1
|
Fernández-Arribas J, Moreno T, Eljarrat E. Plastic additives in the diet: Occurrence and dietary exposure in different population groups. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138317. [PMID: 40273863 DOI: 10.1016/j.jhazmat.2025.138317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
A total diet study focused on exposure to plastic additives has been performed on 109 food samples. Plasticizers were detected in 85 % of analyzed samples with total concentrations ranging between not detected (nd) and 22.0 µg/g wet weight (ww). Non-phthalate plasticizers (NPPs), such as acetyl tributyl citrate (ATBC) or di(2-ethylhexyl) adipate (DEHA), were detected predominantly in baby foods (nd-3.38 µg/g ww) and meat (nd-15.0 µg/g ww), respectively. Significant differences (p ≤ 0.001) were observed across foods with different packaging types regarding the presence of ATBC and DEHA. ATBC was primarily detected in foods packaged in glass containers, meanwhile DEHA is mainly related to fresh food wrapped in plastic materials. Additionally, transference assays in selected ready to cook meals and fresh vegetables were performed, with NPPs exhibiting a higher transference from packaging to food than other compounds. The data obtained have been used for an assessment of estimated daily intake (EDI) of plastic additives in infants (6-12 months), toddlers (1-3 years), and adults (>18 years), resulting in values ranging 0.29-516 µg/kg body weight (bw)/day. Human risk related to baby food consumption, expressed as hazard quotients (HQs), was found with di(2-ethylhexyl) phthalate (DEHP) in the infant population sub-group.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| |
Collapse
|
2
|
Yang M, Sun J, Cao X, Liu H, Wu X, Mao W, Hao L. Comparative toxicity analysis of benzo[a]pyrene and PAH4 on HepG2 cells using transcriptomics and metabolomics. Food Chem Toxicol 2025; 201:115473. [PMID: 40280401 DOI: 10.1016/j.fct.2025.115473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants posing potential health risks. PAH4 (sum of benzo[a]pyrene (BaP), chrysene, benz[a]anthracene and benzo[b]fluoranthene) has been proposed as a marker to evaluate the occurrence of total PAHs. However, toxicity effects of exposure to PAH4 mixture and its toxicity differences with single PAH are little-known. Here, we systematically investigated the hepatotoxicity mechanisms of PAH4 and compare its toxicity with BaP using HepG2 cell model. Our results showed that BaP and PAH4 exposure induced cytotoxicity and oxidative stress. Furthermore, both BaP and PAH4 activated P53 signaling pathway, leading to cell apoptosis, and disrupted peroxisome proliferator-activated receptor (PPAR) signaling and induced lipid metabolism disorder. Integrated analysis of transcriptomics and metabolomics indicated that BaP and PAH4 shared similar toxicity mechanisms, commonly affecting the metabolic pathways including glycerolipid and glycerophospholipid metabolism. Moreover, the integrated biomarker response (IBR) analysis demonstrated that BaP and PAH4 exhibited similar global toxicity on HepG2 cells. We further found that the toxicity effects of PAH4 could be partially alleviated by an aryl hydrocarbon receptor (AHR) antagonist, indicating a potential role of AHR signaling in PAH4-induced hepatotoxicity. Overall, these findings provided insights into the toxicological mechanisms and interaction effects of PAHs mixtures.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jialin Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xudong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing, 100022, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Yu Q, Li Y, Yang Z, Liu M, Zhou Q, Xu W, Xu L, Tian F. Network toxicological and single-cell sequencing reveals the potential mechanisms of psoriatic toxicity of polybrominated diphenyl ethers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118307. [PMID: 40367614 DOI: 10.1016/j.ecoenv.2025.118307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Polybrominated diphenyl ethers (PBDEs), major brominated flame retardants, have been implicated in various health issues due to their environmental persistence and bioaccumulation. PBDEs preferentially accumulate in the skin due to their low hydrophobicity and may contribute to the onset of psoriasis. In this study, we aimed to investigate the potential mechanisms of PBDE-induced psoriatic toxicity by utilizing network toxicology at single-cell resolution. Initially, 139 overlapping targets between PBDEs and psoriasis were identified, and their protein-protein interactions (PPIs) were mapped. Enrichment analysis indicated that PBDEs-targeted genes might worsen psoriatic lesions through an overactive immune response. Single-cell sequencing revealed a comprehensive immune cell activation, predominantly through the IL-24 signaling pathway, in response to PBDE enrichment. Moreover, the molecular docking analysis revealed that PBDEs exhibited specific binding interactions with hub targets such as HSP90AA1, MAPK3, MMP9, TP53, and CASP3, which are crucial for psoriasis pathogenesis. In conclusion, our findings establish a solid theoretical basis for understanding the potential molecular mechanisms underlying PBDE-induced cutaneous toxicity. Integrating network toxicology with single-cell sequencing refines the prediction accuracy of pollutant exposure across pathogenic mechanisms. This study presents an interdisciplinary strategy with untapped potential for mitigating pollutant exposure, thereby aiding in the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Qi Yu
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medical University, Wenzhou, PR China; First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ying Li
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Ze Yang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Mengyuan Liu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Qiaochu Zhou
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medical University, Wenzhou, PR China
| | - Wangda Xu
- Department of Endocrinology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Li Xu
- College of Basic Medical Science, Institute of Basic Research in Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, PR China.
| | - Fengyuan Tian
- First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China; College of Basic Medical Science, Institute of Basic Research in Clinical Medicine, Zhejiang Chinese Medicine University, Hangzhou, PR China; General Practice, First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, PR China.
| |
Collapse
|
4
|
Liang C, Tian W, Zeng H, Xia Z, Luo Z, Zhuo Y, Pan M, Wu K, Xiong S, Lin X, Li X, Yu J. Revealing the Impact of Mono(2-ethylhexyl) Phthalate (MEHP) on Prostate Cancer Based on Network Toxicology and Molecular Docking Approaches. J Appl Toxicol 2025. [PMID: 40491172 DOI: 10.1002/jat.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Revised: 05/03/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is a ubiquitous environmental contaminant and endocrine-disrupting chemical (EDC), identified as a potential carcinogen. Emerging studies have begun to elucidate the impact of MEHP on prostate cancer (PCa), yet its pathogenic effects and the underlying molecular mechanisms remain unclear. This study seeks to explore the molecular basis through which MEHP affects the onset and progression of PCa. Using network toxicology and bioinformatics, we identified MEHP-related pathogenic genes in PCa. An innovative predictive model was developed by employing multiple machine learning ensemble algorithms, and its performance was validated using the area under the receiver operating characteristic (ROC) curve. Furthermore, at the single-cell resolution, the role of key MEHP-associated molecules, including several critical genes, in the oncogenic progression of PCa was identified. Through the construction of an environmental pollutant-key gene-PCa network, we investigated the interactions between environmental pollutants and the key genes VGF, ASPN, FOXS1, APLN, and AMH. Molecular docking studies demonstrated that the APLN, FOXS1, and ASPN genes exhibited favorable binding energies and high affinities for MEHP. The findings of this study provide a theoretical foundation for understanding the pathogenic role of MEHP in PCa and its potential molecular mechanisms. They also promote the application of network toxicology, molecular docking, machine learning, and single-cell analysis in the study of environmental pollutants.
Collapse
Affiliation(s)
- Chenyu Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Weicheng Tian
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Hengxi Zeng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyang Xia
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zijie Luo
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yue Zhuo
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Minlian Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Kangbu Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Siyu Xiong
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejing Lin
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxi Yu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Guo B, He X. The Mechanism of Bisphenol S-Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning. J Appl Toxicol 2025; 45:1043-1055. [PMID: 39978769 DOI: 10.1002/jat.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovascular health, but the specific mechanisms remain unclear. This study aims to elucidate the effects of BPS on AS and the underlying mechanisms. Through an extensive search of databases such as ChEMBL, STITCH, SwissTargetPrediction, SuperPred, SEA, and GEO, we identified 34 potential targets related to BPS-induced AS. A target network was constructed using the STRING platform and Cytoscape software. GO and KEGG functional enrichment analysis using the DAVID database revealed that BPS may promote the occurrence of AS by interfering with critical biological processes such as glutathione metabolism, nitrogen metabolism, and tyrosine metabolism. This was followed by the selection of 4 core targets-aminopeptidase n (ANPEP), alcohol dehydrogenase 5 (ADH5), lysosomal pro-x carboxypeptidase (PRCP), and microsomal glutathione s-transferase 1 (MGST1)-using five machine learning methods. These core targets play a pivotal role in BPS-induced AS. Furthermore, molecular docking confirmed the tight binding between BPS and these core targets. In conclusion, this study provides a theoretical framework for understanding the molecular mechanisms of BPS-induced AS and contributes scientific evidence for the development of prevention and treatment strategies for cardiovascular diseases triggered by BPS exposure.
Collapse
Affiliation(s)
- Bing Guo
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan He
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
6
|
Ouyang W, Zhu C, Li Y, Huang H, Li F, Ling L. Assessing the neurotoxic risks of triethyl citrate in daily environmental exposure using network toxicology and molecular docking. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118225. [PMID: 40273610 DOI: 10.1016/j.ecoenv.2025.118225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Synthetic chemicals like triethyl citrate (TEC) are widely used in food packaging, pharmaceuticals, and cosmetics. Despite being considered safe, there are concerns about TEC's potential neurotoxic effects. In this study, we used network toxicology and molecular docking to examine TEC's impact on the nervous system. We identified 229 targets related to neurotoxicity and found that TEC may affect key processes such as cell death, inflammation, and neuronal health. Molecular docking showed strong interactions between TEC and proteins like MAPK3, SRC, CASP3, TNF, and BCL2, suggesting a risk of neural damage and the need for further research to assess TEC's safety.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Chenjie Zhu
- School of Medicine, Sun Yat-sen University, Shenzhen 518000, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Hong Huang
- Clinical Medicine College, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, China.
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
7
|
Li SS, Tian XD, Song JK, Wu YD, Wang WL, Tang ZL, Wang JB. Network toxicological and molecular docking in investigating the mechanisms of toxicity of agricultural chemical pyraclostrobin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118244. [PMID: 40294500 DOI: 10.1016/j.ecoenv.2025.118244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
The safety of agricultural products is significant to human health. Pyraclostrobin (PYR), a common methoxycarbonyl fungicide, is a crucial role in the prevention of fungal infections during the transport and storage of agricultural products, including vegetables and fruits. Using a multi-analytical approach, integrating toxicological database mining, protein-protein interaction (PPI) network analysis, and molecular docking, this study aimed to elucidate the molecular mechanisms underlying the toxicity of PYR. A total of 162 and 129 targets were identified for cancer and kidney injury, respectively, with PPI analysis pinpointing five vital targets per condition. Functional enrichment through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway annotations revealed significant associations with pathways related to prostate cancer and renal impairment pathways. Molecular docking confirmed PYR's binding affinity to these targets, indicating its potential role in disease pathogenesis. Our findings underscore the imperative for stringent safety assessments of PYR, particularly concerning the risks posed by chronic exposure, and emphasize the urgency for further research to inform public health and environmental policies.
