1
|
Farag MR, Abo-Al-Ela HG, Alagawany M, Azzam MM, El-Saadony MT, Rea S, Di Cerbo A, Nouh DS. Effect of Quercetin Nanoparticles on Hepatic and Intestinal Enzymes and Stress-Related Genes in Nile Tilapia Fish Exposed to Silver Nanoparticles. Biomedicines 2023; 11:663. [PMID: 36979642 PMCID: PMC10045288 DOI: 10.3390/biomedicines11030663] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Recently, nanotechnology has become an important research field involved in the improvement of animals' productivity, including aquaculture. In this field, silver nanoparticles (AgNPs) have gained interest as antibacterial, antiviral, and antifungal agents. On the other hand, their extensive use in other fields increased natural water pollution causing hazardous effects on aquatic organisms. Quercetin is a natural polyphenolic compound of many plants and vegetables, and it acts as a potent antioxidant and therapeutic agent in biological systems. The current study investigated the potential mitigative effect of quercetin nanoparticles (QNPs) against AgNPs-induced toxicity in Nile tilapia via investigating liver function markers, hepatic antioxidant status, apoptosis, and bioaccumulation of silver residues in hepatic tissue in addition to the whole-body chemical composition, hormonal assay, intestinal enzymes activity, and gut microbiota. Fish were grouped into: control fish, fish exposed to 1.98 mg L-1 AgNPs, fish that received 400 mg L-1 QNPs, and fish that received QNPs and AgNPs at the same concentrations. All groups were exposed for 60 days. The moisture and ash contents of the AgNP group were significantly higher than those of the other groups. In contrast, the crude lipid and protein decreased in the whole body. AgNPs significantly increased serum levels of ALT, AST, total cholesterol, and triglycerides and decreased glycogen and growth hormone (*** p < 0.001). The liver and intestinal enzymes' activities were significantly inhibited (*** p < 0.001), while the oxidative damage liver enzymes, intestinal bacterial and Aeromonas counts, and Ag residues in the liver were significantly increased (*** p < 0.001, and * p < 0.05). AgNPs also significantly upregulated the expression of hepatic Hsp70, caspase3, and p53 genes (* p < 0.05). These findings indicate the oxidative and hepatotoxic effects of AgNPs. QNPs enhanced and restored physiological parameters and health status under normal conditions and after exposure to AgNPs.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Haitham G. Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Stefano Rea
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Doaa S. Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Lai X, Li C, Xiang C, Pan Z, Zhang K, Wang L, Xie B, Cao J, Shi J, Deng J, Lu S, Deng H, Zhuang H, Li T, Shi Y, Xiang K. Generation of functionally competent hepatic stellate cells from human stem cells to model liver fibrosis in vitro. Stem Cell Reports 2022; 17:2531-2547. [PMID: 36270282 PMCID: PMC9669405 DOI: 10.1016/j.stemcr.2022.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
The detailed understanding of fibrogenesis has been hampered by a lack of important functional quiescence characteristics and an in vitro model to recapitulate hepatic stellate cell (HSC) activation. In our study, we establish robust endoderm- and mesoderm-sourced quiescent-like induced HSCs (iHSCs) derived from human pluripotent stem cells. Notably, iHSCs present features of mature HSCs, including accumulation of vitamin A in the lipid droplets and maintained quiescent features. In addition, iHSCs display a fibrogenic response and secrete collagen I in response to hepatoxicity caused by thioacetamide, acetaminophen, and hepatitis B and C virus infection. Antiviral therapy attenuated virally induced iHSC activation. Interestingly, endoderm- and mesoderm-derived iHSCs showed similar iHSC phenotypes. Therefore, we provide a novel and robust method to efficiently generate functional iHSCs from hESC and iPSC differentiation, which could be used as a model for hepatocyte toxicity prediction, anti-liver-fibrosis drug screening, and viral hepatitis-induced liver fibrosis. Generation of endoderm- and mesoderm-derived quiescent hepatic stellate cells (qHSCs) Induced qHSC-like cells can be activated into myofibroblasts in vitro Induced qHSC-like cells can respond to hepatoxicity from thioacetamide treatment Hepatitis B and C virus infection can convert qHSC-like cells into activated HSCs
Collapse
|
3
|
Fujimi TJ, Mezaki Y, Masaki T, Tajima A, Nakamura M, Yoshikawa A, Murai N, Aizawa M, Kojima S, Matsumoto Y, Aizaki H, Matsuura T. Investigation of the effects of urea cycle amino acids on the expression of ALB and CEBPB in the human hepatocellular carcinoma cell line FLC-4. Hum Cell 2020; 33:590-598. [PMID: 32474770 PMCID: PMC7324429 DOI: 10.1007/s13577-020-00383-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
Cell lines are powerful tools for research into liver function at the molecular level. However, they are generally unsuitable for rigorously assessing the effects of amino acid composition, because many lines require serum-containing medium for their maintenance. Here, we aimed to investigate the effects of ornithine and arginine, which are included in the characteristic metabolic process in hepatocyte, on a human hepatoma-derived cell line (FLC-4) that can be cultured in serum-free medium. FLC-4 cells were cultured under the following three conditions: + ornithine/ – arginine, – ornithine/ – arginine, and –ornithine/ + arginine. Albumin expression evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay and showed no obvious differences based on the presence of ornithine or arginine. However, the mRNA levels of two liver-enriched transcription factors (CEBPB and HNF1A), which are involved in regulating albumin expression, were significantly higher in cells grown in medium-containing arginine than that in cells grown in ornithine-containing medium. Western blotting showed that the levels both activating and inhibitory C/EBPβ isoforms were significantly increased in cells grown in arginine medium. Furthermore, we have found that depletion of both ornithine and arginine, the polyamine sources, in the medium did not cause polyamine deficiency. When ornithine and arginine were depleted, albumin production was significantly reduced at the mRNA level, CEBPB mRNA levels were increased, and the level of activating form of C/EBPβ was increased. The results of this study suggest that in hepatocyte, these two amino acids might have different functions, and because of which they elicit disparate cellular responses.
