pollutants, were detected downstream, with significant differences between upstream and downstream concentrations. Our results show that WWTP discharge also altered biofilm microbiome composition and ARGs presence, being these changes distinguishable from seasonal variations. Nevertheless, a partial recovery further downstream (525 m) was observed for biofilm microbiome and ARGs composition. These findings highlight the value of microbiome analysis in assessing wastewater impacts on river ecosystems and emphasize the need for further research to improve pollutant attenuation and biofilm recovery strategies in river streams.
Collapse
Affiliation(s)
- Anna Marizzi Del Olmo
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Julio C López-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), E-08500, Vic, Spain
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Jordi Colomer
- Department of Physics, University of Girona (UdG), E-17003, Girona, Spain
| | - Victòria Salvadó
- Department of Chemistry, University of Girona (UdG), E-17003, Girona, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Jessica Subirats Medina
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
2
|
Jarma D, Sacristán-Soriano O, Borrego CM, Hortas F, Peralta-Sánchez JM, Balcázar JL, Green AJ, Alonso E, Sánchez-Melsió A, Sánchez MI. Variability of faecal microbiota and antibiotic resistance genes in flocks of migratory gulls and comparison with the surrounding environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124563. [PMID: 39019307 DOI: 10.1016/j.envpol.2024.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Gulls commonly rely on human-generated waste as their primary food source, contributing to the spread of antibiotic-resistant bacteria and their resistance genes, both locally and globally. Our understanding of this process remains incomplete, particularly in relation to its potential interaction with surrounding soil and water. We studied the lesser black-backed gull, Larus fuscus, as a model to examine the spatial variation of faecal bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) and its relationship with the surrounding water and soil. We conducted sampling campaigns within a connectivity network of different flocks of gulls moving across functional units (FUs), each of which represents a module of highly interconnected patches of habitats used for roosting and feeding. The FUs vary in habitat use, with some gulls using more polluted sites (notably landfills), while others prefer more natural environments (e.g., wetlands or beaches). Faecal bacterial communities in gulls from flocks that visit and spend more time in landfills exhibited higher richness and diversity. The faecal microbiota showed a high compositional overlap with bacterial communities in soil. The overlap was greater when compared to landfill (11%) than to wetland soils (6%), and much lower when compared to bacterial communities in surrounding water (2% and 1% for landfill and wetland water, respectively). The relative abundance of ARGs and MGEs were similar between FUs, with variations observed only for specific families of ARGs and MGEs. When exploring the faecal carriage of ARGs and MGEs in bird faeces relative to soil and water compartments, gull faeces were enriched in ARGs classified as High-Risk. Our results shed light on the complex dynamics of antibiotic resistance spread in wild bird populations, providing insights into the interactions among gull movement and feeding behavior, habitat characteristics, and the dissemination of antibiotic resistance determinants across environmental reservoirs.
Collapse
Affiliation(s)
- Dayana Jarma
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avda. República Árabe Saharaui Democrática 6, 11519, Puerto Real, Cádiz, Spain.
