1
|
Gao Q, Dai Z, Yang X, Liu C, Liu G. Experimental study on small molecule combinations inducing reprogramming of rat fibroblasts into functional neurons. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:498-508. [PMID: 39183062 PMCID: PMC11375488 DOI: 10.3724/zdxbyxb-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/30/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To establish a methodological system for reprogramming rat embryonic fibroblasts (REF) into chemically induced neurons (ciNCs) via small molecule compounds to provide safe and effective donor cells for treatment of neurodegenerative diseases. METHODS Based on the method established by PEI Gang's research group to directly reprogram human fibroblasts into neurons, the induction medium and maturation medium was optimized by replacing the coating solution, mitigating oxidative stress injury, adding neurogenic protective factors, adjusting the concentration of trichothecenes, performing small-molecule removal experiments, and carrying out immunofluorescence and Western blotting on cells at different stages of induction to validate the effect of induction. RESULTS When the original protocol was used for induction, the cell survival rate was (34.24±2.77)%. After replacing the coating solution gelatin with matrigel, the cell survival rate increased to (45.41±4.27)%; after adding melatonin, the cell survival rate increased to (67.95±5.61)% and (23.43±1.42)% were transformed into neural-like cells; after adding the small molecule P7C3-A20, the cell survival rate was further increased to (76.27±1.41)%, and (39.72±4.75)% of the cells were transformed into neural-like cells. When the concentration of trichothecene was increased to 30 μmol/L, the proportion of neural-like cells reached (55.79±1.90)%; after the removal of SP600125, (86.96±2.15)% of the cells survived, and the rate of neural-like cell production increased to (63.43±1.60)%. With the optimized protocol, REF could be successfully induced into ciNC through the neural precursor cell stage, in which the neural precursor cells were able to highly express the neural precursor cell markers SRY-related HMG-box gene 2 (Sox2) and paired box 6 (Pax6) as well as neuron-specific marker tubulin 1 (Tuj1), while the expression of fiber-associated protein vimentin was reduced. After two weeks of induction of neural precursor cells in a maturation medium, most cells displayed neuronal-like cell morphology. The induced ciNCs were able to highly express the mature neuronal surface markers Tuj1 and microtubule-associated protein 2 (MAP2), while the expression of vimentin was reduced. CONCLUSIONS The small molecule combinations optimized in this study can reprogram REF to ciNCs under normoxic conditions.
Collapse
Affiliation(s)
- Qunwei Gao
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China.
| | - Zhenjia Dai
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Xinkang Yang
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Changqing Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233030, Anhui Province, China
| | - Gaofeng Liu
- School of Life Sciences, Bengbu Medical University, Bengbu 233030, Anhui Province, China. ,
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu 233030, Anhui Province, China. ,
| |
Collapse
|
2
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
4
|
Xing G, Liu Z, Huang L, Zhao D, Wang T, Yuan H, Wu Y, Li L, Long Q, Zhou Y, Hao Z, Liu Y, Lu J, Li S, Zhu J, Wang B, Wang J, Liu J, Chen J, Pei D, Liu X, Chen K. MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death Differ 2022; 29:1042-1054. [PMID: 34815549 PMCID: PMC9090911 DOI: 10.1038/s41418-021-00902-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.