Collapse
Affiliation(s)
- Takahiko J Fujimi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, Namegaya, Chigasaki, Kanagawa, Japan. .,Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan.
| | - Yoshihiro Mezaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Ayasa Tajima
- Department of Molecular Biology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Mariko Nakamura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Akira Yoshikawa
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan.,Department of Applied Chemistry, School of Science and Technology, Meiji University, Higashimita, Tama-ku, Kawasaki, Japan
| | - Noriyuki Murai
- Department of Molecular Biology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Higashimita, Tama-ku, Kawasaki, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, Hirosawa, Wako, Saitama, Japan
| | - Yoshihiro Matsumoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| |
Collapse
|
4
|
Bolleyn J, Rombaut M, Nair N, Branson S, Heymans A, Chuah M, VandenDriessche T, Rogiers V, De Kock J, Vanhaecke T. Genetic and Epigenetic Modification of Rat Liver Progenitor Cells via HNF4α Transduction and 5' Azacytidine Treatment: An Integrated miRNA and mRNA Expression Profile Analysis. Genes (Basel) 2020; 11:E486. [PMID: 32365562 PMCID: PMC7291069 DOI: 10.3390/genes11050486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Neonatal liver-derived rat epithelial cells (rLEC) from biliary origin are liver progenitor cells that acquire a hepatocyte-like phenotype upon sequential exposure to hepatogenic growth factors and cytokines. Undifferentiated rLEC express several liver-enriched transcription factors, including the hepatocyte nuclear factors (HNF) 3β and HNF6, but not the hepatic master regulator HNF4α. In this study, we first investigated the impact of the ectopic expression of HNF4α in rLEC on both mRNA and microRNA (miR) level by means of microarray technology. We found that HNF4α transduction did not induce major changes to the rLEC phenotype. However, we next investigated the influence of DNA methyl transferase (DNMT) inhibition on the phenotype of undifferentiated naïve rLEC by exposure to 5' azacytidine (AZA), which was found to have a significant impact on rLEC gene expression. The transduction of HNF4α or AZA treatment resulted both in significantly downregulated C/EBPα expression levels, while the exposure of the cells to AZA had a significant effect on the expression of HNF3β. Computationally, dysregulated miRNAs were linked to target mRNAs using the microRNA Target Filter function of Ingenuity Pathway Analysis. We found that differentially regulated miRNA-mRNA target associations predict ectopic HNF4α expression in naïve rLEC to interfere with cell viability and cellular maturation (miR-19b-3p/NR4A2, miR30C-5p/P4HA2, miR328-3p/CD44) while it predicts AZA exposure to modulate epithelial/hepatic cell proliferation, apoptosis, cell cycle progression and the differentiation of stem cells (miR-18a-5p/ESR1, miR-503-5p/CCND1). Finally, our computational analysis predicts that the combination of HNF4α transduction with subsequent AZA treatment might cause changes in hepatic cell proliferation and maturation (miR-18a-5p/ESR1, miR-503-5p/CCND1, miR-328-3p/CD44) as well as the apoptosis (miR-16-5p/BCL2, miR-17-5p/BCL2, miR-34a-5p/BCL2 and miR-494-3p/HMOX1) of naïve rLEC.
Collapse
Affiliation(s)
- Jennifer Bolleyn
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Matthias Rombaut
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Nisha Nair
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Steven Branson
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Anja Heymans
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Marinee Chuah
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine (GTRM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (N.N.); (M.C.); (T.V.)
