1
|
Giacobbi E, Scioli MP, Servadei F, Palumbo V, Bonfiglio R, Bove P, Mauriello A, Scimeca M. PAX Family, Master Regulator in Cancer. Diagnostics (Basel) 2025; 15:1420. [PMID: 40506992 PMCID: PMC12155527 DOI: 10.3390/diagnostics15111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/08/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
PAX genes, known as master regulators, encode paired box (PAX) proteins that govern key processes in organ development and are widely expressed in normal tissues. Notably, PAX proteins also play a pivotal role in both promoting and suppressing tumorigenesis. They influence essential cellular functions such as survival, proliferation, fate determination, differentiation, invasion, metastasis, and the formation of oncogenic fusion proteins. In this review, we summarize the current understanding of these transcription factors. First, we provide a brief overview of their molecular structure, which underlies their classification into four subgroups. Then, we examine the expression patterns of each PAX gene across organ systems and explore their biological roles in the most relevant malignant neoplasms affecting human health. Additionally, we highlight their diagnostic, prognostic, and predictive significance in the context of cancer.
Collapse
Affiliation(s)
- Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Pierluigi Bove
- Department of Surgical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E.G.); (M.P.S.); (F.S.); (V.P.); (R.B.)
| |
Collapse
|
2
|
Servadei F, Bonfiglio R, Sisto R, Casciardi S, Giacobbi E, Scioli MP, Palumbo V, Buonomo CO, Melino G, Mauriello A, Scimeca M. Mercury Bioaccumulation in Female Breast Cancer Is Associated to CXCR4 Expression. Int J Mol Sci 2025; 26:4427. [PMID: 40362664 PMCID: PMC12073024 DOI: 10.3390/ijms26094427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The growing incidence of breast cancer over time suggests that environmental factors might contribute to the underlying causes of the disease. Mercury, a toxic metal classified as a Substance of Very High Concern, accumulates in the body through contaminated food, air, water, and soil, raising concerns about its role in tumor biology. The main aim of this study was to identify the possible associations between in situ mercury bioaccumulation and the molecular features of breast cancer. To achieve this, a total of 26 breast cancer cases were analyzed using an integrated approach that combined DNA and RNA sequencing, histological analysis, and inductively coupled plasma mass spectrometry (ICP-MS) to assess mercury bioaccumulation. Mercury was detected in 72% of the cases. A significant positive correlation was found between mercury bioaccumulation and CXCR4 expression in breast cancer tissues. Bioinformatic analysis further revealed that CXCR4 expression was significantly higher in metastatic tissues compared to primary tumors. These findings suggest that mercury accumulation may influence tumor biology through the CXCR4-CXCL12 signaling pathway, highlighting a potential mechanism by which mercury contributes to breast cancer progression.
Collapse
Affiliation(s)
- Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (R.S.); (S.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Claudio Oreste Buonomo
- Breast Unit, Department of Surgical Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.S.); (R.B.); (E.G.); (M.S.)
| |
Collapse
|
3
|
Liu R, Guo X, Yang G, Lu S, Chen F, Jia W, Li J, Niu J, Guo H, Zhu H. Formation of metal-microplastic complexes in lung adenocarcinoma is associated with increased risk of cancer progression. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138517. [PMID: 40344833 DOI: 10.1016/j.jhazmat.2025.138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Metal-microplastic complexes (m-MPs) represent an emerging environmental health concern. However their presence and pathological implications in lung adenocarcinoma (LUAD) remain underexplored. This study employed a multimodal approach to characterize m-MPs in 15 LUAD patients, integrating several techniques, including laser direct infrared imaging (LDIR), pyrolysis gas chromatography-mass spectrometry (Py-GCMS), inductively coupled plasma analysis (ICP), and Sequencing at the transcriptome level. Totally, 34 distinct microplastic types were identified in lung tissues, with polyvinyl chloride (PVC) predominant in tumor tissues. Notably, the levels of aluminum (Al) and calcium (Ca) exhibited strong positive correlations with microplastics (MPs) content in tumors (p < 0.05). In this study, a novel approach was applied to assess the influences of m-MPs on tumor, through which we found that m-MPs accumulation could activate pro-tumorigenic pathways, leading to reduced overall survival (HR=1.59, p = 0.002) and disease-specific survival (HR=1.64, p = 0.01). Moreover, SYNE1 and RORA genes were identified as diagnostic/prognostic biomarkers for the assessment of m-MPs exposure in LUAD. Our findings revealed that m-MPs have the capacity for promoting metal ion deposition and oncogenic signaling, thereby involved in LUAD progression. This work also provides evidence using human tissue to demonstrate the association of m-MPs with lung cancer outcomes and advocate the development and application of therapeutic strategies targeting m-MPs.