Collapse
Affiliation(s)
- Shen-Sui Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xu-Dong Tian
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ju-Kun Song
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ya-Dong Wu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wei-Li Wang
- Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Zheng-Long Tang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Jin-Bo Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
8
|
Zhao S, Liu H, Zhong H, Qin Y, Duan J, Liu A. Systemic Inflammation Mediates the Association Between Blood Trihalomethane Concentrations and Cardiovascular Disease in U.S. Individuals Over 45: Insights from NHANES 2005-2012. Cardiovasc Toxicol 2025:10.1007/s12012-025-10008-4. [PMID: 40366518 DOI: 10.1007/s12012-025-10008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Trihalomethanes (THMs), the major byproducts of water chlorination which are associated with various adverse health outcomes. However, the relationship of THMs with cardiovascular disease (CVD) in aging populations remains underexplored. We analyzed data from 5,400 participants in the National Health and Nutrition Examination Survey (NHANES) 2005-2012. Associations between blood THM concentrations and CVD were evaluated using weighted multivariable logistic regression. Weighted quantile sum (WQS) regression was applied to identify the most relevant THM components. We also performed mediation analysis to evaluate the role of inflammatory markers, including neutrophil-to-lymphocyte ratio (NLR), white blood cell count (WBC), and systemic inflammation response index (SIRI). Network toxicology analysis was used to explore the biological pathways linking THM exposure, CVD, and aging. Elevated blood concentrations of THMs, particularly chloroform (TCM) and total THMs (TTHMs), were significantly associated with increased odds of CVD. Stratified analyses revealed stronger associations among older adults, males, individuals with higher BMI, and those with hypertension. WQS regression identified TCM as the predominant contributor to the THM-CVD association, accounting for 58.0% of the mixture's effect. Mediation analysis showed that NLR partially mediated the association between TTHMs and CVD, explaining 7.12% of the total effect. Network toxicology analysis highlighted inflammation-related pathways, including the IL-17 signaling pathway, as key mechanisms linking THM exposure, CVD, and aging. Our study revealed elevated blood TCM and TTHM concentrations are associated with increased prevalence of CVD among U.S. adults aged 45 years and older. Network toxicology and mediation analysis suggest that systemic inflammation may play a mediating role in this relationship.
Collapse
Affiliation(s)
- Songfeng Zhao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, China
| | - Hongyi Liu
- Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hailong Zhong
- Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yongkai Qin
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Hunan, China
| | - Jiayue Duan
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Aihua Liu
- Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Macan Schönleben A, den Ouden F, Yin S, Fransen E, Bosschaerts S, Andjelkovic M, Rehman N, van Nuijs ALN, Covaci A, Poma G. Organophosphorus Flame Retardant, Phthalate, and Alternative Plasticizer Contamination in Novel Plant-Based Food: A Food Safety Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9209-9220. [PMID: 40116373 PMCID: PMC12080256 DOI: 10.1021/acs.est.4c11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
With plant-based (PB) diets gaining popularity, ultraprocessed novel plant-based foods (NPBFs) are an increasingly available alternative to animal-based foods (ABFs). The degree of industrial food processing has been associated with higher organophosphorus flame retardant (PFR) and plasticizer contamination. Here, the occurrence of these contaminants in NPBFs was investigated by using liquid chromatography-tandem mass spectrometry. Our findings show differences in contamination levels and patterns between PB food categories, with PB cheese-alternatives showing the highest levels of both total PFRs (mean: 123 ng/g ww) and total plasticizers (mean: 1155 ng/g ww). The results further point to food contact material and industrial processing as possible contamination sources. Compared with previous studies of ABFs, NPBFs generally showed higher contamination levels, leading to a higher dietary exposure in a vegan diet scenario. While the adult population is not at immediate risk following NPBF consumption, based on these results, a direct replacement of all ABFs with NPBFs is not recommended. Additionally, it is suggested that different PB food categories be included in future food studies monitoring dietary exposure.
Collapse
Affiliation(s)
| | - Fatima den Ouden
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Key
Laboratory of Pollution Exposure and Health Intervention of Zhejiang
Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Erik Fransen
- Centre
of Medical Genetics, University of Antwerp
and Antwerp University Hospital, 2650 Edegem, Belgium
- Centre
for
Oncological Research, University of Antwerp
and Antwerp University Hospital, 2610 Wilrijk, Belgium
| | - Stijn Bosschaerts
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Mirjana Andjelkovic
- Sciensano,
Service Risk and Health Impact Assessment, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nayyer Rehman
- WRG
Europe Ltd., 26-28 Southernhay East, EX1 1NS, Exeter, U.K.
| | | | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
10
|
Luo Y, Xue E, Zhao Y, Lu H, Xiang D, Zhou Y, Zhan J, Li Z, Sun F. Integrative network and computational toxicology reveal the molecular mechanisms in PFOA-induced spermatogenic disorder. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125754. [PMID: 40367801 DOI: 10.1016/j.jenvman.2025.125754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Perfluorooctanoic acid (PFOA), a widely used industrial chemical, poses significant environmental and biological toxicity, particularly affecting reproductive health. This study aimed to integrate network toxicology, machine learning, and molecular dynamics simulations (MDS) to uncover the molecular mechanisms of PFOA-induced spermatogenic toxicity. Toxicity profiling using admetSAR revealed that PFOA exhibited pronounced reproductive toxicity and a strong binding affinity to nuclear receptors, including estrogen, androgen, and PPAR gamma. By integrating PFOA targets derived from toxicology databases with differentially expressed genes associated with non-obstructive azoospermia, we pinpointed 256 differentially expressed spermatogenic toxicity targets from an initial pool of 4311 potential PFOA targets. Gene ontology (GO) and KEGG pathway enrichment analyses highlighted biological processes, such as spermatogenesis and cell cycle regulation, along with pathways related to cell division and intercellular communication. Protein-protein interaction networks and machine learning algorithms (LASSO, SVM-RFE, RF) pinpointed five core genes-RAD51, KIF15, PTTG1, BIRC5, and CDC25C-that serve as potential diagnostic biomarkers. Molecular docking revealed strong binding affinities between PFOA and these proteins, with RAD51 showing the highest binding stability (-8.467 kcal/mol). Furthermore, MDS confirmed stable interactions, with low RMSD, RMSF, and Rg values, indicating structural stability. In vivo studies showed that PFOA exposure (1 and 5 mg/kg) caused testicular damage in mice in a dose-dependent manner, with significant downregulation of core target proteins; in vitro experiments demonstrated a concentration-dependent reduction in GC1 cell viability and substantial alterations in its gene expression. This study highlights the critical roles of these mechanisms through which PFOA disrupts spermatogenesis, emphasizing core biomarkers that may serve as therapeutic targets. Our findings contribute insights into the reproductive toxicity of PFOA and similar environmental pollutants, offering a basis for developing strategies to protect male fertility.
Collapse
Affiliation(s)
- Yujia Luo
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of NICU, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Erfei Xue
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixiang Zhao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Lu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Di Xiang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Zhan
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhean Li
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Ji X, Jiang B, Chang Y, Lu Z, Zhou Y, Wang L, Liu Y, Zhang X, Yi F, Tian M, Zhou J. Investigating potential molecular mechanisms of antiepileptic drug-induced depression through network toxicology and molecular docking. Neuroscience 2025; 577:25-36. [PMID: 40360129 DOI: 10.1016/j.neuroscience.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Antiepileptic drugs (AEDs) are essential for epilepsy management but frequently induce adverse effects including depression. This study employs network toxicology and molecular docking to investigate molecular mechanisms underlying AED-induced depression. After identifying eight AEDs (Topiramate, Zonisamide, Phenobarbital, Primidone, Levetiracetam, Gabapentin, Tiagabine, and Perampanel) potentially associated with depression via a literature review, further analysis integrating drug and disease target databases revealed 25 targets relevant to AED-induced depression. Gene ontology analysis conducted with DAVID, indicated that biological processes including synaptic transmission and plasticity, glutamate receptor signaling, and calcium ion regulation are critical to this phenomenon. KEGG pathway analysis demonstrated that AEDs primarily affect neuroactive ligand-receptor interactions, which are essential for synaptic transmission and plasticity, and disrupt calcium, cAMP, MAPK, and oxytocin signaling pathways. These pathways are vital for the proper functioning of the central nervous system, as neurotransmitter interactions activate crucial signaling pathways. The drug-target interaction network analysis identified 12 candidate targets that directly interact with the eight AEDs, and GeneMANIA network expansion provided deeper insights into their functional associations. Molecular docking results revealed the interactions between AEDs and their respective direct targets, with Zonisamide exhibiting significant potential to induce depression through strong binding to multiple targets. In vitro experiments demonstrated that Zonisamide treatment elevated the expression and activity of MAOA protein in the prefrontal cortex of mice, which may influence monoaminergic neurotransmission through MAO pathway regulation, potentially leading to depression. Collectively, this integrated approach elucidates the mechanisms underlying AED-induced depression, thereby establishing a foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Xunan Ji
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Bingtao Jiang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ying Chang
- Department of Geriatrics, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Zuqing Lu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuanjiang Zhou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yanchen Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| | - Mingyuan Tian
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Xu J, Xiao Y, Li J, Liu Z, Zhang L, Xu W. Prediction of the neurotoxic mechanisms of the pesticide phorate using network toxicology, molecular docking, and molecular dynamics simulation. Xenobiotica 2025:1-13. [PMID: 40293390 DOI: 10.1080/00498254.2025.2498010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Phorate is an organophosphate pesticide that may cause neurotoxicity, although the exact mechanisms remain unclear.This study aimed to elucidate the mechanisms of neurotoxicity caused by phorate overexposure using network toxicology, molecular docking, and molecular dynamics simulation.We identified 104 potential targets and 20 core targets associated with phorate-induced neurotoxicity. Key targets, including MMP9, CASP1, and KEAP1, may be involved in neuroactive ligand-receptor interaction signalling, as well as the cAMP and calcium signalling pathways. Furthermore, molecular dynamics simulations were conducted on the KEAP1 and CASP1 protein-ligand complexes, which demonstrated the highest binding stabilities in molecular docking analysis. The binding free energies were calculated to be -27.08 and -22.80 kcal/mol for KEAP1 and CASP1, respectively, indicating that both complexes are thermodynamically stable.The methodology used in this study facilitates the identification and assessment of previously unexplored agrochemical toxicity pathways and molecular mechanisms. These findings suggest a novel approach to controlling pesticide residues and screening drugs.
Collapse
Affiliation(s)
- Jiahui Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Yinghao Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Jixin Li
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Zhongyi Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Lili Zhang
- Graduate School, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
13
|
Martins RX, Gomes C, Carvalho M, Souza JADCR, Souza T, Farias D. A network toxicology and molecular docking-based approach revealed shared hepatotoxic mechanisms and targets between the herbicide 2,4-D and its metabolite 2,4-DCP. Toxicology 2025; 513:154086. [PMID: 39954767 DOI: 10.1016/j.tox.2025.154086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its major environmental metabolite 2,4-dichlorophenol (2,4-DCP) are pollutants associated with hepatotoxicity, whose molecular mechanisms remain poorly understood. This study investigated the molecular pathways and targets involved in 2,4-D and 2,4-DCP-induced hepatotoxicity using protein-protein interaction (PPI) network analyses and molecular docking. Target genes were identified using PharmMapper and SwissTargetPrediction, and cross-referenced with hepatotoxicity-related genes from GeneCards and OMIM databases. The PPI network, constructed via STRING and visualized in Cytoscape, revealed 12 critical hub nodes, including HSP90AA1, RXRA, EGFR, SRC, CREBBP, PIK3R1, ESR1, AKT1, RAF1, IGF1R, MDM2, and MAPK14. Gene Ontology (GO) analysis indicated processes such as apoptosis, oxidative stress, mitochondrial dysfunction, and lipid metabolism impairment, while Reactome pathway analysis highlighted disruptions in PI3K/AKT and nuclear receptors signaling. Molecular docking confirmed significant interactions of 2,4-D and 2,4-DCP with key proteins, including SRC, AKT, RXRA, MDM2, and HSP90AA1. These results suggest that 2,4-D and 2,4-DCP share similar toxic mechanisms, providing new insights into their hepatotoxicity pathways for the first time.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Cleyton Gomes
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Juliana Alves da Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará Building 907, Campus Pici, Fortaleza 60455-970, Brazil; Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil.