Collapse
Affiliation(s)
- Guangsuo Xing
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Luyuan Huang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Danyun Zhao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Qi Long
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zhihong Hao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Shiting Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jieying Zhu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Bo Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jing Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jiekai Chen
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
5
|
Yan J, Yang Y, Fan X, Liang G, Wang Z, Li J, Wang L, Chen Y, Adetula AA, Tang Y, Li K, Wang D, Tang Z. circRNAome profiling reveals circFgfr2 regulates myogenesis and muscle regeneration via a feedback loop. J Cachexia Sarcopenia Muscle 2022; 13:696-712. [PMID: 34811940 PMCID: PMC8818660 DOI: 10.1002/jcsm.12859] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) represent a novel class of non-coding RNAs formed by a covalently closed loop and play crucial roles in many biological processes. Several circRNAs associated with myogenesis have been reported. However, the dynamic expression, function, and mechanism of circRNAs during myogenesis and skeletal muscle development are largely unknown. METHODS Strand-specific RNA-sequencing (RNA-seq) and microarray datasets were used to profile the dynamic circRNAome landscape during skeletal muscle development and myogenic differentiation. Bioinformatics analyses were used to characterize the circRNAome and identify candidate circRNAs associated with myogenesis. Bulk and single-cell RNA-seq were performed to identify the downstream genes and pathways of circFgfr2. The primary myoblast cells, C2C12 cells, and animal model were used to assess the function and mechanism of circFgfr2 in myogenesis and muscle regeneration in vitro or in vivo by RT-qPCR, western blotting, dual-luciferase activity assay, RNA immunoprecipitation, RNA fluorescence in situ hybridization, and chromatin immunoprecipitation. RESULTS We profiled the dynamic circRNAome in pig skeletal muscle across 27 developmental stages and detected 52 918 high-confidence circRNAs. A total of 2916 of these circRNAs are conserved across human, mouse, and pig, including four circRNAs (circFgfr2, circQrich1, circMettl9, and circCamta1) that were differentially expressed (|log2 fold change| > 1 and adjusted P value < 0.05) in various myogenesis systems. We further focused on a conserved circRNA produced from the fibroblast growth factor receptor 2 (Fgfr2) gene, termed circFgfr2, which was found to inhibit myoblast proliferation and promote differentiation and skeletal muscle regeneration. Mechanistically, circFgfr2 acted as a sponge for miR-133 to regulate the mitogen-activated protein kinase kinase kinase 20 (Map3k20) gene and JNK/MAPK pathway. Importantly, transcription factor Kruppel like factor 4 (Klf4), the downstream target of the JNK/MAPK pathway, directly bound to the promoter of circFgfr2 and affected its expression via an miR-133/Map3k20/JNK/Klf4 auto-regulatory feedback loop. RNA binding protein G3BP stress granule assembly factor 1 (G3bp1) inhibited the biogenesis of circFgfr2. CONCLUSIONS The present study provides a comprehensive circRNA resource for skeletal muscle study. The functional and mechanistic analysis of circFgfr2 uncovered a circRNA-mediated auto-regulatory feedback loop regulating myogenesis and muscle regeneration, which provides new insight to further understand the regulatory mechanism of circRNAs.
Collapse
Affiliation(s)
- Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoming Liang
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiju Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liyuan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dazhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China.,GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| |
Collapse
|
6
|
Fan Y, Zhang G, Zhao K, Fu W, Chen S, Liu J, Liu W, Peng L, Ren L, Liu S, Xiao Y. Characteristics of SP600125 Induced Tetraploid Cells in Comparison With Diploid and Tetraploid Cells of Fish. Front Genet 2021; 12:781007. [PMID: 34938322 PMCID: PMC8685524 DOI: 10.3389/fgene.2021.781007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
In our previous research, SP600125 (Anthrapyrazolone) was used to induce autotetraploid of crucian carp cells (SP4N cells), and tetraploid fry was generated from the SP4N cells by somatic cell nuclear transfer technique. However, it is still unclear about biological characteristics of the SP4N cells. In this article, the cytological characteristic and gene expression profiles of the SP4N cells are investigated in comparison with the crucian carp cells (2N cells) and the tetraploid crucian carp cells (CC4N cells). The SP4N cells have tetraploid characteristics in terms of morphology and DNA ploidy levels, and their chromosome behavior is stable during the cell proliferation. The migration ability and the mtDNA copy number of SP4N cells are both lower than those in the CC4N cells and the 2N cells, but there exist giant mitochondria in the SP4N cells. The similar expression trends in the cell cycle regulation genes of the SP4N cells and 2N cells, while the corresponding expression profiles are clearly different between the SP4N cells and the CC4N cells. Moreover, the significant difference genes are associated with energy metabolism pathways among the SP4N cells, 2N cells and CC4N cells. These results can provide deeper understanding of SP600125 induction, as well as finding applications in polyploidization breeding of fish species.