Collapse
Affiliation(s)
- Runze Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaokang Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guangjian Yang
- Department of Respiratory Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuangqing Lu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hongbo Guo
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
4
|
Palumbo V, Treglia M, Scimeca M, Servadei F, Giacobbi E, Bonfiglio R, Pallocci M, Passalacqua P, Del Duca F, Tittarelli R, Coppeta L, Schiaroli S, Cervelli G, Mauriello A, Marsella LT, Mauriello S. Cocaine-Induced Cardiac Alterations: Histological and Immunohistochemical Post-Mortem Analysis. Diagnostics (Basel) 2025; 15:999. [PMID: 40310391 PMCID: PMC12026069 DOI: 10.3390/diagnostics15080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Cocaine abuse represents a serious health issue. The cardiovascular system is one of the main sites on which cocaine elicits its toxicity, as indicated by deadly events mainly related to myocardial infarction. The main aim of this study was to characterize the histological and immunohistochemical alterations related to cocaine abuse in cardiac tissue. Methods: Cardiac tissue samples derived from cocaine-related (n = 30) and not-cocaine-related deaths (n = 30). Histomorphology evaluations and immunohistochemistry for inflammatory biomarkers (CD45 and CD3) have been performed on formalin-fixed, paraffin-embedded (FFPE) cardiac tissue samples. Results: A higher frequency of cardiac alterations, such as wavy fibers, interstitial edema, fibrosis and hemorrhagic extravasation, were found in the group of cocaine users compared to the control group. Moreover, immunohistochemical analysis showed higher levels of inflammatory cells infiltrate within the cocaine-related deaths group. Conclusions: These data could shed new light on the complex relationship between cocaine use and cardiac alterations. Specifically, our data support the evidence that cocaine abuse is related to cardiac inflammation. Therefore, the generation of an inflammatory state could promote functional and structural cardiac alterations and lead ultimately to myocardial infarction. This would explain the high frequency of acute myocardial infarction in cocaine users.
Collapse
Affiliation(s)
- Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Michele Treglia
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Margherita Pallocci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Pierluigi Passalacqua
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Fabio Del Duca
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Tittarelli
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Coppeta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Stefania Schiaroli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Giulio Cervelli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome “Tor Vergata”, 00133 Rome, Italy (F.S.)
| | - Luigi Tonino Marsella
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Silvestro Mauriello
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
5
|
Scimeca M, Bonfiglio R, Colosimo G, Candi E, Gerber GP, Lewbart GA, Mauriello A, Melino G, Sevilla C, Shi Y, Wang Y, Gentile G. Ultrastructural studies distinguish skin diversities among Galápagos iguanas. Biol Direct 2025; 20:16. [PMID: 39905445 PMCID: PMC11796138 DOI: 10.1186/s13062-025-00602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
Iguanas exhibit diverse colors and behaviors reflecting evolutionarily adaptation to various habitats; in particular, the Galápagos iguanas represent unique color morphologies with distinct ecological niches. While external coloration in iguanas has ecological implications, comprehensive studies on the histological and ultrastructural aspects of their skin can provide insight into their adaptation to extreme environments, such as high UV exposure. Starting from these considerations the present study investigates the histological, ultrastructural and immunohistochemical features to comprehensively characterize the skin in adults of three species of Galápagos iguanas (A. cristatus, C. subcristatus and C. marthae). Morphological analysis revealed significant differences among the species, with the black-colored skin of A. cristatus showing a melanin-rich but vessel-poor dermis, while C. subcristatus and C. marthae displayed varying distributions of melanosomes and melanocytes. Notably, the absence of iridophores was consistent across all samples due to the absence of birefringent material under the optical microscope. Morphometric evaluations highlighted interspecific differences in the stratum corneum thickness, particularly between black- and non-black-colored (irrespectively if yellowish or pink) skin. The ultrastructural investigation confirmed the absence of iridophores in all analyzed samples. The cytokeratin expression assessed by immunohistochemistry showed stratified epithelium in the epidermis of C. marthae non-black-colored (pink) skin. The presence of a thickened stratum corneum and the stratification of the epidermis in non-pigmented skin could help the pink iguana to cope with the extreme conditions of the Wolf volcano, especially in relation to UV exposure. These skin characteristics may reduce the penetration power of UV rays into the superficial loose dermis, thereby attenuating potential UV-related damage such as DNA breaks and ROS generation. These findings offer insights into the adaptive strategies of these iguanas.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Giuliano Colosimo
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
- IDI-IRCCS, Rome, 00166, Italy
| | - Glenn P Gerber
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA, USA
| | - Gregory A Lewbart
- North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Christian Sevilla
- Galápagos Science Center GSC, Isla San Cristobal, Galápagos, Ecuador
- Galápagos National Park Directorate, Av. Charles Darwin, Puerto Ayora, Isla S. Cruz, Galápagos, Ecuador
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gabriele Gentile
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy.