| |
Collapse
|
14
|
Zhu J, Lin Q, Zhu H, Xie S, Nie S. Toxicity mechanism analysis of cGAS-STING-TBK1 signaling pathway small molecule modulator based on network toxicology and molecular docking strategy: quinacrine acetate as an example. Front Chem 2025; 13:1584588. [PMID: 40331038 PMCID: PMC12052562 DOI: 10.3389/fchem.2025.1584588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Objective This study aims to investigate the toxicity characteristics and mechanisms of quinacrine acetate, a small molecule modulator of the cGAS-STING-TBK1 signaling pathway, and to establish and validate the application value of network toxicology analysis strategy. Methods ProTox and ADMETlab platforms were used to evaluate the toxic effects of quinacrine acetate on human tissues and organs. Potential targets associated with quinacrine acetate toxicity were identified through ChEMBL, STITCH, GeneCards, OMIM, and TD databases. GO and KEGG analyses were employed to elucidate related functions and molecular mechanisms. STRING and Cytoscape software were utilized to identify key hub genes, while molecular docking validation was performed using the CB-Dock2 database. Based on toxicity analysis results, COPD was selected as a disease model, and GEO database was used to analyze the expression characteristics, immune correlation, and drug target value of hub genes in COPD. Results ProTox and ADMETlab analyses revealed that quinacrine acetate exhibited significant toxicity to the respiratory system (toxicity level 4, risk coefficient 0.959). Through integrated multi-database analysis, 14 potential targets related to quinacrine acetate-induced respiratory system toxicity were identified. GO and KEGG pathway analyses indicated that quinacrine acetate-induced respiratory toxicity was primarily mediated through metabolic pathways. Network analysis via STRING and Cytoscape identified AKT1, PLA2G4A, and ALOX5 as three core targets. Molecular docking results confirmed strong binding affinity between quinacrine acetate and these core targets. In COPD patients, PLA2G4A and ALOX5 showed significantly upregulated expression, with hub gene ROC curve AUC value reaching 0.829, demonstrating good diagnostic value. Further immune correlation analysis revealed that ALOX5 and PLA2G4A were closely associated with various immune cell expressions and served as targets for multiple drugs including histamine, melittin, and formic acid. Conclusion This study demonstrates that quinacrine acetate may influence the progression and risk of respiratory system diseases by regulating metabolic pathways. The findings provide not only a theoretical foundation for understanding the molecular mechanisms of quinacrine acetate-induced respiratory toxicity but also new perspectives and methodological references for evaluating the toxic effects of small molecule compounds in respiratory diseases. Therefore, we demonstrates the practical application value of network toxicology as an efficient predictive tool for identifying potential toxicity targets and pathways, which can guide subsequent experimental validation and provide mechanistic insights that traditional toxicology approaches might miss.
Collapse
Affiliation(s)
- Jinchao Zhu
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Zhu
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| | - Siqi Xie
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shengdong Nie
- School of Health Science and Engineering University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Zou T, Zhang R, Hu L, Yang G, Chen X, Wang M, Cheng T, Nie S, Liu L, Hong S. Uncovering mechanism of hepatotoxicity diseases caused by tetrahydrocannabinol based on novel network toxicology and experimental verification. Sci Rep 2025; 15:13712. [PMID: 40258948 PMCID: PMC12012079 DOI: 10.1038/s41598-025-97523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
This study systematically investigated the molecular mechanisms underlying tetrahydrocannabinol (THC)-induced hepatotoxicity in humans through an integrated approach combining network toxicology, molecular docking, and experimental validation. Our analysis identified 22 core targets associated with THC-mediated hepatotoxicity. Protein-protein interaction (PPI) network analysis revealed significant functional associations among these 22 potential target proteins. KEGG pathway and GO term analyses demonstrated that THC potentially exerts hepatotoxic effects through multiple biological processes, including endocrine resistance, bile secretion, negative regulation of apoptosis, and cellular oxidant detoxification. Disease enrichment analysis further identified several pathological conditions closely associated with THC-induced hepatic damage. Molecular docking simulations demonstrated strong binding affinities between THC and functional domains of 17 target proteins that participated in the aforementioned enriched pathways. An in vitro model of THC-induced hepatocyte injury was successfully established and subsequently validated through RT-qPCR experiment. THC exposure significantly altered the expression patterns of 10 critical target genes: ERBB2, GPX1, MAPK14, NR1H4, SOD1, CXCR2, PPARG, EGFR, TYMS and KDR. The hepatotoxic effects of THC appear to arise from the synergistic interplay of multiple pathways and the coordinated dysfunction of various gene products. These findings elucidate key molecular pathways and therapeutic targets associated with THC-induced hepatotoxicity, providing a theoretical foundation for developing clinical interventions and hepatoprotective strategies against cannabis-related liver damage.
Collapse
Affiliation(s)
- Tiantian Zou
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuanyu Chen
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Mengqing Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Tiantian Cheng
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
| | - Linlin Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
16
|
Hao JQ, Ran B, Hu SY, Zhuang ZX, Zhang JW, Xiong MR, Wang R, Zhuang W, Wang MJ. Exploring the link between Di-2-ethylhexyl phthalate (DEHP) exposure and muscle mass: A systematic investigation utilizing NHANES data analysis, network toxicology and molecular docking approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118132. [PMID: 40194361 DOI: 10.1016/j.ecoenv.2025.118132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/29/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Sarcopenia is a syndrome characterized by a progressive, widespread decline in muscle mass and strength. DEHP, a plasticizer involved in daily life and widely used, has been found in various everyday items and causes developmental dysregulation, reproductive impairments, tumorigenesis, and transgenerational disease. However, much remains to be discovered regarding the association between exposure to this environmental toxin and sarcopenia, as well as the toxic targets and molecular mechanisms. This research elucidated the relationship between contact with DEHP and the development of sarcopenia by integrating NHANES data analysis, network toxicology, and molecular docking. 3199 adults were enrolled, and multiple linear regressions were performed to reveal a significant negative correlation between lnDEHP and ALMBMI. Eighty-eight targets associated with DEHP and sarcopenia were identified. Subsequent STRING and Cytoscape screening stressed 20 key targets, including CASP3, BCL2, MMP9, BCL2L1, APP, and CTSS. GO and KEGG enrichment analyses revealed that these targets are involved in ligand-receptor interactions, apoptosis, and calcium signaling pathways. Molecular docking simulations using CB-dock confirmed the high-affinity binding interactions between DEHP and these key targets. This study validated the relationship between DEHP exposure and muscle mass. Further, it provided a theoretical basis for investigating the molecular mechanisms of DEHP exposure-induced skeletal muscle toxicity.
Collapse
Affiliation(s)
- Jia-Qi Hao
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Yue Hu
- Neonatology Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Xuan Zhuang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia-Wan Zhang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng-Rui Xiong
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhuang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mo-Jin Wang
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Guo X, Wang J, Fan H, Tao W, Ren Z, Li X, Liu S, Zhou P, Chen Y. Computational drug repurposing in Parkinson's disease: Omaveloxolone and cyproheptadine as promising therapeutic candidates. Front Pharmacol 2025; 16:1539032. [PMID: 40264664 PMCID: PMC12011821 DOI: 10.3389/fphar.2025.1539032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Parkinson's disease (PD), a prevalent and progressive neurodegenerative disorder, currently lacks effective and satisfactory pharmacological treatments. Computational drug repurposing represents a promising and efficient strategy for drug discovery, aiming to identify new therapeutic indications for existing pharmaceuticals. Methods: We employed a drug-target network approach to computationally repurpose FDA-approved drugs from databases such as DrugBank. A literature review was conducted to select candidates not previously reported as pharmacoprotective against PD. Subsequent in vitro evaluation utilized Cell Counting Kit-8 (CCK8) assays to assess the neuroprotective effects of the selected compounds in the SH-SY5Y cell model of Parkinson's disease induced by 1-methyl-4-phenylpyridinium (MPP+). Furthermore, an in vivo mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was developed to investigate the mechanisms of action and therapeutic potential of the identified drug candidates. Results: Our approach identified 176 drug candidates, with 28 selected for their potential anti-Parkinsonian effects and lack of prior PD-related reporting. CCK8 assays showed significant neuroprotection in SH-SY5Y cells for Omaveloxolone and Cyproheptadine. In the MPTP-induced mouse model, Cyproheptadine inhibited interleukin-6 (IL-6) expression and prevented Tyrosine Hydroxylase (TH) downregulation via the MAPK/NFκB pathway, while Omaveloxolone alleviated TH downregulation, potentially through the Kelch-like ECH-associated protein 1 (KEAP1)-NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Both drugs preserved dopaminergic neurons and improved neurological deficits in the PD model. Conclusion: This study elucidates potential drug candidates for the treatment of Parkinson's disease through the application of computational repurposing, thereby underscoring its efficacy as a drug discovery strategy.
Collapse
Affiliation(s)
- Xin Guo
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Wang
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hongyang Fan
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanying Tao
- Department of Critical Care Medicine, Department of Emergency Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zijing Ren
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xingyue Li
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Suyu Liu
- Medical College, Nanjing University, Nanjing, China
| | - Peiyang Zhou
- Department of Neurology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingzhu Chen
- Department of Geriatric Neurology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Cao F, Zhao X, Fu X, Jin Y. Computational insights into exploring the potential effects of environmental contaminants on human health. Sci Rep 2025; 15:11779. [PMID: 40189682 PMCID: PMC11973197 DOI: 10.1038/s41598-025-96193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
With rapid industrialization and urbanization, the increasing prevalence of air and water pollutants poses a significant threat to public health. Traditional research methods, such as epidemiological studies and in vitro/in vivo experiments, provide valuable biological insights but are often costly, time-consuming, and limited in scale. To address this gap, this study develops a machine learning-based approach to predict the carcinogenicity of pollutants. Using the dataset of carcinogenic and non-carcinogenic molecules that we collected, the pretrained KPGT model trained with molecular fingerprints and descriptors achieved an AUC of 0.83, surpassing traditional machine learning models. To validate this model, common pollutants from air and water sources were analyzed. Further clustering classified these pollutants into five distinct groups. Target prediction analysis identified key genes associated with representative pollutant molecules, such as MAPK1, MTOR, and PTPN11. GO and KEGG pathway analyses, along with survival analysis, revealed potential carcinogenic mechanisms and prognostic implications. Our findings contribute to improved pollution risk assessment and evidence-based environmental policy development, ultimately aiding in the mitigation of pollutant-related health risks.
Collapse
Affiliation(s)
- Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyue Zhao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yue Jin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
- National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
19
|
Gu J, Jin H, Hu J, Wang J, Yin D. Mechanistic Insights into 3-Isopropylphenol-Induced Neurotoxicity in Zebrafish: A Network Toxicology and Molecular Docking Approach. TOXICS 2025; 13:274. [PMID: 40278589 PMCID: PMC12031193 DOI: 10.3390/toxics13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances discharged into the environment through human activities. 3-Isopropylphenol, a typical alkylphenol-based EDC, has been extensively studied due to its broad application and potential ecological impacts. However, the mechanism of its neurotoxicity remains unclear. In this study, the neurotoxic effects of 3-isopropylphenol were examined using the zebrafish model. We predicted its potential toxic mechanisms and action targets using network toxicology and molecular docking and verified them via RT-qPCR. Results showed that 3-isopropylphenol exposure inhibits the cAMP/PKA signaling pathway in zebrafish larvae, promoting apoptosis, impairing neural development, and suppressing locomotor behavior. These findings enhance our understanding of the toxic effects and mechanisms of 3-isopropylphenol on zebrafish larval neural development and aid in evaluating its potential ecological hazards.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (H.J.); (J.H.)
| | - Huilin Jin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (H.J.); (J.H.)
| | - Jun Hu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (H.J.); (J.H.)
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (H.J.); (J.H.)