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium; (J.B.); (M.R.); (S.B.); (A.H.); (V.R.); (T.V.)
| |
Collapse
|
5
|
Chae YJ, Jun DW, Lee JS, Saeed WK, Kang HT, Jang K, Lee JH. The Use of Foxa2-Overexpressing Adipose Tissue-Derived Stem Cells in a Scaffold System Attenuates Acute Liver Injury. Gut Liver 2019; 13:450-460. [PMID: 30602218 PMCID: PMC6622567 DOI: 10.5009/gnl18235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Aims For the clinical application of stem cell therapy, functional enhancement is needed to increase the survival rate and the engraftment rate. The purpose of this study was to investigate functional enhancement of the paracrine effect using stem cells and hepatocyte-like cells and to minimize stem cell homing by using a scaffold system in a liver disease model. Methods A microporator was used to overexpress Foxa2 in adipose tissue-derived stem cells (ADSCs), which were cultured in a poly(lactic-co-glycolic acid) (PLGA) scaffold. Later, the ADSCs were cultured in hepatic differentiation medium for 2 weeks by a 3-step method. For in vivo experiments, Foxa2-overexpressing ADSCs were loaded in the scaffold, cultured in hepatic differentiation medium and later were implanted in the dorsa of nude mice subjected to acute liver injury (thioacetamide intraperitoneal injection). Results Foxa2-overexpressing ADSCs showed greater increases in hepatocyte-specific gene markers (alpha fetoprotein [AFP], cytokeratin 18 [CK18], and albumin), cytoplasmic glycogen storage, and cytochrome P450 expression than cells that underwent the conventional differentiation method. In vivo experiments using the nude mouse model showed that 2 weeks after scaffold implantation, the mRNA expression of AFP, CK18, dipeptidyl peptidase 4 (CD26), and connexin 32 (CX32) was higher in the Foxa2-overexpressing ADSCs group than in the ADSCs group. The Foxa2-overexpressing ADSCs scaffold treatment group showed attenuated liver injury without stem cell homing in the thioacetamide-induced acute liver injury model. Conclusions Foxa2-overexpressing ADSCs applied in a scaffold system enhanced hepatocyte-like differentiation and attenuated acute liver damage in an acute liver injury model without homing effects.
Collapse
Affiliation(s)
- Yeon Ji Chae
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Dae Won Jun
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul,
Korea
| | - Jai Sun Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Waqar Khalid Saeed
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul,
Korea
| | - Hyeon Tae Kang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul,
Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon,
Korea
| |
Collapse
|
6
|
Coll M, Perea L, Boon R, Leite SB, Vallverdú J, Mannaerts I, Smout A, El Taghdouini A, Blaya D, Rodrigo-Torres D, Graupera I, Aguilar-Bravo B, Chesne C, Najimi M, Sokal E, Lozano JJ, van Grunsven LA, Verfaillie CM, Sancho-Bru P. Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables In Vitro Modeling of Liver Fibrosis. Cell Stem Cell 2018; 23:101-113.e7. [PMID: 30049452 DOI: 10.1016/j.stem.2018.05.027] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 11/14/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
The development of complex in vitro hepatic systems and artificial liver devices has been hampered by the lack of reliable sources for relevant cell types, such as hepatic stellate cells (HSCs). Here we report efficient differentiation of human pluripotent stem cells into HSC-like cells (iPSC-HSCs). iPSC-HSCs closely resemble primary human HSCs at the transcriptional, cellular, and functional levels and possess a gene expression profile intermediate between that of quiescent and activated HSCs. Functional analyses revealed that iPSC-HSCs accumulate retinyl esters in lipid droplets and are activated in response to mediators of wound healing, similar to their in vivo counterparts. When maintained as 3D spheroids with HepaRG hepatocytes, iPSC-HSCs exhibit a quiescent phenotype but mount a fibrogenic response and secrete pro-collagen in response to known stimuli and hepatocyte toxicity. Thus, this protocol provides a robust in vitro system for studying HSC development, modeling liver fibrosis, and drug toxicity screening.