Collapse
Affiliation(s)
- Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guangjing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Kaiyue Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Xu W, Mo Y, He Y, Fan Y, He G, Fu W, Chen S, Liu J, Liu W, Peng L, Xiao Y. A New Method for Chromosomes Preparation by ATP-Competitive Inhibitor SP600125 via Enhancement of Endomitosis in Fish. Front Bioeng Biotechnol 2021; 8:606496. [PMID: 33520960 PMCID: PMC7838586 DOI: 10.3389/fbioe.2020.606496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Previous studies have suggested that 1,9-Pyrazoloanthrone, known as SP600125, can induce cell polyploidization. However, what is the phase of cell cycle arrest caused by SP600125 and the underlying regulation is still an interesting issue to be further addressed. Research in this article shows that SP600125 can block cell cycle progression at the prometaphase of mitosis and cause endomitosis. It is suggested that enhancement of the p53 signaling pathway and weakening of the spindle assembly checkpoint are associated with the SP600125-induced cell cycle arrest. Using preliminary SP600125 treatment, the samples of the cultured fish cells and the fish tissues display a great number of chromosome splitting phases. Summarily, SP600125 can provide a new protocol of chromosomes preparation for karyotype analysis owing to its interference with prometaphase of mitosis.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yanxiu Mo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Histology and Embryology, School of Basic Medical Science, Xiangnan University, Chenzhou, China
| | - Yu He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guomin He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wen Fu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shujuan Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Sohn EJ, Moon HJ, Lim JK, Kim DS, Kim JH. Regulation of the protein stability and transcriptional activity of OCT4 in stem cells. Adv Biol Regul 2020; 79:100777. [PMID: 33451972 DOI: 10.1016/j.jbior.2020.100777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
OCT4 (also known as Oct3 and Oct3/4), which is encoded by Pou5f1, is expressed in early embryonic cells and plays an important role in early development, pluripotency maintenance, and self-renewal of embryonic stem cells. It also regulates the reprogramming of somatic cells into induced pluripotent stem cells. Several OCT4-binding proteins, including SOX2 and NANOG, reportedly regulate gene transcription in stem cells. An increasing number of evidence suggests that not only gene transcription but also post-translational modifications of OCT4 play a pivotal role in regulating the expression and activity of OCT4. For instance, ubiquitination and sumoylation have been reported to regulate OCT4 protein stability. In addition, the phosphorylation of Ser347 in OCT4 also stabilizes the OCT4 protein level. Recently, we identified KAP1 as an OCT4-binding protein and reported the KAP1-mediated regulation of OCT4 protein stability. KAP1 overexpression led to an increased proliferation of mouse embryonic stem cells and promoted the reprogramming of somatic cells resulting in induced pluripotent stem cells. In this review, we discuss how the protein stability and function of OCT4 are regulated by protein-protein interaction in stem cells.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hye Ji Moon
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jae Kyong Lim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Da Sol Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jae Ho Kim
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
9
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Role of Jnk1 in development of neural precursors revealed by iPSC modeling. Oncotarget 2018; 7:60919-60928. [PMID: 27556303 PMCID: PMC5308626 DOI: 10.18632/oncotarget.11377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023] Open
Abstract
Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases.
Collapse
|
11
|
Li R, He Q, Han S, Zhang M, Liu J, Su M, Wei S, Wang X, Shen L. MBD3 inhibits formation of liver cancer stem cells. Oncotarget 2018; 8:6067-6078. [PMID: 27894081 PMCID: PMC5351613 DOI: 10.18632/oncotarget.13496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
Liver cancer cells can be reprogrammed into induced cancer stem cells (iCSCs) by exogenous expression of the reprogramming transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM). The nucleosome remodeling and deacetylase (NuRD) complex is essential for reprogramming somatic cells. In this study, we investigated the function of NuRD in the induction of liver CSCs. We showed that suppression of methyl-CpG binding domain protein 3 (MBD3), a core subunit of the NuRD repressor complex, together with OSKM transduction, induces conversion of liver cancer cells into stem-like cells. Expression of the transcription factor c-JUN is increased in MBD3-depleted iCSCs, and c-JUN activates endogenous pluripotent genes and regulates iCSC-related genes. These results indicate that MBD3/NuRD inhibits the induction of iCSCs, while c-JUN facilitates the generation of CSC-like properties. The iCSC reprogramming approach devised here provides a novel platform for dissection of the disordered signaling in liver CSCs. In addition, our results indicate that c-JUN may serve as a potential target for liver cancer therapy.
Collapse
Affiliation(s)
- Ruizhi Li
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Qihua He
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Shuo Han
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Mingzhi Zhang
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Jinwen Liu
- Beijing DongFang YaMei Gene Science and Technology Research Institute, Beijing, People's Republic of China
| | - Ming Su
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Shiruo Wei
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| | - Xuan Wang
- State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Guangdong Provincial Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Shen
- Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University, Haidian District, Beijing, 100191, China
| |
Collapse
|
12
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou XF, Liao H. Small Molecules for Neural Stem Cell Induction. Stem Cells Dev 2018; 27:297-312. [PMID: 29343174 DOI: 10.1089/scd.2017.0282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generation of induced pluripotent stem cells (iPSCs) from other somatic cells has provided great hopes for transplantation therapies. However, these cells still cannot be used for clinical application due to the low reprogramming and differentiation efficiency beside the risk of mutagenesis and tumor formation. Compared to iPSCs, induced neural stem cells (iNSCs) are easier to terminally differentiate into neural cells and safe; thus, iNSCs hold more opportunities than iPSCs to treat neural diseases. On the other hand, recent studies have showed that small molecules (SMs) can dramatically improve the efficiency of reprogramming and SMs alone can even convert one kind of somatic cells into another, which is much safer and more effective than transcription factor-based methods. In this study, we provide a review of SMs that are generally used in recent neural stem cell induction studies, and discuss the main mechanisms and pathways of each SM.