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| |
Collapse
|
20
|
Liang Q, Liu Z, Xu M, Zhu J, Liang Z, Zhu C, Mou H. Heterologous expression of a recombinant ACE inhibitory peptide LYPVK and its potential antihypertensive action mechanism. Int J Biol Macromol 2025; 300:140274. [PMID: 39863209 DOI: 10.1016/j.ijbiomac.2025.140274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3). The expressed tandem repeat protein with molecular weight of 13.4 kDa was verified by high performance liquid chromatography (HPLC) and amino acid composition. Subsequently, LYPVK was generated following His-tag removal and trypsin-mediated cleavage of the purified protein, which was performed HPLC and liquid chromatography-mass spectrometry (LC-MS) analysis. LYPVK exhibited an IC50 value of 10.6 ± 0.86 μg/mL, demonstrating a non-competitive mode of action and resistance to gastrointestinal enzyme hydrolysis and heat conditions. Molecular docking results showed that LYPVK interacted with ACE through conventional hydrogen bonds and hydrophobic interactions. Except for ACE, ALB, SRC, PPARG, and MMP9 are identified as potential key targets for its antihypertensive activity by network pharmacological analysis. This study provides a promising biotechnological approach for the preparation of active peptides with high purity and yield.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Menghao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jihai Zhu
- Shandong Mingbang Food Co., Ltd, Rizhao 276800, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
21
|
Wang D, Liu Y, Chen S, Lv D, Tang Y, Liu Y, Yang W, Shen H, Wang L, Lu F. Network toxicology and molecular docking reveal key mechanisms of domoic acid neurotoxicity with bio-layer interferometry validation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118090. [PMID: 40132507 DOI: 10.1016/j.ecoenv.2025.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
The study aims to promote a network toxicology strategy to efficiently investigate the underlying neurotoxicity molecular mechanisms of domoic acid(DA), which is one of the main toxins of paralytic amnesic shellfish poisoning and has gained significant attention due to its ability to induce neurotoxicity. By utilizing ChEMBL, CTD, Drug bank, TTD, DGIdb, Pharmapper and GeneCards databases, we identified 73 potential targets associated with DA-exposure related amnesia and neurotoxicity. Further refinements via STRING and Cytoscape software highlight the protein-protein interactions. 30 targets were recognized by both the K-means algorithm and topological analysis. GO and KEGG pathway analysis conducted through DAVID databases reveals that these targets of amnesia and neurotoxicity are predominantly enriched in multiple pathways. AKT1 was identified by a multiple-topically methods as the key target. Molecular docking and bio-layer interferometry were conducted to confirm the binding between these targets and DA(-CDOCKER_INTERACTION_ENERGY =45.719 kcal/mol, KD=2.0E-11M). This research provides a theoretical basis for understanding the molecular mechanism of DA-induced neurotoxicity, as well as establishing a foundation for the prevention and treatment of DA exposure.
Collapse
Affiliation(s)
- Dongyao Wang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yiping Liu
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shitao Chen
- Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Diya Lv
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuxiao Tang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yan Liu
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Wen Yang
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Hui Shen
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Lianghua Wang
- Basic Medical College, Naval Medical University, Shanghai 200433, China.
| | - Feng Lu
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Shanghai 200433, China.
| |
Collapse
|
22
|
Lin Z, Liu S, Zhang K, Feng T, Luo Y, Liu Y, Sun B, Zhou L. Molecular mechanisms and therapeutic targets of acute exacerbations of chronic obstructive pulmonary disease with Pseudomonas aeruginosa infection. Respir Res 2025; 26:115. [PMID: 40140846 PMCID: PMC11948814 DOI: 10.1186/s12931-025-03185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of global mortality, with acute exacerbations of COPD (AECOPD) significantly increasing the disease's morbidity and mortality. Among the pathogens implicated in AECOPD, Pseudomonas aeruginosa (P. aeruginosa) is increasingly recognized as a major co-infecting bacterium. Despite its clinical importance, the molecular mechanisms and therapeutic targets underlying AECOPD with P. aeruginosa infection remain inadequately understood. METHODS We employed a multi-omics approach, integrating proteomic analyses of bronchoalveolar lavage fluid (BALF) and plasma with transcriptomic analysis of peripheral blood. A discovery cohort of 40 AECOPD with P. aeruginosa infection patients and 20 healthy controls was analyzed, followed by validation in an independent cohort of 20 patients and 10 controls. Differentially expressed proteins (DEPs) and genes (DEGs) were identified and subjected to protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis (WGCNA), and immune infiltration analysis. Molecular docking simulations were conducted to explore potential therapeutic agents. RESULTS Our integrative analysis identified key biomarkers, which played critical roles in oxidative stress and neutrophil extracellular trap (NET) formation, both of which were pivotal in the pathogenesis of AECOPD with P. aeruginosa infection. The combined analysis of BALF, plasma, and peripheral blood underscored the interplay between local lung changes and systemic immune responses. Functional enrichment analyses highlighted significant pathways related to bacterial defense, inflammation, and immune activation. Validation in an independent cohort confirmed the diagnostic value of three key proteins (AZU1, MPO, and RETN), with high area under the curve (AUC) values in ROC analyses. Molecular docking indicated strong binding affinities of these proteins with Pioglitazone and Rosiglitazone, suggesting potential therapeutic utility. CONCLUSIONS This study provides a comprehensive understanding of the molecular mechanisms underlying AECOPD with P. aeruginosa infection, highlighting the pivotal roles of oxidative stress and NET formation in disease progression. The identified biomarkers offer promising diagnostic and therapeutic targets. Our findings pave the way for novel strategies to improve outcomes for AECOPD patients with P. aeruginosa infection. While the study design limits our ability to establish causality, these results provide important insights that warrant further investigation, particularly through longitudinal studies, to confirm the specific contributions of P. aeruginosa in exacerbations. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Zhiwei Lin
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shuang Liu
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ke Zhang
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Tianyu Feng
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Yewei Luo
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yu Liu
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, 510000, China
| | - Baoqing Sun
- Department of Clinical Laboratory, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Luqian Zhou
- Respiratory Mechanics Laboratory, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| |
Collapse
|
23
|
Zhao Y, Xing W, Chen W, Wang Y. Integrated bioinformatics analysis and biological experiments to identify key immune genes in vascular dementia. Front Immunol 2025; 16:1560438. [PMID: 40196107 PMCID: PMC11973090 DOI: 10.3389/fimmu.2025.1560438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Objectives This study aimed to identify key immune genes to provide new perspectives on the mechanisms and diagnosis of vascular dementia (VaD) based on bioinformatic methods combined with biological experiments in mice. Methods We obtained gene expression profiles from a Gene Expression Omnibus database (GSE186798). The gene expression data were analysed using integrated bioinformatics and machine learning techniques to pinpoint potential key immune-related genes for diagnosing VaD. Moreover, the diagnostic accuracy was evaluated through receiver operating characteristic curve analysis. The microRNA, transcription factor (TF), and drug-regulating hub genes were predicted using the database. Immune cell infiltration has been studied to investigate the dysregulation of immune cells in patients with VaD. To evaluate cognitive impairment, mice with bilateral common carotid artery stenosis (BCAS) were subjected to behavioural tests 30 d after chronic cerebral hypoperfusion. The expression of hub genes in the BCAS mice was determined using a quantitative polymerase chain reaction(qPCR). Results The results of gene set enrichment and gene set variation analyses indicated that immune-related pathways were upregulated in patients with VaD. A total of 1620 immune genes were included in the combined immune dataset, and 323 differentially expressed genes were examined using the GSE186798 dataset. Thirteen potential genes were identified using differential gene analysis. Protein-protein interaction network design and functional enrichment analysis were performed using the immune system as the main subject. To evaluate the diagnostic value, two potential core genes were selected using machine learning. Two putative hub genes, Rac family small GTPase 1(RAC1) and CKLF-like MARVEL transmembrane domain containing 5 (CMTM5) exhibit good diagnostic value. Their high confidence levels were confirmed by validating each biomarker using a different dataset. According to GeneMANIA, VaD pathophysiology is strongly associated with immune and inflammatory responses. The data were used to construct miRNA hub gene, TFs-hub gene, and drug-hub gene networks. Varying levels of immune cell dysregulation were also observed. In the animal experiments, a BCAS mouse model was employed to mimic VaD in humans, further confirmed using the Morris water maze test. The mRNA expression of RAC1 and CMTM5 was significantly reduced in the BCAS group, which was consistent with the results of the integrated bioinformatics analysis. Conclusions RAC1 and CMTM5 are differentially expressed in the frontal lobes of BCAS mice, suggesting their potential as biomarkers for diagnosing and prognosis of VaD. These findings pave the way for exploring novel molecular mechanisms aimed at preventing or treating VaD.
Collapse
Affiliation(s)
- Yilong Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wen Xing
- Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Liu K, Xu Y, Ying M, Chen M. Impact of a Nanoscale Iron-Chlorobenzene Mixture on Pulmonary Injury in Rat Pups: Extending Exposure Knowledge Using Network Technology. TOXICS 2025; 13:221. [PMID: 40137548 PMCID: PMC11946418 DOI: 10.3390/toxics13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Particulate matter coexists with persistent organic pollutants (POPs) in the atmosphere, which can enter the human body by accompanying inhalable particles in the respiratory tract. Photochemical conversion further alters the chemical composition of the precursor particles and secondary products. This study investigated the effects of nanoscale iron-chlorobenzene mixtures and their photochemical conversion products on early lung development in rat pups. Using network toxicology and animal experiments, we constructed a compound toxicity-target network and developed air exposure models. This study revealed that both pollutants, before and after photochemical conversion, bound to the aryl hydrocarbon receptor (AhR), increased oxidative stress, altered lung tissue morphology, and reduce inflammatory factor expression. Rat pups were highly sensitive to pollutants during critical stages of lung development. However, no significant differences in oxidative stress or inflammation were observed between the pollutants, likely because of immature lung tissues. Once tissue damage reached a threshold, the response to increasing pollutant concentrations diminished. This study provides insights into atmospheric pollutant toxicity and scientific evidence for the risk assessment of dioxin-like nanoscale mixtures.
Collapse
Affiliation(s)
- Kezhou Liu
- School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (M.Y.)
| | - Ying Xu
- School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (M.Y.)
| | - Mengjie Ying
- School of Automation (Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China; (Y.X.); (M.Y.)
| | - Meiling Chen
- School of Environment and Resources, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
25
|
Qu T, Sun Q, Tan B, Wei H, Qiu X, Xu X, Gao H, Zhang S. Integration of network toxicology and transcriptomics reveals the novel neurotoxic mechanisms of 2, 2', 4, 4'-tetrabromodiphenyl ether. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136999. [PMID: 39740552 DOI: 10.1016/j.jhazmat.2024.136999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway. Additionally, transcriptomic analyses of hNPCs and PC12 cells exposed to PBDE-47 uncovered substantial gene expression changes, with 855 and 702 genes up- and down-regulated in hNPCs, and 2844 and 2711 genes in PC12 cells, respectively. These differentially expressed genes were primarily implicated in crucial processes like neuroactive ligand-receptor interaction, nucleocytoplasmic transport, ferroptosis, p53 signaling, and cell cycle regulation. Integration of the results identified novel mechanisms of PBDE-47 neurotoxicity, such as neuroinflammation and cellular senescence, alongside established mechanisms like ferroptosis, apoptosis and cell cycle arrest. Overall, these findings provide critical insights into the mechanisms of PBDE-47 neurotoxicity, highlighting the integration of network toxicology and transcriptomics as a novel study approach to explore the modes of action of toxicants.