| | - Oriol Sacristán-Soriano
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003, Girona, Spain
| | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avda. República Árabe Saharaui Democrática 6, 11519, Puerto Real, Cádiz, Spain
| | - Juan M Peralta-Sánchez
- Departmento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Seville, Spain
| | - José L Balcázar
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Alexandre Sánchez-Melsió
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Marta I Sánchez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
3
|
Wang HB, Wu YH, Sun Y, Chen Z, Xu YQ, Ikuno N, Koji N, Hu HY. Ozone-Resistant Bacteria, an Inconvenient Hazard in Water Reclamation: Resistance Mechanism, Propagating Capacity, and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17908-17915. [PMID: 39344972 DOI: 10.1021/acs.est.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resistant bacteria have always been of research interest worldwide. In the urban water system, the increased disinfectant usage gives more chances for undesirable disinfection-resistant bacteria. As the strongest oxidative disinfectant in large-scale water treatment, ozone might select ozone-resistant bacteria (ORB), which, however, have rarely been reported and are inexplicit for their resistant mechanisms and physiological characteristics. In this study, six strains of ORB were screened from a water reclamation plant in Beijing. Three of them (O7, CR19, and O4) were more resistant to ozone than all previously reported ORB or even spores. The ozone consumption capacity of extracellular polymeric substances and cell walls was proved to be the main sources of bacterial ozone resistance, rather than intracellular antioxidant enzymes. The transcriptome results elucidated that strong ORB possessed a combined antioxidant mechanism consisting of the enhanced transcription of protein synthesis, protein export, and polysaccharide export genes (LptF, LptB, NodJ, LivK, LviG, MetQ, MetN, and GltU). This study confirmed the existence of ORB in urban water systems and brought doubts to the idea of a traditional control strategy against chlorine-resistant bacteria. A salient "trade-off" effect between the ozone resistance and propagation ability indicated the weakness and potential control approaches of ORB.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yige Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
4
|
Huang X, Zhao X, Fu L, Yang G, Luo L. The distribution and key influential factors of antibiotic resistance genes in agricultural soils polluted by multiple heavy metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:385. [PMID: 39167301 DOI: 10.1007/s10653-024-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Due to anthropogenic activities such as mining, several agricultural soils are polluted by multiple heavy metals. However, it is still unclear whether multiple heavy metals could affect the distribution of antibiotic resistance genes (ARGs), and how metals affect ARGs. To understand ARGs' distribution in heavy metal-polluted soils, we chose soils contaminated by different types and contents of heavy metals to determine the ARGs' number and abundance through high-throughput quantitative real-time PCR (HT-qPCR) in this study. Additionally, the factors affecting ARGs' distribution, such as soil properties, mobile genetic genes (MGEs), and bacterial communities, were explored. The results demonstrated that the sampled soils were primarily contaminated by Cd, As, Pb, and Zn, and the pollution load index (PLI) values of these metals ranged from 1.3 to 2.7, indicating a low to moderate degree of heavy metal contamination. The number and abundance of ARGs ranged from 44 to 113 and from 2.74 × 107 copies/g to 1.07 × 108 copies/g, respectively. Besides, abundant MGEs in soils, ranging from 1.84 × 106 copies/g to 5.82 × 106 copies/g, were observed. The pathway analysis suggested that MGEs were the most important factor directly affecting ARG abundance (0.89). Notably, heavy metals also affected the ARG abundance. Proteobacteria and Actinobacteria, the main heavy metal tolerant bacteria, were found to be the main hosts of ARGs through network analysis. ARG-carrying pathogens (ACPs) in agricultural soils were found to carry MGEs, indicating a high risk of dissemination. This study provided important information for understanding the ARGs' fate and also the key factors affecting ARGs' spread in multiple heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xin Huang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Li Fu
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
5
|
Klümper U, Gionchetta G, Catão E, Bellanger X, Dielacher I, Elena AX, Fang P, Galazka S, Goryluk-Salmonowicz A, Kneis D, Okoroafor U, Radu E, Szadziul M, Szekeres E, Teban-Man A, Coman C, Kreuzinger N, Popowska M, Vierheilig J, Walsh F, Woegerbauer M, Bürgmann H, Merlin C, Berendonk TU. Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun Biol 2024; 7:706. [PMID: 38851788 PMCID: PMC11162449 DOI: 10.1038/s42003-024-06338-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.