Collapse
Affiliation(s)
- Donghui Liu
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China .,2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Nimshitha Pavathuparambil Abdul Manaph
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia .,3 Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital , Adelaide, South Australia
| | - Mohammed Al-Hawwas
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Xin-Fu Zhou
- 2 School of Pharmacy and Medical Sciences, Sansom Institute, University of South Austrralia , Adelaide, South Australia
| | - Hong Liao
- 1 Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing, China
| |
Collapse
|
13
|
Bae KB, Yu DH, Lee KY, Yao K, Ryu J, Lim DY, Zykova TA, Kim MO, Bode AM, Dong Z. Serine 347 Phosphorylation by JNKs Negatively Regulates OCT4 Protein Stability in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 9:2050-2064. [PMID: 29153991 PMCID: PMC5785688 DOI: 10.1016/j.stemcr.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 11/23/2022] Open
Abstract
The POU transcription factor OCT4 is critical for maintaining the undifferentiated state of embryonic stem cells (ESCs) and generating induced pluripotent stem cells (iPSCs), but its precise mechanisms of action remain poorly understood. Here, we investigated the role of OCT4 phosphorylation in the biological functions of ESCs. We observed that c-Jun N-terminal kinases (JNKs) directly interacted with and phosphorylated OCT4 at serine 347, which inhibited the transcriptional activity of OCT4. Moreover, phosphorylation of OCT4 induced binding of FBXW8, which reduced OCT4 protein stability and enhanced its proteasomal degradation. We also found that the mutant OCT4 (S347A) might delay the differentiation process of mouse ESCs and enhance the efficiency of generating iPSCs. These results demonstrated that OCT4 phosphorylation on serine 347 by JNKs plays an important role in its stability, transcriptional activities, and self-renewal of mouse ESCs. JNKs interact with and phosphorylate OCT4 at serine 347 Serine 347 phosphorylation inhibits OCT4 transcriptional activity and stability FBXW8 can interact with the OCT4 protein phosphorylated at serine 347 The differentiation of mouse ESCs is delayed in the presence of OCT4 (S347A)
Collapse
Affiliation(s)
- Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Kun Yeong Lee
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Ke Yao
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Tatyana A Zykova
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA; The School of Animal BT Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16(th) Avenue NE, Austin, MN 55912, USA.
| |
Collapse
|
14
|
Zhang X, Chen J, Sun L, Xu Y. SIRT1 deacetylates KLF4 to activate Claudin-5 transcription in ovarian cancer cells. J Cell Biochem 2017; 119:2418-2426. [PMID: 28888043 DOI: 10.1002/jcb.26404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022]
Abstract
Malignant cancers are distinguished from more benign forms of cancers by enhanced ability to disseminate. A number of factors aid the migration and invasion of malignant cancer cells. Epithelial-to-mesenchymal transition (EMT), which greatly facilitates the dissemination of cancer cells, is characterized by the loss of epithelial markers and the acquisition of mesenchymal markers thereby rendering the cells more migratory and invasive. We have previously shown that the class III lysine deacetylase SIRT1 plays a critical role curbing the metastasis of ovarian cancer cells partly by blocking EMT. Here we investigated the mechanism by which SIRT1 regulates the transcription of Claudin 5 (CLDN5), an epithelial marker gene, in ovarian cancer cells. SIRT1 activation or over-expression up-regulated CLDN5 expression while SIRT1 inhibition or depletion down-regulated CLDN5 expression. SIRT1 interacted with and deacetylated Kruppel-like factor 4 (KLF4), a known transcriptional activator for CLDN5. Deacetylation by SIRT1 promoted nuclear accumulation of KLF4 and enhanced the binding of KLF4 to the CLDN5 promoter in the nucleus. SIRT1-mediated up-regulation of CLDN5 was abrogated in the absence of KLF4. In accordance, KLF4 depletion by siRNA rendered ovarian cancer cells more migratory and invasive despite of SIRT1 activation or over-expression. In conclusion, our data suggest that SIRT1 activates CLDN5 transcription by deacetylating and potentiating KLF4.