Collapse
Affiliation(s)
- Tengjiao Qu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Sun
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Environmental health effects and risk assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Tan
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wei
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxuan Qiu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Xu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Wang Z, Zhou Z, Zhao Z, Zhang J, Zhang S, Li L, Fan Y, Li Q. A network toxicology and machine learning approach to investigate the mechanism of kidney injury from melamine and cyanuric acid co-exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118029. [PMID: 40088607 DOI: 10.1016/j.ecoenv.2025.118029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Within the past two decades, high-profile cases of melamine (MA) exposure have raised significant toxicological concerns, particularly regarding food adulteration. While widely used as a fundamental organic chemical intermediate in various household products, MA's potential for unexpected toxicological synergy with its homolog, cyanuric acid (CA), remains a concern. This study aimed to investigate the nephrotoxicity of combined melamine and cyanuric acid (MC) exposure and its underlying mechanisms in rats through an integrative approach, combining network toxicology (NT), bioinformatics, and experimental validation. MATERIALS AND METHODS Rats were exposed to MC at doses of 0/0 mg/kg/day (Control) and 63/63 mg/kg/day (MC) for four weeks. Kidney pathology, injury markers, and RNA sequencing (RNA-seq) data were analyzed to identify differentially expressed genes between the two groups. Bioinformatics analysis, including pathway enrichment and immune microenvironment analysis, was conducted to elucidate the underlying mechanisms of MC-induced kidney injury. Potential target proteins were identified using ChEMBL, STITCH, and GeneCards databases, and hub genes were screened using three machine learning algorithms: LASSO regression, Random Forest, and Molecular Complex Detection. Molecular docking simulations were performed to assess the interactions between MC and the identified hub genes. RESULTS MC exposure resulted in severe kidney morphological and histological changes, as well as elevated levels of kidney injury and fibrosis markers. RNA-seq analysis revealed significant enrichment of immuno-inflammatory and apoptosis-related pathways in the MC group. Immune microenvironment analysis confirmed the infiltration of pro-inflammatory immune cells. Network toxicology analysis identified 20 potential targets associated with MC-induced kidney injury. Two hub genes, Ren and Casp3, were identified as key regulators of the renin-angiotensin-aldosterone system (RAAS) activation and apoptosis, respectively. Further experimental validation, including Western blotting and immunofluorescence, confirmed the upregulation of these proteins. Molecular docking simulations demonstrated strong binding affinities between MC and the two hub proteins. CONCLUSION MC exposure induces significant kidney injury and fibrosis. The activation of the RAAS pathway and apoptosis plays a crucial role in MC-mediated nephrotoxicity. However, additional vivo experimental validation is lacking. Future studies should focus on further exploration for the mechanism of MC-induced nephrotoxicity and more rigorous experimental validation.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zihao Zhao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shengli Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luping Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingzhong Fan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
27
|
Wei W, Pu S, Yan C, Yang H, Chen H. Exploring the mechanisms of lithium neurotoxicity based on network toxicology and molecular docking. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117911. [PMID: 39986052 DOI: 10.1016/j.ecoenv.2025.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The rapid growth of lithium (Li)-related industrial activities and the application of Li-containing products have become an emerging human health concern. Li has been employed to treat human mental disorders; however, excessive Li salt accumulation can lead to brain damage. The mechanism of toxicity of long-term exposure to Li in the brain warrants further investigation. This research study established a network toxicology strategy to evaluate the molecular mechanisms and putative toxicity of lithium chloride (LiCl). The analysis of online databases identified 80 intersection targets for LiCl-induced neurotoxicity. Further refinements via STRING and Cytoscape software highlight 10 core targets. Furthermore, phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), apoptosis pathways, and mitogen-activated protein kinase (MAPK) were enriched. Molecular docking validated the robust interaction of core targets with Li+. In vivo analyses of mice brains revealed substantial pathological alterations, neuronal degeneration, and nerve cell apoptosis. LiCl elevated the mRNA level of core genes. Further, the phosphorylation status of core proteins was primarily modulated by LiCl. Our investigation employs novel strategies for assessing the environmental pollutant toxicity and gives theoretical basis for elaborating the LiCl-induced neurotoxicity-related molecular mechanism. This may be employed to guide risk assessment of environmental Li exposure.
Collapse
Affiliation(s)
- Wei Wei
- College of Veterinary Medicine, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China.
| | - Siting Pu
- College of Veterinary Medicine, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Chengxin Yan
- College of Veterinary Medicine, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; Immunology Research Center, Medical Research Institute, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| |
Collapse
|
28
|
Song C, Wu X, Chen C, Shen B, Mei Y, Yan Q, Jiang F, Chen F, Liu F. Single-Cell Analysis Integrated With Machine Learning Elucidates the Mechanisms of Nucleus Pulposus Cells Apoptosis in Intervertebral Disc Degeneration and Therapeutic Interventions. JOR Spine 2025; 8:e70036. [PMID: 39835270 PMCID: PMC11745822 DOI: 10.1002/jsp2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The molecular of intervertebral disc degeneration (IVDD) is still unclear. When it comes to treating decoction, traditional Chinese medicine is effective. In particular, the Duhuo (Radix Angelicae Biseratae) may be particularly helpful. PURPOSE To identify nucleus pulposus cells (NPCs) subpopulations and immune cells and clarify the mechanism of IVDD therapy, offering recommendations for diagnosis and treatment. METHODS IVDD targets from the Genecards and microarray data from biological databases. To find the key genes and biological pathways underlying IVDD, multiple machine learning techniques were used. IVDD is associated with subpopulations of NPCs as revealed by single-cell analysis, and immunological infiltration was identified by Immune Cell AI. To validate the molecular pathways by which Duhuo activity affects IVDD, network pharmacology and molecular docking were employed. RESULTS The process of IVDD is linked to key genes like TP53, JUN, PTEN, IL1B, ERBB2, MAPK8, CASP9, PTK2, etc. The main molecular mechanisms involved in this process are immune responses, inflammatory factors expression, cellular responses to mechanical stimuli, and NPC apoptosis. Immune Cell AI discovered a correlation between CD4 naïve, B cell, monocyte, NK, and macrophage infiltration with the development of IVDD. The NPC subtypes associated with IVDD, namely fibroNPCs, adhesion NPCs, regulatory NPCs, homeostatic NPCs, and hypertrophic chondrocyte-like NPCs (HT-CL NPCs), were the subject of single-cell mapping. We also found that Osthole, Columbianadin, and Bergapten, the principal blood entry components of Dohuo, may have a role by modulating CASP9, MAPK8, PTGS1, and PARP1, the targets of apoptosis. CONCLUSION The NPC subpopulations that exist in IVDD are HT-CL NPCs, fibroNPCs, adhesion NPCs, regulatory NPCs, and homeostatic NPCs. Furthermore, a variety of immune cell infiltrates, particularly monocyte and macrophage, have a significant impact on the advancement of IVDD. Osthole, Columbianadin, and Bergapten, the principal components of Duhuo, absorb IVDD via controlling the death of NPCs.
Collapse
Affiliation(s)
- Chao Song
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
- Department of Orthopedics and Traumatology, the Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Xiaofei Wu
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Chaoqi Chen
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Baoxin Shen
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, the Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Qian Yan
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Feng Jiang
- Department of Orthopedics and Traumatology, the Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Feng Chen
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| | - Fei Liu
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
- Department of Orthopedics and Traumatology, the Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
29
|
Xu Y, Peng LS, Xiao CQ, Zhou Y, Wang QS, Fu H. Bisdemethoxycurcumin mitigates traumatic brain injury in rats by modulating autophagy and oxidative stress via heat shock protein 90 alpha family class A member 1-mediated nuclear translocation of transcription factor EB. Brain Res Bull 2025; 222:111221. [PMID: 39855313 DOI: 10.1016/j.brainresbull.2025.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Bisdemethoxycurcumin (BDMC), the primary active compound found in turmeric, exhibits diverse pharmacological properties. The study aimed to investigate the mechanisms underlying the protective effects of BDMC in traumatic brain injury (TBI). METHODS A rat TBI model was established using the Feeney's freefall epidural impact method, followed by BDMC treatment. Rat cortical neuron cells were exposed to hydrogen peroxide (H2O2) to induce oxidative stress and then treated with BDMC. The cells were also pretreated with autophagy inhibitor 3-MA and heat shock protein 90 alpha family class A member 1 (HSP90AA1) inhibitor 17-AAG. Additionally, the experiments also involved treating H2O2-exposed cortical neurons with 17-AAG and silencing HSP90AA1 expression. Co-immunoprecipitation was utilized to verify interactions between HSP90AA1 and transcription factor EB (TFEB), TFEB and nuclear factor erythroid 2 related factor 2 (Nrf2), and the localization of these complexes in the cytoplasm and nucleus. RESULTS BDMC treatment significantly reduced modified neurological severity scores, brain water content, inflammatory infiltration, oxidative stress, and apoptosis in the cerebral cortex of TBI rats. Additionally, BDMC treatment elevated the expression of Beclin 1 and light chain 3 (LC3) II/LC3 I ratio while decreasing p62 expression. It also promoted TFEB nuclear translocation and increased HSP90AA1 levels in both the cytoplasm and nucleus, along with elevated nuclear Nrf2 expressions in TBI models. In vitro experiments showed decreased malondialdehyde levels, elevated glutathione peroxidase and superoxide dismutase levels upon BDMC treatment, along with repressed cortical neurons apoptosis, elevated Beclin 1 and LC3 II/LC3 I expressions, decreased p62 expressions, reduced cytoplasmic TFEB expression, increased nuclear TFEB and Nrf2 expression, and elevated HSP90AA1 expression in the cytoplasm and nucleus. Mechanistically, BDMC mediated autophagy and oxidative stress by activating HSP90AA1/TFEB/Nrf2 axis. Finally, HSP90AA1 was shown to regulate Nrf2 expression by binding to TFEB in the cellular model. CONCLUSIONS BDMC alleviated TBI in rats by regulating autophagy and oxidative stress through HSP90AA1-mediated nuclear translocation of TFEB.
Collapse
Affiliation(s)
- Yan Xu
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China
| | - Liang-Shan Peng
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China
| | - Chao-Qun Xiao
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China
| | - Yi Zhou
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China
| | - Qiao-Sheng Wang
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China.