Collapse
Affiliation(s)
- Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Luis Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Boon
- Stem Cell Institute Leuven, Leuven, Belgium
| | - Sofia B Leite
- Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julia Vallverdú
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inge Mannaerts
- Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ayla Smout
- Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adil El Taghdouini
- Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Graupera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Leuven, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCL), Leuven, Belgium
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | | | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
7
|
Adam AAA, van der Mark VA, Donkers JM, Wildenberg ME, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. A practice-changing culture method relying on shaking substantially increases mitochondrial energy metabolism and functionality of human liver cell lines. PLoS One 2018; 13:e0193664. [PMID: 29672606 PMCID: PMC5908182 DOI: 10.1371/journal.pone.0193664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Practice-changing culturing techniques of hepatocytes are highly required to increase their differentiation. Previously, we found that human liver cell lines HepaRG and C3A acquire higher functionality and increased mitochondrial biogenesis when cultured in the AMC-Bioartificial liver (BAL). Dynamic medium flow (DMF) is one of the major contributors to this stimulatory effect. Recently, we found that DMF-culturing by shaking of HepaRG monolayers resulted in higher mitochondrial biogenesis. Here we further investigated the effect of DMF-culturing on energy metabolism and hepatic functionality of HepaRG and C3A monolayers. HepaRG and C3A DMF-monolayers were incubated with orbital shaking at 60 rpm during the differentiation phase, while control monolayers were maintained statically. Subsequently, energy metabolism and hepatic functionality were compared between static and DMF-cultures. DMF-culturing of HepaRG cells substantially increased hepatic differentiation; transcript levels of hepatic structural genes and hepatic transcription regulators were increased up to 15-fold (Cytochrome P450 3A4) and nuclear translocation of hepatic transcription factor CEBPα was stimulated. Accordingly, hepatic functions were positively affected, including ammonia elimination, urea production, bile acid production, and CYP3A4 activity. DMF-culturing shifted energy metabolism from aerobic glycolysis towards oxidative phosphorylation, as indicated by a decline in lactate production and glucose consumption, and an increase in oxygen consumption. Similarly, DMF-culturing increased mitochondrial energy metabolism and hepatic functionality of C3A cells. In conclusion, simple shaking of monolayer cultures substantially improves mitochondrial energy metabolism and hepatic differentiation of human liver cell lines. This practice-changing culture method may prove to prolong the in-vitro maintenance of primary hepatocytes and increase hepatic differentiation of stem cells.
Collapse
Affiliation(s)
- Aziza A. A. Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent A. van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne M. Donkers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E. Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Department Of Gastroenterology and Hepatology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. F. M. Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Experimental Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Tong YF, Meng N, Chen MQ, Ying HN, Xu M, Lu B, Hong JJ, Wang YF, Cai XJ. Maturity of associating liver partition and portal vein ligation for staged hepatectomy-derived liver regeneration in a rat model. World J Gastroenterol 2018; 24:1107-1119. [PMID: 29563755 PMCID: PMC5850130 DOI: 10.3748/wjg.v24.i10.1107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a rat model for evaluating the maturity of liver regeneration derived from associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). METHODS In the present study, ALPPS, partial hepatecotmy (PHx), and sham rat models were established initially, which were validated by significant increase of proliferative markers including Ki-67, proliferating cell nuclear antigen, and cyclin D1. In the setting of accelerated proliferation in volume at the second and fifth day after ALPPS, the characteristics of newborn hepatocytes, as well as specific markers of progenitor hepatic cell, were identified. Afterwards, the detection of liver function followed by cluster analysis of functional gene expression were performed to evaluate the maturity. RESULTS Compared with PHx and sham groups, the proliferation of FLR was significantly higher in ALPPS group (P = 0.023 and 0.001 at second day, P = 0.034 and P < 0.001 at fifth day after stage I). Meanwhile, the increased expression of proliferative markers including Ki-67, proliferating cell nuclear antigen, and cyclin D1 verified the accelerated liver regeneration derived from ALPPS procedure. However, ALPPS-induced Sox9 positive hepatocytes significantly increased beyond the portal triad, which indicated the progenitor hepatic cell was potentially involved. And the characteristics of ALPPS-induced hepatocytes indicated the lower expression of hepatocyte nuclear factor 4 and anti-tryptase in early proliferative stage. Both suggested the immaturity of ALPPS-derived liver regeneration. Additionally, the detection of liver function and functional genes expression confirmed the immaturity of renascent hepatocytes derived in early stage of ALPPS-derived liver regeneration. CONCLUSION Our study revealed the immaturity of ALPPS-derived proliferation in early regenerative response, which indicated that the volumetric assessment overestimated the functional proliferation. This could be convincing evidence that the stage II of ALPPS should be performed prudently in patients with marginally adequate FLR, as the ALPPS-derived proliferation in volume lags behind the functional regeneration.