Collapse
Affiliation(s)
- Xinjian Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi College of Medicine, Jiangnan University, Nanjing, Jiangsu, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
16
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
17
|
Neganova I, Shmeleva E, Munkley J, Chichagova V, Anyfantis G, Anderson R, Passos J, Elliott DJ, Armstrong L, Lako M. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells 2016; 34:1198-212. [PMID: 26867034 PMCID: PMC4982072 DOI: 10.1002/stem.2327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
Reprogramming of somatic cells to the phenotypic state termed “induced pluripotency” is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c‐Jun N‐terminal kinase (JNK)/stress‐activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well‐established molecular barriers in human somatic cell induced reprogramming. Stem Cells2016;34:1198–1212
Collapse
Affiliation(s)
- Irina Neganova
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Evgenija Shmeleva
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Jennifer Munkley
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Valeria Chichagova
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - George Anyfantis
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Rhys Anderson
- Institute for Ageing and Health, Newcastle University
| | - Joao Passos
- Institute for Ageing and Health, Newcastle University
| | - David J Elliott
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Lyle Armstrong
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| | - Majlinda Lako
- Institute of Genetic Medicine, International Centre for Life and Centre for Integrated Systems Biology of Ageing and Nutrition
| |
Collapse
|
18
|
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M. Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle 2016; 14:1596-610. [PMID: 25928475 DOI: 10.1080/15384101.2015.1026485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
Collapse
Affiliation(s)
- Mehdi Pirouz
- a Department of Molecular Cell Biology ; Max Planck Institute for Biophysical Chemistry ; Goettingen ; Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Jia ZM, Ai X, Teng JF, Wang YP, Wang BJ, Zhang X. p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumour Biol 2016; 37:8293-304. [PMID: 26729194 DOI: 10.1007/s13277-015-4618-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 01/20/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor involved in both tumor suppression and oncogenesis as a transcriptional activator or repressor in a context-dependent manner. KLF4 acts as a regulator of p53 depending on p21 status in breast cancer. However, the mechanisms underlying the distinct role of KLF4 remain poorly understood. Here, we revealed that p21 depletion converted KLF4 from a cell cycle inhibitor to a promoter of bladder cancer cell proliferation. Additionally, KLF4 was acetylated in a p21-dependent manner to inhibit bladder cancer cell growth as a tumor suppressor. However, deacetylated KLF4 functioned as an oncogene promoting bladder cancer cell proliferation. Mechanistically, p21 and CK2 interaction, but not CK2 alone, enhanced HDAC2 phosphorylation and restricted KLF4 deacetylation and subsequent tumor promotion. Furthermore, we observed that KLF4 was acetylated by CBP/p300 and that overexpression of CBP resulted in KLF4 acetylation and tumor suppression even in p21-depleted bladder cancer cells. Moreover, we discovered that Notch-1 knockdown-induced KLF4 is acetylated form of KLF4, which may mediate Notch-1 function in bladder cancer cell proliferation. Our data demonstrate that KLF4 acts as a tumor suppressor or oncogene to activate or repress target gene transcription depending on its acetylation status, which is regulated by p21 and CK2 interaction-mediated HDAC2 phosphorylation. Targeting KLF4 at the post-transcriptional levels may provide novel insight for bladder cancer therapy.
Collapse
Affiliation(s)
- Zhuo-Min Jia
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China
| | - Xing Ai
- Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China.
| | - Jing-Fei Teng
- Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China
| | - Yun-Peng Wang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bao-Jun Wang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu Zhang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
20
|
Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int 2015; 2015:270428. [PMID: 26089912 PMCID: PMC4454756 DOI: 10.1155/2015/270428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
The G9a histone methyltransferase inhibitor BIX01294 was examined for its ability to expand the cardiac capacity of bone marrow cells. Inhibition of G9a histone methyltransferase by gene specific knockdown or BIX01294 treatment was sufficient to induce expression of precardiac markers Mesp1 and brachyury in bone marrow cells. BIX01294 treatment also allowed bone marrow mesenchymal stem cells (MSCs) to express the cardiac transcription factors Nkx2.5, GATA4, and myocardin when subsequently exposed to the cardiogenic stimulating factor Wnt11. Incubation of BIX01294-treated MSCs with cardiac conditioned media provoked formation of phase bright cells that exhibited a morphology and molecular profile resembling similar cells that normally form from cultured atrial tissue. Subsequent aggregation and differentiation of BIX01294-induced, MSC-derived phase bright cells provoked their cardiomyogenesis. This latter outcome was indicated by their widespread expression of the primary sarcomeric proteins muscle α-actinin and titin. MSC-derived cultures that were not initially treated with BIX01294 exhibited neither a commensurate burst of phase bright cells nor stimulation of sarcomeric protein expression. Collectively, these data indicate that BIX01294 has utility as a pharmacological agent that could enhance the ability of an abundant and accessible stem cell population to regenerate new myocytes for cardiac repair.