| | - Hui Fu
- The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
30
|
Pei J, Peng J, Wu M, Zhan X, Wang D, Zhu G, Wang W, An N, Pan X. Exploring potential targets and mechanisms of renal tissue damage caused by N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) through network toxicology and animal experiments: A case of chronic kidney disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178626. [PMID: 39862509 DOI: 10.1016/j.scitotenv.2025.178626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
6-PPDQ is a new type of environmental contaminant contained in tire rubber. No studies have been reported on the potential targets and mechanisms of action of 6-PPDQ on renal tissue damage. In the present study, we used CKD as an example to explore the potential targets and biological mechanisms of renal injury caused by 6-PPDQ using Network toxicology and animal experiments. A total of 1361 6-PPDQ-related target genes were obtained from the CTD database. 17,296 CKD-related target genes were obtained through the GeneCards database. After intersecting the two, a total of 908 intersecting genes were obtained. Next, we constructed a PPI protein interaction network. Using different algorithms in Cytoscape software and "Logistic regression analysis", five key target genes were finally identified as NOTCH1, TP53, TNF, IL1B and IL6. We constructed a diagnostic model using five key target genes, and the ROC curves, calibration curves and DCA curves proved that the model has good diagnostic value. Molecular docking demonstrated high affinity between 6-PPDQ and five key target gene proteins. In animal experiments, repeated intraperitoneal injections of 6-PPDQ using different concentration gradients for 28 days revealed that the expression levels of five key target genes in renal tissues increased progressively with the increase of the concentration, and the damage to renal tissues was also aggravated. ssGSEA and animal experiments revealed a key role for activation of the MAPK signaling pathway. Finally, we also identified a significant correlation between five key target genes and the level of infiltration of multiple immune cells. In conclusion, these findings suggest that 6-PPDQ can cause damage to renal tissue and that the level of damage progressively increases with increasing concentration. Among them, NOTCH1, TP53, TNF, IL1B and IL6 may be its potential targets of action. Activation of the MAPK signaling pathway is a potential mechanism of action.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Moudong Wu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xiong Zhan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Dan Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Guohua Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Wei Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Nini An
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| | - Xingyu Pan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| |
Collapse
|
31
|
Cheng M, Li M, Zhang Y, Gu X, Gao W, Zhang S, Liu J. Exploring the mechanism of PPCPs on human metabolic diseases based on network toxicology and molecular docking. ENVIRONMENT INTERNATIONAL 2025; 196:109324. [PMID: 39952201 DOI: 10.1016/j.envint.2025.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
This research endeavor seeks to delve into the potential mechanisms by which pharmaceutical and personal care products (PPCPs), recognized as emerging pollutants, could contribute to the human metabolic disorders and then trigger metabolic diseases. Therefore, we have selected lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus as representative metabolic diseases, aiming to systematically explore the critical molecular pathways that may be disrupted by PPCPs for the metabolic disease development. By employing advanced network toxicology and molecular docking techniques, we have successfully elucidated the molecular mechanisms that trigger the three diseases. We pinpointed the potential targets associated with the disease by leveraging databases including PubChem, ADEMTlab2.0, SwissADME, and GeneCards. We further employed STRING analysis and Cytoscape software to pinpoint the core targets that were most significantly associated with these metabolic diseases. In addition, enrichment analysis of these core targets was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways within the David database. To obtain the structural aspects of the target proteins, we also employed AlphaFold 3 for protein structure prediction. Finally, we validated the binding affinity of PPCPs to these target proteins using molecular docking with AutoDock Vina. Our findings suggested that PPCPs could potentially trigger metabolic diseases by modulating the expression of microRNAs, influencing cellular apoptosis and proliferation, and affecting signal transduction pathways. Interestingly, we also found the correlations among lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus. Taken together, our study provides innovative insights into both the mechanisms of how environmental pollutants trigger human diseases and revealing the correlations among different diseases, thereby laying a theoretical foundation for disease prevention and treatment.
Collapse
Affiliation(s)
- Menghang Cheng
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Mengnan Li
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Yunmei Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xuyang Gu
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Wenshan Gao
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Shuling Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| | - Jianfeng Liu
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
32
|
Lan Y, Peng Q, Fu B, Liu H. Effective analysis of thyroid toxicity and mechanisms of acetyltributyl citrate using network toxicology, molecular docking, and machine learning strategies. Toxicology 2025; 511:154029. [PMID: 39657862 DOI: 10.1016/j.tox.2024.154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
The growing prevalence of environmental pollutants has raised concerns about their potential role in thyroid dysfunction and related disorders. Previous research suggests that various chemicals, including plasticizers like acetyl tributyl citrate (ATBC), may adversely affect thyroid health, yet the precise mechanisms remain poorly understood. The objective of this study was to elucidate the complex effects of acetyl tributyl citrate (ATBC) on the thyroid gland and to clarify the potential molecular mechanisms by which environmental pollutants influence the disease process. Through an exhaustive exploration of databases such as ChEMBL, STITCH, and GEO, we identified a comprehensive list of 19 potential targets closely associated with ATBC and the thyroid gland. After rigorous screening using the STRING platform and Cytoscape software, we narrowed this list to 15 candidate targets, ultimately identifying five core targets: CBX5, HADHB, TRIM33, TP53, and CUL4A, utilizing three well-established machine learning methods. In-depth Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses conducted in the DAVID database revealed that the primary pathways through which ATBC affects the thyroid gland involve key signaling cascades, including the FoxO signaling pathway and metabolic pathways such as fatty acid metabolism. Furthermore, molecular docking simulations using Molecular Operating Environment software confirmed strong binding interactions between ATBC and these core targets, enhancing our understanding of their interactions. Overall, our findings provide a theoretical framework for comprehending the intricate molecular mechanisms underlying ATBC's effects on thyroid damage and pave the way for the development of preventive and therapeutic strategies against thyroid disorders caused by exposure to ATBC-containing plastics or overexposure to ATBC.
Collapse
Affiliation(s)
- Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Bowen Fu
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510145, China; Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510630, China.
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
33
|
Cui Z, He T, Zhang S. The efficient prediction of inflammatory osteolysis caused by polylactic acid through network toxicology and molecular docking strategy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117876. [PMID: 39947065 DOI: 10.1016/j.ecoenv.2025.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Polylactic acid (PLA), as a bioplastic, is extensively utilized in bone tissue engineering for its biocompatibility, adaptability and affordability. However, the toxicological research of PLA is still limited. The hydrolysis products of PLA induced inflammatory response which caused inflammatory osteolysis mediated by oxidative damage through the recruitment of macrophages and the accumulation of foreign body multinucleated giant cells, ultimately leading to the failure of bone tissue regeneration. The lack of effective treatments highlights the importance of finding new therapies. This study systematically investigated the potential molecular mechanisms of PLA-induced inflammatory osteolysis by employing network toxicology and molecular docking techniques. We first conducted a network toxicology-based assessment according to the molecular structure of PLA. The result from integrating and screening targets from multiple databases identified 126 potential targets associated with PLA-induced inflammatory osteolysis, and then an interaction network diagram of the targets was constructed. Gene ontology (GO)/KEGG enrichment analysis clarified that PLA may cause inflammatory osteolysis via metabolic pathways and pathways in cancer, as well as lipid and atherosclerosis. Further analysis by STRING and Cytoscape software screened 25 core targets including HSP90AA1, AKT1, SRC, STAT1 and FYN. We found that the enriched highly correlated pathways covered 18 of the 25 core targets, supporting the scientific hypothesis that PLA induces inflammatory osteolysis. Moreover, the results of molecular docking confirmed that PLA displayed a strong binding ability with the core targets and formed stable binding. Taken together, this study not only revealed the potential biological mechanism of PLA-induced inflammatory osteolysis, but also provided new evidence for the future prevention and treatment of PLA-induced inflammation.
Collapse
Affiliation(s)
- Zichen Cui
- Department of thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao 266700, PR China.
| | - Tian He
- Department of Orthopedics Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, PR China.
| | - Shuo Zhang
- Department of thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao 266700, PR China.
| |
Collapse
|
34
|
Hong Y, Yuan Q, Wang Y, Wang D, Guan X, Chen C. Analysis of toxicity and mechanisms of busulfan in non-obstructive azoospermia: A genomic and toxicological approach integrating molecular docking, single-cell sequencing, and experimentation in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117878. [PMID: 39933234 DOI: 10.1016/j.ecoenv.2025.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Environmental pollutants, including chemical contaminants, heavy metals, and pesticides, have been linked to adverse effects on male reproductive health, particularly sperm quality. Non-obstructive azoospermia (NOA) is a severe form of male infertility caused by intrinsic testicular dysfunction, leading to a complete absence of sperm in the ejaculate. Busulfan, an alkylating chemotherapeutic agent widely used to treat chronic myelogenous leukemia, is known to induce NOA through its toxic effects on spermatogonial stem cells (SSCs). This study aimed to identify key molecular targets and pathways disrupted by busulfan in the testicular environment. By integrating molecular docking, single-cell RNA sequencing, and in vivo experimentation, the study identified POLE and LRAT as critical proteins. These proteins were shown to interact strongly with busulfan, leading to genomic instability and increased germ cell apoptosis during spermatogenesis. Additionally, the immune landscape of NOA-affected testes revealed significant changes in immune cell infiltration, potentially worsening the condition. These findings offer new insights into the mechanisms of busulfan-induced NOA and suggest potential therapeutic targets for preserving male fertility in chemotherapy patients. This research advances the understanding of chemotherapy-induced reproductive toxicity and emphasizes the need for strategies to reduce its negative effects on fertility.
Collapse
Affiliation(s)
- Yanggang Hong
- Department of pediatric urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qichao Yuan
- Department of pediatric urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang 325027, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoju Guan
- Department of pediatric urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang 325027, China.
| | - Congde Chen
- Department of pediatric urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
35
|
Fang T, Liu Q, Huangfu X, Zhu H, Sun H, Chen L. New insights into the mechanism of triphenyl phosphate and its metabolite diphenyl phosphate in diabetic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117877. [PMID: 39933236 DOI: 10.1016/j.ecoenv.2025.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Diabetic kidney disease is a significant complication of diabetes mellitus, and exposure to certain chemicals may play a role in its development. Triphenyl phosphate (TPHP) is commonly used in plastics and flame retardants. This study aims to investigate the potential impact of TPHP and its metabolite diphenyl phosphate (DPHP) on diabetic kidney disease using various methods, including network toxicology, molecular docking, and cell experiments like CCK8 assay and real-time-PCR. The research examined the relationship between urinary DPHP levels and kidney function in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to March 2020. Additionally, the study explored the targets of action for TPHP and DPHP using network toxicity analysis, conducted protein interaction analysis, and explored the functional aspects of action through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Furthermore, the study identified key proteins involved in the action and conducted experimental verification by treating cells with TPHP and DPHP. Toxicity analysis showed that TPHP could cause dose-dependent toxicity in mouse podocyte clone 5 (MPC5) and mouse mesangial cells (MES13). The study also detected mRNA expression of core targets molecularly docked with TPHP and DPHP using real-time-PCR. The results indicated statistically significant regulation of most core targets by TPHP and DPHP in MPC5, MES13, and human kidney-2 cells.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiaoyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinxin Huangfu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
36
|
Zheng L, Wei Z, Ni X, Shang J, Liu F, Peng Y, Liu J, Li Y. Exploring the therapeutic potential of Xiangsha Liujunzi Wan in Crohn's disease: from network pharmacology approach to experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118863. [PMID: 39343107 DOI: 10.1016/j.jep.2024.118863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiangsha Liujunzi Wan (LJZW) is a traditional Chinese medicine (TCM) formula containing a variety of traditional Chinese herb components. Its principal components are often used in the treatment of gastrointestinal diseases and contribute to the treatment of Crohn's disease (CD). AIM OF THE STUDY To explore the therapeutic potential of LJZW in CD through network pharmacology, bioinformatics, molecular docking, and experimental verification. METHODS The principal bioactive components and corresponding targets of LJZW were ascertained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential targets for CD were identified in GeneCards, OMIM, DrugBank, DisGeNET, CTD, and Gene Expression Omnibus (GEO) databases. Intersection targets of LJZW and CD were identified using a Venn diagram and visualized using Cytoscape 3.8.0 to construct a protein-protein interaction (PPI) network. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to assess the function of intersection targets. AutoDockTools and PyMOL were used for molecular docking to recognize the association between the core ingredients of LJZW and the core targets of CD. Subsequently, a series of experiments were conducted for validation. RESULTS The network pharmacology results indicated that there were 156 bioactive components and 268 corresponding targets for LJZW, 3023 primary relevant targets for CD, and 169 intersection targets for LJZW and CD. The PPI network was employed to identify five hub genes and six clusters. The GO functional analysis indicated that intersection targets are primarily correlated with oxidative stress and inflammatory responses. KEGG pathway analysis revealed that these targets were primarily associated with the phosphotylinosital 3 kinase (PI3K)-protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. The molecular docking results showed that the core ingredients of LJZW had good binding ability with the core targets of CD. A series of experiments demonstrated that LJZW could effectively attenuate TNBS-induced colitis symptoms, inhibit the inflammatory response, and protect intestinal barrier function by inhibiting the PI3K-AKT and MAPK signaling pathways, thus preventing and treating CD. CONCLUSION LJZW has the characteristics of multi-component, multi-target, and multi-pathway treatment, which helps to improve the treatment of CD, protect the intestinal barrier, and exert the effect of anti-inflammatory therapy by inhibiting PI3K-AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, PR China.