| |
Collapse
|
6
|
Agostini M, Giacobbi E, Servadei F, Bishof J, Funke L, Sica G, Rovella V, Carilli M, Iacovelli V, Shi Y, Hou J, Candi E, Melino G, Cervelli G, Scimeca M, Mauriello A, Bove P. Unveiling the molecular profile of a prostate carcinoma: implications for personalized medicine. Biol Direct 2024; 19:146. [PMID: 39741346 PMCID: PMC11686862 DOI: 10.1186/s13062-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm. RESULTS We have observed deletion of KDM6A gene, which may represent an additional genomic alteration to be considered for patient stratification. The cancer hallmarks gene signatures highlight intriguing molecular aspects that characterize the biology of this tumor by both a high hypoxia and immune infiltration scores. Moreover, our analysis showed a slight increase in the Tumoral Mutational Burden, as well as an over-expression of the immune checkpoints. The omics profiling integrating hypoxia, ROS and the anti-cancer immune response, optimizes therapeutic strategies and advances personalized care for prostate cancer patients. CONCLUSION The here data reported can lay the foundation for predicting a poor prognosis for the studied prostate cancer, as well as the possibility of targeted therapies based on the modulation of hypoxia, ROS, and the anti-cancer immune response.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Julia Bishof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Likas Funke
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Giuseppe Sica
- Department of Surgical Science, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Marco Carilli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valerio Iacovelli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Yufang Shi
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianquan Hou
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulio Cervelli
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Pierluigi Bove
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Bonfiglio R, Giacobbi E, Palumbo V, Casciardi S, Sisto R, Servadei F, Scioli MP, Schiaroli S, Cornella E, Cervelli G, Sica G, Candi E, Melino G, Mauriello A, Scimeca M. Aluminum Concentration Is Associated with Tumor Mutational Burden and the Expression of Immune Response Biomarkers in Colorectal Cancers. Int J Mol Sci 2024; 25:13388. [PMID: 39769153 PMCID: PMC11676456 DOI: 10.3390/ijms252413388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that Al bioaccumulation occurred in 100% of the cases. A correlation between Al levels and tumor mutation burden was observed. Furthermore, RNA sequencing revealed a significant association between Al concentration and the expression of the immune checkpoint molecule CTLA-4. Although correlations with PD-1 and PD-L1 were not statistically significant, a trend was observed. Additionally, a correlation between Al levels and both the presence of myeloid cells and IFNγ expression was detected, linking Al exposure to inflammatory responses within the tumor microenvironment. These findings suggested that Al can play a role in CRC progression by promoting both genetic mutations and immune evasion. Given the ubiquitous presence of Al in industrial and consumer products, dietary sources, and environmental pollutants, these results underscored the need for stricter regulatory measures to control Al exposure.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefania Schiaroli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Elena Cornella
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giulio Cervelli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giuseppe Sica
- Department of Surgery, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| |
Collapse
|
8
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
9
|
Scimeca M, Giacobbi E, Servadei F, Palumbo V, Palumbo C, Finazzi-Agrò E, Albisinni S, Mauriello A, Albonici L. Prognostic Value of PlGF Upregulation in Prostate Cancer. Biomedicines 2024; 12:2194. [PMID: 39457506 PMCID: PMC11505493 DOI: 10.3390/biomedicines12102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide, with metastasis, particularly to bone, being the primary cause of mortality. Currently, prognostic markers like PSA levels and Gleason classification are limited in predicting metastasis, emphasizing the need for novel clinical biomarkers. New molecules predicting tumor progression have been identified over time. Some, such as the immune checkpoint inhibitors (ICIs) PD-1/PD-L1, have become valid markers as theranostic tools essential for prognosis and drug target therapy. However, despite the success of ICIs as an anti-cancer therapy for solid tumors, their efficacy in treating bone metastases has mainly proven ineffective, suggesting intrinsic resistance to this therapy in the bone microenvironment. This study explores the potential of immunological intratumoral biomarkers, focusing on placental growth factor (PlGF), Vascular Endothelial Growth Factor Receptor 1 (VEGFR1), and Programmed Cell Death Protein 1 (PD-1), in predicting bone metastasis formation. METHODS we analyzed PCa samples from patients with and without metastasis by immunohistochemical analysis. RESULTS Results revealed that PlGF expression is significantly higher in primary tumors of patients that developed metastasis within five years from the histological diagnosis. Additionally, PlGF expression correlates with increased VEGFR1 and PD-1 levels, as well as the presence of intratumoral M2 macrophages. CONCLUSIONS These findings suggest that PlGF contributes to an immunosuppressive environment, thus favoring tumor progression and metastatic process. Results here highlight the potential of integrating these molecular markers with existing prognostic tools to enhance the accuracy of metastasis prediction in PCa. By identifying patients at risk for metastasis, clinicians can tailor treatment strategies more effectively, potentially improving survival outcomes and quality of life. This study underscores the importance of further research into the role of intratumoral biomarkers in PCa management.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Enrico Finazzi-Agrò
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Simone Albisinni
- Unit of Urology, Department of Surgical Sciences, Tor Vergata University, 00133 Rome, Italy; (E.F.-A.); (S.A.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (E.G.); (F.S.); (V.P.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Department of Biomedical Sciences, “Our Lady of Good Counsel” University, Rruga Dritan Hoxha, 1000 Tirana, Albania
| |
Collapse
|
10
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
11
|
Li J, Gao P, Qin M, Wang J, Luo Y, Deng P, Hao R, Zhang L, He M, Chen C, Lu Y, Ma Q, Li M, Tan M, Wang L, Yue Y, Wang H, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. Long-term cadmium exposure induces epithelial-mesenchymal transition in breast cancer cells by activating CYP1B1-mediated glutamine metabolic reprogramming in BT474 cells and MMTV-Erbb2 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170773. [PMID: 38336054 DOI: 10.1016/j.scitotenv.2024.170773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 μΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 μΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.
Collapse
Affiliation(s)
- Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingke Qin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Junhua Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Yang Yue
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa 850000, Xizang, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Bhattacharya S, Sangave PC, Belemkar S, Anjum MM. pH-Sensitive Nanoparticles of Epigallocatechin-3-Gallate in Enhanced Colorectal Cancer Therapy. Nanomedicine (Lond) 2024; 19:459-481. [PMID: 38223987 DOI: 10.2217/nnm-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
AIM Encapsulating epigallocatechin-3-gallate (EGCG) in pH-sensitive polymeric nanoparticles for targeted delivery of drugs could revolutionize colorectal cancer treatment. MATERIALS & METHODS Nanoparticles were synthesized to release drugs at colon pH. Dynamic light scattering measured their average diameter and ζ-potential, while differential scanning calorimetry and x-ray diffraction assessed EGCG encapsulation. RESULTS The nanoparticles showed stability and bioavailability in the gastrointestinal tract, efficiently encapsulating and releasing over 93% of EGCG at pH 7.2. They enhanced cytotoxicity against HT-29 cells and demonstrated antibacterial properties, increasing apoptosis and cell cycle arrest. CONCLUSION The study underscores the potential of nanoparticles in enhancing EGCG delivery for colorectal cancer therapy, aiming to minimize side effects and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Preeti Chidambar Sangave
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP, 226025, India
| |
Collapse
|