Collapse
Affiliation(s)
- Yi-Fan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Ning Meng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
- Department of General Surgery, Second Hospital, School of Medicine, Hangzhou Normal University, Hangzhou 310000, Zhejiang Province, China
| | - Miao-Qin Chen
- Department of Biological Treatment Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Han-Ning Ying
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Ming Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Billy Lu
- National Center for Advancing Translational Science/National Institutes of Health (NIH), Rickville 20850, American Samoa
| | - Jun-Jie Hong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Fan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
9
|
Cai SH, Lu SX, Liu LL, Zhang CZ, Yun JP. Increased expression of hepatocyte nuclear factor 4 alpha transcribed by promoter 2 indicates a poor prognosis in hepatocellular carcinoma. Therap Adv Gastroenterol 2017; 10:761-771. [PMID: 29051787 PMCID: PMC5638181 DOI: 10.1177/1756283x17725998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hepatocyte nuclear factor 4 alpha (HNF4α) plays an important role in tumourigenesis. There is growing evidence indicating that HNF4α transcribed by promoter 1 (P1-HNF4α) is expressed at relatively low levels in HCC and its presence predicts a favourable outcome for hepatocellular carcinoma (HCC) patients. However, the role of HNF4α transcribed by promoter 2 (P2-HNF4α) in HCC remains unclear. METHODS A total of 615 HCC specimens were obtained to construct tissue microarrays and perform immunohistochemistry. The relationship between P2-HNF4α and clinical features of HCC patients were analysed. Kaplan-Meier analysis was conducted to assess the prognostic value of P2-HNF4α. RESULTS The results showed that the expression of P2-HNF4α in HCC was noticeably increased in HCC tissues compared with the nontumourous tissues. In addition, P1-HNF4α expression was negatively correlated with P2-HNF4α expression (p = 0.023). High P2-HNF4α expression was significantly associated with poor differentiation of HCC (p = 0.002) and vascular invasion (p = 0.017). Kaplan-Meier analysis showed that P2-HNF4α expression was closely correlated with overall survival in the training group (p = 0.01), validation group (p = 0.034), and overall group of patients with HCC (p < 0.001). CONCLUSIONS Our data show that the role of HNF4α in cancer development needs to be further refined. P2-HNF4α, different from P1-HNF4α, is markedly upregulated and serves as an oncogene-associated protein in HCC. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shao-hang Cai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | |
Collapse
|
10
|
Hang HL, Liu XY, Wang HT, Xu N, Bian JM, Zhang JJ, Xia L, Xia Q. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival. Exp Cell Res 2017; 360:81-93. [PMID: 28870599 DOI: 10.1016/j.yexcr.2017.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/22/2022]
Abstract
Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF.
Collapse
Affiliation(s)
- Hua-Lian Hang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin-Yu Liu
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Hai-Tian Wang
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Ning Xu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian-Min Bian
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Jian-Jun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Raut A, Khanna A. High-throughput sequencing to identify microRNA signatures during hepatic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Hepatol Res 2017; 47:910-927. [PMID: 27653181 DOI: 10.1111/hepr.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/10/2016] [Accepted: 09/17/2016] [Indexed: 12/27/2022]
Abstract
AIM MicroRNAs (miRNAs) constitute a class of small non-coding RNAs involved in regulation of cognate mRNAs post-transcriptionally. MicroRNAs have been implicated in regulating the stem cell differentiation process. Limited regulatory miRNAs have been reported to date during hepatic differentiation of stem cells. The present study was designed to identify the signature miRNAs implicated in hepatic differentiation of stem cells using next-generation sequencing methods. METHODS We undertook sequencing of miRNAs isolated from three different time points during hepatic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hUC-MSCs) from two biological replicates. RESULTS Out of a total known 2588 miRNAs (according to miRBase version 21), 880 miRNAs were identified in our study. A total of 63 significantly expressed miRNAs during hepatic differentiation, with at least 2-fold change and a false discovery rate value <0.05, were considered for further analysis. The putative target genes of significantly downregulated miRNAs during hepatic differentiation appeared to be mostly associated with biological processes that are essential for hepatic differentiation and maintenance of mature hepatic phenotype-like liver development, stem cell differentiation, Wnt receptor signaling pathway, and drug and cholesterol metabolic processes. Putative target genes of significantly upregulated miRNAs are highly enriched in regulating processes that block hepatic differentiation of hUC-MSCs like epithelial-mesenchymal transition, transforming growth factor-β receptor signaling pathway, and stem cell maintenance. CONCLUSION The study provides a new insight for investigation of miRNA-regulated pathways during the differentiation process.