| | - Yunwei Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
37
|
Pei J, Peng J, Wu M, Zhan X, Wang D, Zhu G, Wang W, An N, Pan X. Analyzing the potential targets and mechanisms of chronic kidney disease induced by common synthetic Endocrine Disrupting Compounds (EDCs) in Chinese surface water environment using network toxicology and molecular docking techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177980. [PMID: 39657341 DOI: 10.1016/j.scitotenv.2024.177980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Long-term exposure to NP and OP, as common synthetic endocrine-disrupting chemicals (EDCs) in surface water environments in China, is closely associated with the development of chronic kidney disease (CKD). However, their potential targets and toxicological mechanisms for inducing CKD remain unknown. This study utilizes network toxicology and molecular docking techniques to explore the potential toxic targets and molecular mechanisms of CKD induction by NP and OP. We identify 49 core targets of NP and OP action in CKD using the Comparative Toxicogenomics Database (CTD) and GeneCards databases. Using the STRING database and Cytoscape software, we identify five hub genes: MAPK3, TNF, BCL2, ESR1, and FOS. We construct a nomogram model based on the CKD dataset GSE66494, utilizing these five hub genes. Calibration and ROC curves demonstrate that the model has good diagnostic value for CKD, and the DCA curve indicates that the model has high clinical utility. Single-gene GSEA enrichment analysis identifies five hub genes that influence the development of CKD through multiple biological pathways, revealing that several immune-regulatory signaling pathways are activated. The CIBERSORT algorithm identifies eight types of immune cell infiltration levels that change significantly during CKD development, and correlation analyses suggest that the five hub genes are strongly associated with multiple immune cell infiltrations. The molecular docking results suggested that ESR1, MAPK3, and TNF had the lowest binding energies and high binding affinities with NP and OP. The results of molecular dynamics simulations similarly confirmed the stability of the interactions between ESR1, MAPK3 and TNF proteins with NP and OP. The results of this study provide a theoretical basis for understanding the potential toxicity targets and mechanisms of NP- and OP-induced CKD and promote the application of network toxicology and molecular docking techniques in the study of environmental pollutants.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Moudong Wu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xiong Zhan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Dan Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Guohua Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Wei Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Nini An
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xingyu Pan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| |
Collapse
|
38
|
Zheng Q, Peng Q, Shen J, Liu H. Efficient analysis of toxicity and mechanisms of Acetyl tributyl citrate on aging with network toxicology and molecular docking strategy. Toxicology 2025; 510:154009. [PMID: 39580138 DOI: 10.1016/j.tox.2024.154009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The aim of this study was to apply a network toxicology strategy to investigate the potential toxicity and the molecular mechanisms underlying the aging-induced toxicity of acetyl tributyl citrate (ATBC). Utilizing the ChEMBL, SwissTargetPrediction, and CellAge databases, we identified 32 potential targets associated with ATBC exposure and aging. Subsequent optimization by STRING and Cytoscape software highlighted 11 core targets, including EGFR, STAT3, and BCL-2. A comprehensive analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that core targets of ATBC-induced senescence were predominantly enriched in pathways related to the positive regulation of cell proliferation, telomere shortening, cancer, and cellular senescence. Among these pathways, we selected four core genes of the cellular senescence pathway (MAPK14, CDK2, MDM2, and PIK3CA) for molecular docking with Autodock, which confirmed the high binding affinity between ATBC and the core targets. In conclusion, these findings indicate that ATBC may contribute to human aging by modulating the positive regulation of cell proliferation, the telomere shortening pathway, the cancer-related pathway, and the cellular senescence pathway. This study establishes a theoretical basis for exploring the molecular mechanisms of human aging induced by ATBC, alongside a systematic and effective framework for researchers to assess the potential toxicity of various chemical products.
Collapse
Affiliation(s)
- Qiu Zheng
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qingping Peng
- Collage of Integrated Traditional Chines and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jianlin Shen
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100,China; Central Laboratory,Affiliated Hospital of Putian University, Putian 351100, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
39
|
Li PC, Tong YC, Xiao XL, Fan YP, Ma WR, Liu YQ, Zhuang S, Qing SZ, Zhang WM. Kaempferol restores the susceptibility of ESBLs Escherichia coli to Ceftiofur. Front Microbiol 2024; 15:1474919. [PMID: 39723150 PMCID: PMC11668781 DOI: 10.3389/fmicb.2024.1474919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The development of extended-spectrum-beta-lactamase (ESBLs) Escherichia coli (E. coli) has become a global threat to public health. An alternative strategy to alleviate this is identifying potential natural compounds to restore antibiotic activity against ESBLs E. coli. This study aimed to find a possible compound to restore ESBLs E. coli sensitivity to ceftiofur. Methods The synergistic effect of kaempferol and ceftiofur against ESBLs E. coli was investigated by checkerboard assays, time-kill, growth curves, and scanning electronic microscope. The impact of kaempferol with ceftiofur on the biofilm of ESBLs E. coli was evaluated by crystal violet staining and laser scanning confocal microscopy and this study also assessed the effect of kaempferol on the initial adhesion and aggregation of E. coli (SY20) by examining motility, adhesion, and surface characteristics. The RT-qPCR was used to determine the effect of kaempferol on the expression of genes related to the LuxS/AI-2 quorum sensing system in ESBLs E. coli, and the effect of kaempferol on AI-2 signaling molecules was determined by molecular docking and bioassay. The impact of kaempferol on the activity of blaCTX-M-27 protein was determined by RT-qPCR, molecular docking, and nitrofen experiments, the results were further verified by transcriptome analysis. The mouse infection model was established, and the inhibitory mechanism of kaempferol with ceftiofur on bacteria in vivo was further verified by HE staining and immunohistochemistry. Results and discussion Kaempferol with ceftiofur exerts synergistic antibacterial and bactericidal effects on ESBLs E. coli by influencing β-lactamase activity, biofilm formation, and LuxS/AI-2 QS system. In vivo, kaempferol protected the small intestinal villi from the damage of ESBLs E. coli. Furthermore, kaempferol fully restores the activity of ceftiofur in animal infection models by relieving the TLR4/NF-κb pathway. In conclusion, the sensitivity of ESBLs E. coli to ceftiofur in vitro and in vivo could be enhanced by kaempferol, which showed that kaempferol may be a kind of antibiotic adjuvant.
Collapse
Affiliation(s)
- Peng-Cheng Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yin-Chao Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xing-Lan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yun-Peng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wu-Ren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ying-Qiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shen Zhuang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Su-Zhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei-Min Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Chang Y, Jiang X, Dou J, Xie R, Zhao W, Cao Y, Gao J, Yao F, Wu D, Mei H, Zhong Y, Ge Y, Xu H, Jiang W, Xiao X, Jiang Y, Hu S, Wu Y, Liu Y. Investigating the potential risk of cadmium exposure on seizure severity and anxiety-like behaviors through the ferroptosis pathway in epileptic mice: An integrated multi-omics approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135814. [PMID: 39303606 DOI: 10.1016/j.jhazmat.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Cadmium, a toxic heavy metal from industrial activities, poses a neurotoxic risk, especially to children. While seizures are common in children, the link between cadmium and seizure activity is unclear. Ferroptosis, an iron-dependent cell death, is key in seizure-induced hippocampal damage and related anxiety. This study aims to elucidate these mechanisms and assess the broader implications of cadmium exposure. Our research contributes in three significant areas: Firstly, through a combination of observational studies in long-term cadmium-exposed workers, Mendelian randomization analysis, NHANES analysis, urinary metabolomics, and machine learning analysis, we explored the impact of long-term cadmium exposure on inflammatory cytokines, ferroptosis-related gene expression, and lipid and iron metabolism. Secondly, by harnessing public databases for human disorders and metal-associated gene targets, alongside therapeutic molecular analyses, we identified critical human gene targets for cadmium toxicity in seizures and proposed melatonin as a promising therapeutic agent. Finally, utilizing mouse behavioral assays, T2 MRI, and MRS, we provide evidence of how prolonged cadmium exposure disrupts iron and lipid metabolism in the brain, triggering ferroptosis in the hippocampus.
Collapse
Affiliation(s)
- Yuanjin Chang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaofan Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jianrui Dou
- Department of Occupational Safety and Health, Center for Disease Control and Prevention of Yangzhou, Yangzhou, China
| | - Ruijin Xie
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China; Yangzhou Polytechnic College, Yangzhou, China
| | - Wenjing Zhao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yingsi Cao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ju Gao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Fanglong Yao
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dongqin Wu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Huiya Mei
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - YuXi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hua Xu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenjun Jiang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xue Xiao
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanying Jiang
- Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Yueying Liu
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
41
|
Hong Y, Wang D, Lin Y, Yang Q, Wang Y, Xie Y, Shu W, Gao S, Hua C. Environmental triggers and future risk of developing autoimmune diseases: Molecular mechanism and network toxicology analysis of bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117352. [PMID: 39550874 DOI: 10.1016/j.ecoenv.2024.117352] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Bisphenol A (BPA), a chemical compound in plastics and resins, widely exist in people's production and life which have great potential to damage human and animal health. It has been proved that BPA could affect human immune function and promote the occurrence and development of autoimmune diseases (ADs). However, the mechanism and pathophysiology remain unknown. Therefore, this study aims to advance network toxicology strategies to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants, focusing on ADs induced by BPA exposure. Leveraging databases including ChEMBL, STITCH, SwissTargetPrediction, GeneCards, and OMIM, we identified potential targets associated with BPA exposure and ADs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and type 1 diabetes (T1D). Subsequent refinement using STRING and Cytoscape software highlighted core targets respectively, and Metascape was utilized for enrichment analysis. Gene expression data from the GEO database revealed the upregulation or downregulation of these targets across these ADs. Molecular docking performed with Autodock confirmed robust binding between BPA and core targets, notably PPARG, CTNNB1, ESR1, EGFR, SRC, and CCND1. These findings suggest that BPA exposure may serve as an environmental trigger in the development of autoimmunity, underscoring potential environmental risk factors for the onset of autoimmune conditions.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yinfang Lin
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Qianru Yang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
42
|
Hong Y, Wang Y, Wang D, Yuan Q, Yang Z, Deng C. Assessing male reproductive toxicity of environmental pollutant di-ethylhexyl phthalate with network toxicology and molecular docking strategy. Reprod Toxicol 2024; 130:108749. [PMID: 39551107 DOI: 10.1016/j.reprotox.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Environmental pollutants, especially endocrine-disrupting chemicals (EDCs) like di-ethylhexyl phthalate (DEHP), pose serious threats to human health, with DEHP widely implicated in male reproductive toxicity. However, the complex molecular interactions remain unknown. We employed a network toxicology approach combined with molecular docking analysis to identify potential targets and mechanisms of DEHP's toxic effects. Databases such as ChEMBL, STITCH, OMIM, and GeneCards were utilized to gather data, and Cytoscape software was used to construct protein-protein interaction networks. A total of 51 potential targets were identified, with eight core targets, including PTGS2, CASP3, and ESR1, highlighted for their roles in oxidative stress, apoptosis, and hormonal dysregulation. KEGG pathway enrichment analysis revealed significant associations with pathways in cancer, cytokine-mediated signaling, and the hypothalamic-pituitary-gonadal axis. Additionally, gene expression datasets from the Gene Expression Omnibus (GEO) database were analyzed to identify differentially expressed genes overlapped with DEHP targets in testicular diseases. Molecular docking results confirmed strong binding affinities between DEHP and the core target proteins, suggesting a robust interaction mechanism. This study underscores the need for further investigation into DEHP's toxic mechanisms and its combined effects with other environmental pollutants, paving the way for comprehensive risk assessments and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China.