Collapse
Affiliation(s)
- Uli Klümper
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Giulia Gionchetta
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Elisa Catão
- Université de Lorraine, Villers-lès-Nancy, France
- Université de Toulon, Toulon, France
| | | | - Irina Dielacher
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Alan Xavier Elena
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Peiju Fang
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Sonia Galazka
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Agata Goryluk-Salmonowicz
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
- Warsaw University of Life Sciences, Institute of Biology, Department of Biochemistry and Microbiology, Warsaw, Poland
| | - David Kneis
- Technische Universität Dresden, Institute for Hydrobiology, Dresden, Germany
| | - Uchechi Okoroafor
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Elena Radu
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Romanian Academy of Science, Institute of Virology Stefan S. Nicolau, Bucharest, Romania
| | - Mateusz Szadziul
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Edina Szekeres
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Adela Teban-Man
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristian Coman
- NIRDBS, Institute of Biological Research Cluj-Napoca, Cluj-Napoca, Romania
| | - Norbert Kreuzinger
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
| | - Magdalena Popowska
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Physiology, Warsaw, Poland
| | - Julia Vierheilig
- TU Wien, Institute of Water Quality and Resource Management, Vienna, Austria
- Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Fiona Walsh
- Maynooth University, Department of Biology, Kathleen Lonsdale Institute for Human Health, Maynooth, Co. Kildare, Ireland
| | - Markus Woegerbauer
- AGES - Austrian Agency for Health and Food Safety, Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, Vienna, Austria
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | | | | |
Collapse
|
6
|
Bagra K, Kneis D, Padfield D, Szekeres E, Teban-Man A, Coman C, Singh G, Berendonk TU, Klümper U. Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. mSphere 2024; 9:e0057323. [PMID: 38323843 PMCID: PMC10900892 DOI: 10.1128/msphere.00573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
River microbial communities regularly act as the first barrier of defense against the spread of antimicrobial resistance genes (ARGs) that enter environmental microbiomes through wastewater. However, how the invasion dynamics of wastewater-borne ARGs into river biofilm communities will shift due to climate change with increasing average and peak temperatures remains unknown. Here, we aimed to elucidate the effects of increasing temperatures on the naturally occurring river biofilm resistome, as well as the invasion success of foreign ARGs entering through wastewater. Natural biofilms were grown in a low-anthropogenic impact river and transferred to artificial laboratory recirculation flume systems operated at three different temperatures (20°C, 25°C, and 30°C). After 1 week of temperature acclimatization, significant increases in the abundance of the naturally occurring ARGs in biofilms were detected at higher temperatures. After this acclimatization period, biofilms were exposed to a single pulse of wastewater, and the invasion dynamics of wastewater-borne ARGs were analyzed over 2 weeks. After 1 day, wastewater-borne ARGs were able to invade the biofilms successfully with no observable effect of temperature on their relative abundance. However, thereafter, ARGs were lost at a far increased rate at 30°C, with ARG levels dropping to the initial natural levels after 14 days. Contrary to the lower temperatures, ARGs were either lost at slower rates or even able to establish themselves in biofilms with stable relative abundances above natural levels. Hence, higher temperatures come with contrary effects on river biofilm resistomes: naturally occurring ARGs increase in abundance, while foreign, invading ARGs are lost at elevated speeds.IMPORTANCEInfections with bacteria that gained resistance to antibiotics are taking millions of lives annually, with the death toll predicted to increase. River microbial communities act as a first defense barrier against the spread of antimicrobial resistance genes (ARGs) that enter the environment through wastewater after enrichment in human and animal microbiomes. The global increase in temperature due to climate change might disrupt this barrier effect by altering microbial community structure and functions. We consequently explored how increasing temperatures alter ARG spread in river microbial communities. At higher temperatures, naturally occurring ARGs increased in relative abundance. However, this coincided with a decreased success rate of invading foreign ARGs from wastewater to establish themselves in the communities. Therefore, to predict the effects of climate change on ARG spread in river microbiomes, it is imperative to consider if the river ecosystem and its resistome are dominated by naturally occurring or invading foreign ARGs.
Collapse
Affiliation(s)
- Kenyum Bagra
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - David Kneis
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Exeter, United Kingdom
| | - Edina Szekeres
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Adela Teban-Man
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Cristian Coman
- Institute of Biological Research Cluj, NIRDBS, Cluj-Napoca, Romania
| | - Gargi Singh
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U. Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|