Collapse
Affiliation(s)
- Akshata Raut
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies University, Mumbai, India
| | - Aparna Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies University, Mumbai, India
| |
Collapse
|
12
|
Pan XP, Wang YN, Yu XP, Zhu CX, Li JZ, Du WB, Zhang YM, Cao HC, Zhang YH, Zhu DH, Yeoh GC, Li LJ. Efficient generation of functional hepatocyte-like cells from mouse liver progenitor cells via indirect co-culture with immortalized human hepatic stellate cells. Hepatobiliary Pancreat Dis Int 2016; 15:173-179. [PMID: 27020634 DOI: 10.1016/s1499-3872(16)60074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Differentiation of liver progenitor cells (LPCs) to functional hepatocytes holds great potential to develop new strategies for hepatocyte transplantation and the screening of drug-induced cytotoxicity. However, reports on the efficient and convenient hepatic differentiation of LPCs to hepatocytes are few. The present study aims to investigate the possibility of generating functional hepatocytes from LPCs in an indirect co-culture system. METHODS Mouse LPCs were co-cultured in Transwell plates with an immortalized human hepatic stellate cell line (HSC-Li) we previously established. The morphology, expression of hepatic markers, and functions of mouse LPC-derived cells were monitored and compared with those of conventionally cultured LPCs. RESULTS Co-culturing with HSC-Li cells induced differentiation of mouse LPCs into functional hepatocyte-like cells. The differentiated cells were morphologically transformed into hepatocyte-like cells 3 days after co-culture initiation. In addition, the differentiated cells expressed liver-specific genes and possessed hepatic functions, including glycogen storage, low-density lipoprotein uptake, albumin secretion, urea synthesis, and cytochrome P450 1A2 enzymatic activity. CONCLUSIONS Our method, which employs indirect co-culture with HSC-Li cells, can efficiently induce the differentiation of LPCs into functional hepatocytes. This finding suggests that this co-culture system can be a useful method for the efficient generation of functional hepatocytes from LPCs.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC, Yang D, Reetz J, Brandes S, Dai Z, Pützer BM, Araúzo-Bravo MJ, Steinemann D, Luedde T, Schwabe RF, Manns MP, Schöler HR, Schambach A, Cantz T, Ott M, Sharma AD. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell 2016; 18:797-808. [PMID: 26923201 DOI: 10.1016/j.stem.2016.01.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023]
Abstract
Direct induction of induced hepatocytes (iHeps) from fibroblasts holds potential as a strategy for regenerative medicine but until now has only been shown in culture settings. Here, we describe in vivo iHep formation using transcription factor induction and genetic fate tracing in mouse models of chronic liver disease. We show that ectopic expression of the transcription factors FOXA3, GATA4, HNF1A, and HNF4A from a polycistronic lentiviral vector converts mouse myofibroblasts into cells with a hepatocyte phenotype. In vivo expression of the same set of transcription factors from a p75 neurotrophin receptor peptide (p75NTRp)-tagged adenovirus enabled the generation of hepatocyte-like cells from myofibroblasts in fibrotic mouse livers and reduced liver fibrosis. We have therefore been able to convert pro-fibrogenic myofibroblasts in the liver into hepatocyte-like cells with positive functional benefits. This direct in vivo reprogramming approach may open new avenues for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Guangqi Song
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany
| | - Martin Pacher
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany
| | - Hsin-Chieh Tsay
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany
| | - Dakai Yang
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany
| | - Julia Reetz
- Institute for Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock 18057, Germany
| | - Sabine Brandes
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany
| | - Zhen Dai
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany
| | - Brigitte M Pützer
- Institute for Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock 18057, Germany
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián 20014, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover 30625, Germany
| | - Tom Luedde
- Division of Hepatobiliary Oncology, Department of Medicine III, University Hospital RWTH, Aachen 52074, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Axel Schambach
- Institute for Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Twincore Centre for Experimental and Clinical Infection Research, Hannover 30625, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover 30625, Germany; Junior Research Group MicroRNA in Liver Regeneration, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
14
|
Ramboer E, De Craene B, De Kock J, Berx G, Rogiers V, Vanhaecke T, Vinken M. Development and characterization of a new human hepatic cell line. EXCLI JOURNAL 2015; 14:875-89. [PMID: 26869867 PMCID: PMC4747020 DOI: 10.17179/excli2015-424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Abstract
The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics.
Collapse
Affiliation(s)
- Eva Ramboer
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joey De Kock
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Vera Rogiers
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Tamara Vanhaecke
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
15
|
Liu WH, Ren LN, Chen T, You N, Liu LY, Wang T, Yan HT, Luo H, Tang LJ. Unbalanced distribution of materials: the art of giving rise to hepatocytes from liver stem/progenitor cells. J Cell Mol Med 2014; 18:1-14. [PMID: 24286303 PMCID: PMC3916112 DOI: 10.1111/jcmm.12183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Liver stem/progenitor cells (LSPCs) are able to duplicate themselves and differentiate into each type of cells in the liver, including mature hepatocytes and cholangiocytes. Understanding how to accurately control the hepatic differentiation of LSPCs is a challenge in many fields from preclinical to clinical treatments. This review summarizes the recent advances made to control the hepatic differentiation of LSPCs over the last few decades. The hepatic differentiation of LSPCs is a gradual process consisting of three main steps: initiation, progression and accomplishment. The unbalanced distribution of the affecting materials in each step results in the hepatic maturation of LSPCs. As the innovative and creative works for generating hepatocytes with full functions from LSPCs are gradually accumulated, LSPC therapies will soon be a new choice for treating liver diseases.