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qichao Yuan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Zihan Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Chuncao Deng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| |
Collapse
|
43
|
Song H, Zhou H, Yang S, He C. Combining mendelian randomization analysis and network toxicology strategy to identify causality and underlying mechanisms of environmental pollutants with glioblastoma: A study of Methyl-4-hydroxybenzoate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117311. [PMID: 39536568 DOI: 10.1016/j.ecoenv.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND An increasing number of environmental pollutants are associated with human diseases. We explored the mechanisms by which an aromatic small molecule -- Methyl-4-hydroxybenzoate (MEP) contribute to the development of glioblastoma (GBM). METHODS The causality of MEP and GBM were identified via the Mendelian Randomization (MR) analysis. We identified the key targets by integrating the targets of GBM, differential expressed genes (DEGs) from GEO and target genes of MEP. The network of hub genes was obtained from STRING and Cytoscape tools and GO, KEGG enrichment analysis were conducted by clusterProfiler R package. These hub targets were executed molecular docking via Autodock software. RESULTS MEP had a causal association with GBM as risk factors (P < 0.05, OR > 1). 46 key targets were derived, in which CASP3, MMP2 and CDK4 were screened as the hub targets. MEP might play a role in the GBM by affecting the pathways of neuroactive ligand-receptor interaction, Molecular docking analysis showed a good binding ability of between MEP and CASP3, MMP2, CDK4, CASP8 and MCL1. CONCLUSIONS A causal relationship between MEP and GBM exists. CASP3, MMP2, CDK4, CASP8 and MCL1 have been identified as the crucial targets correlating with GBM. This discovery may provide an important insight into how environmental pollutants contribute to the development of GBM.
Collapse
Affiliation(s)
- Haimin Song
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Huaiyu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China; The First Clinical Medical College of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Chunming He
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
44
|
Luo C, Zhang Q, Zheng S, Wang D, Huang W, Huang Y, Shi X, Xie H, Wu K. Visual toxicity in zebrafish larvae following exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), triphenyl phosphate (TPhP), and isopropyl phenyl diphenyl phosphate (IPPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175131. [PMID: 39127212 DOI: 10.1016/j.scitotenv.2024.175131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.
Collapse
Affiliation(s)
- Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yanhong Huang
- Mental Health Center of Shantou University, Shantou, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
45
|
Wang R, Hou L, Lu H, Zhang Y, Guo T, Zhou B, Zhao H, Xing M. Unveiling the interplay of MAPK/NF-κB/MLKL axis in brain health: Omega-3 as a promising candidates against copper neurotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122791. [PMID: 39357438 DOI: 10.1016/j.jenvman.2024.122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Excessive intake of copper (Cu) may lead to increased inflammatory responses in brain, which can cause damage to neurons and glial cells, thereby affecting normal brain function. Omega-3 (ω-3) is a common dietary supplement, particularly rich in DHA in the brain, known for its anti-inflammatory properties and its role in lipid balance regulation and structural maintenance. Here, ω-3 is supplemented to Cu-exposed chickens to assess its neuroprotection in vivo and in vitro. Pathologically, ω-3 significantly alleviated structural and functional abnormalities in brain under excess Cu, including barrier disruption, neuronal shrinkage necroptosis and increased release of inflammatory factors such as IL-1β. The molecular docking analyses unveiled high enrichment values of inflammation and MAPK pathway, with IL-1β gene enrichment the highest value. Mechanistically, DHA stabilized the active site of IL-1β, thereby reducing the activation of NF-κB signal and phosphorylation of MAPK/MLKL cascades, ultimately mitigating Cu-induced inflammatory effects. These mechanisms elucidate the action mode of Cu neurotoxicity from aspect of MAPK/NF-κB/MLKL axis and the promising neuroprotection of ω-3.
Collapse
Affiliation(s)
- Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Boran Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
46
|
Yang L, Li Y, Xie Q, Xu T, Qi X. Insights into ubiquitinome dynamics in the host‒pathogen interplay during Francisella novicida infection. Cell Commun Signal 2024; 22:508. [PMID: 39425216 PMCID: PMC11487746 DOI: 10.1186/s12964-024-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Ubiquitination functions as an important posttranslational modification for orchestrating inflammatory immune responses and cell death during pathogenic infection. The ubiquitination machinery is a major target hijacked by pathogenic bacteria to promote their survival and proliferation. Type I interferon (IFN-I) plays detrimental roles in host defense against Francisella novicida (F. novicida) infection. The effects of IFN-I on the ubiquitination of host proteins during F. novicida infection remain unclear. Herein, we delineate the dynamic ubiquitinome alterations in both wild-type (WT) and interferon-alpha receptor-deficient (Ifnar-/-) primary bone marrow-derived macrophages (BMDMs) during F. novicida infection. Using diGly proteomics and stable isotope labeling (SILAC), we quantified ubiquitination sites in proteins from primary WT and Ifnar-/- BMDMs with and without F. novicida infection. Our mass spectrometry analysis identified 2,491 ubiquitination sites in 1,077 endogenous proteins. Our study revealed that F. novicida infection induces dynamic changes in the ubiquitination of proteins involved in the cell death, phagocytosis, and inflammatory response pathways. IFN-I signaling is essential for both the increase and reduction in ubiquitination in response to F. novicida infection. We identified IFN-I-dependent ubiquitination in proteins involved in glycolysis and vesicle transport processes and highlighted key hub proteins modified by ubiquitination within cell death pathways. These findings underscore the significant influence of IFN-I signaling on modulating ubiquitination during F. novicida infection and provide valuable insights into the complex interplay between the host and F. novicida.
Collapse
Affiliation(s)
- Luyu Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yanfeng Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qingqing Xie
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
47
|
Yang M, Mao K, Cao X, Liu H, Mao W, Hao L. Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice. Toxicol Appl Pharmacol 2024; 491:117050. [PMID: 39111554 DOI: 10.1016/j.taap.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
48
|
Wu Q, Zhou Q, Wan C, Xin G, Wang T, Gao Y, Liu T, Yu X, Zhang B, Huang W. Mechanism Actions of Coniferyl Alcohol in Improving Cardiac Dysfunction in Renovascular Hypertension Studied by Experimental Verification and Network Pharmacology. Int J Mol Sci 2024; 25:10063. [PMID: 39337549 PMCID: PMC11444148 DOI: 10.3390/ijms251810063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Renovascular hypertension (RH), a secondary hypertension, can significantly impact heart health, resulting in heart damage and dysfunction, thereby elevating the risk of cardiovascular diseases. Coniferol (CA), which has vascular relaxation properties, is expected to be able to treat hypertension-related diseases. However, its potential effects on cardiac function after RH remain unclear. In this study, in combination with network pharmacology, the antihypertensive and cardioprotective effects of CA in a two-kidney, one-clip (2K1C) mice model and its ability to mitigate angiotensin II (Ang II)-induced hypertrophy in H9C2 cells were investigated. The findings revealed that CA effectively reduced blood pressure, myocardial tissue damage, and inflammation after RH. The possible targets of CA for RH treatment were screened by network pharmacology. The interleukin-17 (IL-17) and tumor necrosis factor (TNF) signaling pathways were identified using a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The inflammatory response was identified using a Gene Ontology (GO) enrichment analysis. Western blot analysis confirmed that CA reduced the expression of IL-17, matrix metallopeptidase 9 (MMP9), cyclooxygenase 2 (COX2), and TNF α in heart tissues and the H9C2 cells. In summary, CA inhibited cardiac inflammation and fibrohypertrophy following RH. This effect was closely linked to the expression of MMP9/COX2/TNF α/IL-17. This study sheds light on the therapeutic potential of CA for treating RH-induced myocardial hypertrophy and provides insights into its underlying mechanisms, positioning CA as a promising candidate for future drug development.
Collapse
Affiliation(s)
- Qiuling Wu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Qilong Zhou
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Chengyu Wan
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Guang Xin
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Yu Gao
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Ting Liu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Xiuxian Yu
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| | - Boli Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
- Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Wen Huang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China; (Q.W.); (Q.Z.); (C.W.); (G.X.); (T.W.); (Y.G.); (T.L.); (X.Y.)
| |
Collapse
|
49
|
Lin Z, Li Y, Zhao J, Li J, Pan S, Wang X, Lin H, Lin Z. Exploring the environmental contamination toxicity and potential carcinogenic pathways of perfluorinated and polyfluoroalkyl substances (PFAS): An integrated network toxicology and molecular docking strategy. Heliyon 2024; 10:e37003. [PMID: 39286118 PMCID: PMC11402918 DOI: 10.1016/j.heliyon.2024.e37003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
The objective of this study was to investigate the potential carcinogenic toxicity and mechanisms of PFAS in thyroid, renal, and testicular cancers base on network toxicology and molecular docking techniques. Structural modeling was performed to predict relevant toxicity information, and compounds and cancer-related targets were screened in multiple databases. The interaction of PFAS with three cancers and their key protein targets were explored by combining protein network analysis, enrichment analysis and molecular docking techniques. PFOA, PFOS, and PFHXS exhibited significant carcinogenic and cytotoxic effects. These compounds may induce cancer by mediating active oxygen metabolism and the transduction of phosphatidylinositol 3-kinase/protein kinase B signaling pathway through genes such as ALB, mTOR, MDM2, and ERBB2. Furthermore, the underlying toxic mechanisms may be linked to the pathways in cancer, chemical carcinogenesis through reactive oxygen species/receptor activation, and the FoxO signaling pathway. The results contribute to a comprehensive understanding of the effects of these environmental pollutants on genes, proteins, and metabolic pathways in living organisms. It revealed their toxicity mechanisms in inducing thyroid, renal, and testicular cancers, and provided a solid theoretical foundation for designing new environmental control strategies and drug screening initiatives. Additionally, the integrated application of network toxicology and molecular docking technology can enhance our understanding of the toxicity and mechanisms of unknown environmental pollutants, which is beneficial for protecting the environment and human health.
Collapse
Affiliation(s)
- Zhi Lin
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Yvmo Li
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jiarui Zhao
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jun Li
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Shuang Pan
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Xinhe Wang
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, China
| |
Collapse
|
50
|
Jeon H, Yeo S, Park EA, Kang D, Shen K, Kim M, Lee I, Jeon J, Moon B, Ji K, Kim S, Kho Y. Identification and quantification of acetyl tributyl citrate (ATBC) metabolites using human liver microsomes and human urine. CHEMOSPHERE 2024; 363:142840. [PMID: 39019193 DOI: 10.1016/j.chemosphere.2024.142840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Plasticizers are chemicals that make plastics flexible, and phthalates are commonly used. Due to the toxic effects of phthalates, there is increasing use of non-phthalate plasticizers like acetyl tributyl citrate (ATBC). ATBC has emerged as a safer alternative, yet concerns about its long-term safety persist due to its high leachability and potential endocrine-disrupting effects. This study aims to identify ATBC metabolites using human liver microsomes and suspect screening methods, and to explore potential urinary biomarkers for ATBC exposure. Using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we identified ATBC metabolites, including acetyl dibutyl citrate (ADBC), tributyl citrate (TBC), and dibutyl citrate (DBC). Urine samples from 15 participants revealed the presence of ADBC in 5, TBC in 11, and DBC in all samples, with DBC concentrations pointedly higher than the other metabolites. These metabolites show promise as biomarkers for ATBC exposure, though further validation with human data is required. Our results underscore the need for comprehensive studies on ATBC metabolism, exposure pathways, and urinary excretion to accurately assess human exposure levels.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Sunghoon Yeo
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Eun-Ah Park
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea
| | - Kailin Shen
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea
| | - Minyoung Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, 134 Yongindaehak-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17092, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, 553 Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea.
| |
Collapse
|