Collapse
|
21
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
22
|
Liu K, Wang F, Ye X, Wang L, Yang J, Zhang J, Liu L. KSR-based medium improves the generation of high-quality mouse iPS cells. PLoS One 2014; 9:e105309. [PMID: 25171101 PMCID: PMC4149410 DOI: 10.1371/journal.pone.0105309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Induced pluripotent stem (iPS) cells from somatic cells have great potential for regenerative medicine. The efficiency in generation of iPS cells has been significantly improved in recent years. However, the generation of high-quality iPS cells remains of high interest. Consistently, we demonstrate that knockout serum replacement (KSR)-based medium accelerates iPS cell induction and improves the quality of iPS cells, as confirmed by generation of chimeras and all iPS cell-derived offspring with germline transmission competency. Both alkaline phosphatase (AP) activity assay and expression of Nanog have been used to evaluate the efficiency of iPS cell induction and formation of ES/iPS cell colonies; however, appropriate expression of Nanog frequently indicates the quality of ES/iPS cells. Interestingly, whereas foetal bovine serum (FBS)-based media increase iPS cell colony formation, as revealed by AP activity, KSR-based media increase the frequency of iPS cell colony formation with Nanog expression. Furthermore, inhibition of MAPK/ERK by a specific inhibitor, PD0325901, in KSR- but not in FBS-based media significantly increases Nanog-GFP+ iPS cells. In contrast, addition of bFGF in KSR-based media decreases proportion of Nanog-GFP+ iPS cells. Remarkably, PD can rescue Nanog-GFP+ deficiency caused by bFGF. These data suggest that MAPK/ERK pathway influences high quality mouse iPS cells and that KSR- and PD-based media could enrich homogeneous authentic pluripotent stem cells.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingzhuo Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
23
|
Wei ZZ, Yu SP, Lee JH, Chen D, Taylor TM, Deveau TC, Yu ACH, Wei L. Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol 2014; 34:881-93. [PMID: 24913968 PMCID: PMC11488891 DOI: 10.1007/s10571-014-0067-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Stem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity. It may also play a role in neurite outgrowth during neuronal development. In cultured mouse embryonic stem (ES) cells, we test the hypothesis that the JNK pathway is required for neuronal differentiation. After neural induction, the cells were plated and underwent differentiation for up to 5 days. Western blot analysis showed a dramatic increase in phosphorylated JNKs at 1-5 days after plating. The phosphorylation of JNK subsequently induced activation of STAT1 and STAT3 that lead to expressions of GAP-43, neurofilament, βIII-tubulin, and synaptophysin. NeuN-colabelled with DCX, a marker for neuroblast, was enhanced by JNK signaling. Neuronal differentiation of ES cells was attenuated by treatment with SP600125, which inhibited the JNK activation and decreased the activation of STAT1 and STAT3, and consequently suppressed the expressions of GAP-43, neurofilament, βIII-tubulin, and the secretion of VEGF. Data from immunocytochemistry indicated that the nuclear translocation of STAT3 was reduced, and neurites of ES-derived neurons were shorter after treatment with SP600125 compared with control cells. These results suggest that the JNK-STAT3 pathway is a key regulator required for early neuronal differentiation of mouse ES cells. Further investigation on expression of JNK isoforms showed that JNK-3 was significantly upregulated during the differentiation stage, while JNK-1 and JNK-2 levels decreased. Our study provided interesting information on JNK functions during ES cell neuronal differentiation.
Collapse
Affiliation(s)
- Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033 USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033 USA
| | - Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033 USA
| | - Tammi M. Taylor
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
| | - Todd Carter Deveau
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
| | - Albert Cheung Hoi Yu
- Neuroscience Research Institute and Department of Neurobiology, Peking University School of Basic Medical Sciences, Beijing, 100191 China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Suite 617, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
24
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|