Collapse
Affiliation(s)
- Wei-Hui Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Na Ren
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Chen
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Nan You
- Department of General Surgery Xinqiao Hospital, Third Military Medical UniversityChongqing, China
| | - Li-Ye Liu
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Tao Wang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hong-Tao Yan
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Hao Luo
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| | - Li-Jun Tang
- General Surgery Center of PLA, Chengdu Military General HospitalChengdu, Sichuan Province, China
| |
Collapse
|
16
|
Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, Wang M, Zheng L, Li H, Wu Q, Zhang J, Fan D, Han Y. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 2013; 4:e918. [PMID: 24232094 PMCID: PMC3847311 DOI: 10.1038/cddis.2013.429] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/07/2023]
Abstract
In a previous study, we elucidated the specific microRNA (miRNA) profile of hepatic differentiation. In this study, we aimed to clarify the instructive role of six overexpressed miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424 and miR-542-5p) during hepatic differentiation of human umbilical cord lining-derived mesenchymal stem cells (hMSCs) and to test whether overexpression of any of these miRNAs is sufficient to induce differentiation of the hMSCs into hepatocyte-like cells. Before hepatic differentiation, hMSCs were infected with a lentivirus containing a miRNA inhibitor sequence. We found that downregulation of any one of the six hepatic differentiation-specific miRNAs can inhibit HGF-induced hepatic differentiation including albumin expression and LDL uptake. Although overexpression of any one of the six miRNAs alone or liver-enriched miR-122 cannot initiate hepatic differentiation, ectopic overexpression of seven miRNAs (miR-1246, miR-1290, miR-148a, miR-30a, miR-424, miR-542-5p and miR-122) together can stimulate hMSC conversion into functionally mature induced hepatocytes (iHep). Additionally, after transplantation of the iHep cells into mice with CCL4-induced liver injury, we found that iHep not only can improve liver function but it also can restore injured livers. The findings from this study indicate that miRNAs have the capability of directly converting hMSCs to a hepatocyte phenotype in vitro.
Collapse
Affiliation(s)
- L Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The road to regenerative liver therapies: the triumphs, trials and tribulations. Biotechnol Adv 2013; 31:1085-93. [PMID: 24055818 DOI: 10.1016/j.biotechadv.2013.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 12/13/2022]
Abstract
The liver is one of the few organs that possess a high capacity to regenerate after liver failure or liver damage. The parenchymal cells of the liver, hepatocytes, contribute to the majority of the regeneration process. Thus, hepatocyte transplantation presents an alternative method to treating liver damage. However, shortage of hepatocytes and difficulties in maintaining primary hepatocytes still remain key obstacles that researchers must overcome before hepatocyte transplantation can be used in clinical practice. The unique properties of pluripotent stem cells (PSCs) and induced pluripotent stem cells (iPSCs) have provided an alternative approach to generating enough functional hepatocytes for cellular therapy. In this review, we will present a brief overview on the current state of hepatocyte differentiation from PSCs and iPSCs. Studies of liver regenerative processes using different cell sources (adult liver stem cells, hepatoblasts, hepatic progenitor cells, etc.) will be described in detail as well as how this knowledge can be applied towards optimizing culture conditions for the maintenance and differentiation of these cells towards hepatocytes. As the outlook of stem cell-derived therapy begins to look more plausible, researchers will need to address the challenges we must overcome in order to translate stem cell research to clinical applications.
Collapse
|
18
|
Kogiso T, Nagahara H, Otsuka M, Shiratori K, Dowdy SF. Transdifferentiation of human fibroblasts into hepatocyte-like cells by defined transcriptional factors. Hepatol Int 2013; 7:937-944. [DOI: 10.1007/s12072-013-9432-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Desiderio V, De Francesco F, Schiraldi C, De Rosa A, La Gatta A, Paino F, d'Aquino R, Ferraro GA, Tirino V, Papaccio G. Human Ng2+ adipose stem cells loaded in vivo on a new crosslinked hyaluronic acid-Lys scaffold fabricate a skeletal muscle tissue. J Cell Physiol 2013; 228:1762-73. [PMID: 23359523 DOI: 10.1002/jcp.24336] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/18/2013] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose stem cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross-linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. Thirty days after engraftment in mice, we found that NG2(+) ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2(-) ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT-PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut-4, and PPAR-γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2(+) ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre-differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration.
Collapse
Affiliation(s)
- Vincenzo Desiderio
- Dipartimento di Medicina Sperimentale, Sezione di Istologia ed Embriologia Medica, Tissue Engineering and Regenerative (TERM), Seconda Università degli Studi di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Waern JM, Yuan Q, Rüdrich U, Becker PD, Schulze K, Strick-Marchand H, Huntington ND, Zacher BJ, Wursthorn K, DiSanto JP, Guzman CA, Manns MP, Ott M, Bock M. Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice. Hepatology 2012; 56:1479-88. [PMID: 22535707 DOI: 10.1002/hep.25816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Macrophages play an important role in the rejection of xenogeneic cells and therefore represent a major obstacle to generating chimeric mice with human xenografts that are useful tools for basic and preclinical medical research. The signal inhibitory regulatory protein α (SIRPα) receptor is a negative regulator of macrophage phagocytic activity and interacts in a species-specific fashion with its ligand CD47. Furthermore, SIRPα polymorphism in laboratory mouse strains significantly affects the extent of human CD47-mediated toleration of human xenotransplants. Aiming to minimize macrophage activity and thus optimize human cell engraftment in immunodeficient mice, we lentivirally transduced murine CD47 (Cd47) into human liver cells. Human HepG2 liver cells expressing Cd47 were less frequently contacted and phagocytosed by murine RAW264.7 macrophages in vitro than their Cd47-negative counterparts. For the generation of human-mouse chimeric livers in immunodeficient BALB-ΔRAG/γ(c) -uPA (urokinase-type plasminogen activator) mice, freshly thawed cryopreserved human hepatocytes were transduced with a lentiviral expression vector for Cd47 using a refined in vitro transduction protocol immediately before transplantation. In vivo, Cd47-positive human primary hepatocytes were selectively retained following engraftment in immunodeficient mice, leading to at least a doubling of liver repopulation efficiencies. CONCLUSION We conclude that ectopic expression of murine Cd47 in human hepatocytes selectively favors engraftment upon transplantation into mice, a finding that should have a profound impact on the generation of robust humanized small animal models. Moreover, dominance of ectopically expressed murine Cd47 over endogenous human CD47 should also widen the spectrum of immunodeficient mouse strains suitable for humanization.
Collapse
Affiliation(s)
- Johan M Waern
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chistiakov DA, Chistiakov PA. Strategies to produce hepatocytes and hepatocyte-like cells from pluripotent stem cells. Hepatol Res 2012; 42:111-9. [PMID: 21988469 DOI: 10.1111/j.1872-034x.2011.00896.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are a potent source for unlimited production of hepatocytes and hepatocyte-like cells that may replace primary human hepatocytes in a variety of fields including liver cell therapy, liver tissue engineering, manufacturing bioartificial liver, modeling inherited and chronic liver diseases, drug screening and toxicity testing. Human ESCs are able to spontaneously form embryoid bodies, which then spontaneously differentiate to various tissue-specific cell lineages containing a total of 10-30% albumin-producing hepatocytes and hepatocyte-like cells. Enrichment of embryoid bodies with the definitive endoderm, from which hepatocytes arise, yields increasing the final ratio of hepatocyte population up by 50-65%. Current strategies of the directed differentiation of human ESCs (and iPSCs) to hepatocytes that reproduce liver embryogenesis by sequential stimulation of culturing ESCs with tissue-specific growth factors result in achieving the differentiation rate up to 60-80%. In the future, directed differentiation of human ESCs and iPSCs to hepatocytes should be further optimized towards generating homogeneous cultures of hepatocytes in order to avoid expensive procedures of separation and isolation of hepatocytes and hepatocyte-like cells.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Bionanotechnology, Pirogov Russian State Medical University Department of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow, Russia
| | | |
Collapse
|
22
|
Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 2012; 55:298-306. [PMID: 22030746 PMCID: PMC3245372 DOI: 10.1002/hep.24762] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the American Association for the Study of Liver Diseases Henry M. and Lillian Stratton Basic Research Single Topic Conference "Stem Cells in Liver Diseases and Cancer: Discovery and Promise" brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes the outcomes of the conference and provides an update on recent research advances. Progress in liver stem cell research includes isolation of primary liver progenitor cells (LPCs), directed hepatocyte differentiation of primary LPCs and pluripotent stem cells, findings of transdifferentiation, disease-specific considerations for establishing a therapeutically effective cell mass, and disease modeling in cell culture. Tumor-initiating stem-like cells (TISCs) that emerge during chronic liver injury share the expression of signaling pathways, including those organized around transforming growth factor beta and β-catenin, and surface markers with normal LPCs. Recent investigations of the role of TISCs in hepatocellular carcinoma have provided insight into the transcriptional and post-transcriptional regulation of hepatocarcinogenesis. Targeted chemotherapies for TISC are in development as a means to overcome cellular resistance and mechanisms driving disease progression in liver cancer.
Collapse
Affiliation(s)
- C. Bart Rountree
- Department of Pediatrics and Pharmacology, Penn State College of Medicine, Hershey, PA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX
| | - Holger Willenbring
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA,Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, CA,Liver Center, University of California San Francisco, San Francisco, CA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| |
Collapse
|
23
|
Enhanced liver functions in mouse hepatoma cells by induced overexpression of liver-enriched transcription factors. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|