1
|
Taurine Promotes Differentiation and Maturation of Neural Stem/Progenitor Cells from the Subventricular Zone via Activation of GABA A Receptors. Neurochem Res 2023; 48:2206-2219. [PMID: 36862323 PMCID: PMC10181976 DOI: 10.1007/s11064-023-03883-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/27/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Neurogenesis, the formation of new neurons in the brain, occurs throughout the lifespan in the subgranular zone of the dentate gyrus and subventricular zone (SVZ) lining the lateral ventricles of the mammal brain. In this process, gamma-aminobutyric acid (GABA) and its ionotropic receptor, the GABAA receptor (GABAAR), play a critical role in the proliferation, differentiation, and migration process of neural stem/progenitor cells (NPC). Taurine, a non-essential amino acid widely distributed throughout the central nervous system, increases the proliferation of SVZ progenitor cells by a mechanism that may involve GABAAR activation. Therefore, we characterized the effects of taurine on the differentiation process of NPC expressing GABAAR. Preincubation of NPC-SVZ with taurine increased microtubule-stabilizing proteins assessed with the doublecortin assay. Taurine, like GABA, stimulated a neuronal-like morphology of NPC-SVZ and increased the number and length of primary, secondary, and tertiary neurites compared with control NPC of the SVZ. Furthermore, neurite outgrowth was prevented when simultaneously incubating cells with taurine or GABA and the GABAAR blocker, picrotoxin. Patch-clamp recordings revealed a series of modifications in the NPCs' passive and active electrophysiological properties exposed to taurine, including regenerative spikes with kinetic properties similar to the action potentials of functional neurons.
Collapse
|
2
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
3
|
Gu X, Wang W, Yang Y, Lei Y, Liu D, Wang X, Wu T. The Effect of Metabolites on Mitochondrial Functions in the Pathogenesis of Skeletal Muscle Aging. Clin Interv Aging 2022; 17:1275-1295. [PMID: 36033236 PMCID: PMC9416380 DOI: 10.2147/cia.s376668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is an age-related systemic disease characterized by skeletal muscle aging that generally severely affects the quality of life of elderly patients. Metabolomics analysis is a powerful tool for qualitatively and quantitatively characterizing the small molecule metabolomics of various biological matrices in order to clarify all key scientific problems concerning cell metabolism. The discovery of optimal therapy requires a thorough understanding of the cellular metabolic mechanism of skeletal muscle aging. In this review, the relationship between skeletal muscle mitochondria, amino acid, vitamin, lipid, adipokines, intestinal microbiota and vascular microenvironment has been separately reviewed from the perspective of metabolomics, and a new therapeutic direction has been suggested.
Collapse
Affiliation(s)
- Xuchao Gu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yijing Yang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yiming Lei
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Dehua Liu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaojun Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
4
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|
5
|
Gorgani S, Jahanshahi M, Elyasi L. Taurine Prevents Passive Avoidance Memory Impairment, Accumulation of Amyloid-β Plaques, and Neuronal Loss in the Hippocampus of Scopolamine-Treated Rats. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09810-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Huang X, Liu J, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons via sonic hedgehog signaling pathway. Cell Tissue Res 2019; 378:49-57. [PMID: 31016387 DOI: 10.1007/s00441-019-03018-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Abstract
The aim of this paper is to investigate the potential beneficial effects of taurine in cochlear neural stem cell (NSC) transplantation and elucidate the underlying molecular mechanism. The NSC cells were isolated from neonatal Balb/c mice and an auditory neuropathy gerbil model was established by microinjection of ouabain. The spiral ganglion neurons (SGN) were characterized with immunofluorescence stained with Tuj1 antibody. Cell proliferation was determined by BrdU incorporation assay and the morphologic index was measured under the light microscope. The relative protein level was determined by immunoblotting. The hearing of the animal model was scored by click- and tone burst-evoked auditory brainstem response (ABR). Here we consolidated our previous finding that taurine stimulated SGN density and the proliferation index, which were completely abolished by Shh inhibitor, cyclopamine. Transplantation of cochlear NSCs combined with taurine significantly improved ouabain-induced auditory neuropathy in gerbils. In addition, cyclopamine antagonized taurine's effect on glutamatergic and GABAergic neuron population via suppression of VGLUT1 and GAT1 expression. Mechanistically, taurine evidently activated the Sonic HedgeHog pathway and upregulated Shh, Ptc-1, Smo and Gli-1 proteins, which were specifically blockaded by cyclopamine. Here, for the first time demonstrated we that co-administration with taurine significantly improved NSC transplantation and the Shh pathway was identified in this beneficial effect.
Collapse
Affiliation(s)
- Xinghua Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jiajia Liu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Weijing Wu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Peng Hu
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China
| | - Qin Wang
- Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, China.
| |
Collapse
|
7
|
Huang X, Wu W, Hu P, Wang Q. Taurine enhances mouse cochlear neural stem cells proliferation and differentiation to sprial gangli through activating sonic hedgehog signaling pathway. Organogenesis 2018; 14:147-157. [PMID: 30102120 DOI: 10.1080/15476278.2018.1477462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the molecular mechanism underlying taurine-stimulated proliferation and differentiation of cochlear neural stem cells (NSCs) and potential involvement of Sonic Hedgehog (Shh) pathway. The NSCs were characterized with immunofluorescence stained with nestin antibody. Cell viability was determined by MTT assay. The relative proliferation was measured by BrdU incorporation assay. The morphologic index was measured under light microscope. The relative protein level was determined by immunoblotting. Here we presented our findings that taurine stimulated proliferation and neurite outgrowth of NSCs, which was completely abolished by Shh inhibitor cyclopamine. In addition, cyclopamine antagonized taurine's effect on glutamatergic and GABAergic neuron population via suppressing expressions of Ptc-1, Smo and Gli-1. Our data supported the critical role of Shh pathway underlying the protective effect of taurine on auditory neural system.
Collapse
Affiliation(s)
- Xinghua Huang
- a Department of Ultrasound Diagnosis, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Weijing Wu
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Peng Hu
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| | - Qin Wang
- b Department of Otolaryngology and Head & Neck surgery, The Second Xiangya Hospital , Central South University , Changsha , China
| |
Collapse
|
8
|
Mezzomo NJ, Fontana BD, Kalueff AV, Barcellos LJ, Rosemberg DB. Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2018; 90:471-485. [DOI: 10.1016/j.neubiorev.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M, Vaez A, Salehi M. Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. J BIOACT COMPAT POL 2018; 33:282-294. [DOI: 10.1177/0883911517737103] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this study, taurine (2-aminoethane sulfonic acid), an amino acid found in large amounts in most mammalian tissues, was incorporated with poly (ε-caprolactone) and gelatin in order to develop a drug-loaded composite wound dressing material. The composite mats from poly (ε-caprolactone)/gelatin (1:1 (w/w)) solution incorporated with 3%, 5%, and 10% (w/w) of taurine were produced by electrospinning. The electrospun mats were evaluated regarding their morphology, wettability, water uptake capacity, water vapor transmission rate, tensile strength, and cellular response with L929 cell line. The mat containing 5% of taurine was chosen as the optimum dressing for in vivo study on the full-thickness excisional wounds of Wistar rats. The results showed that after 2 weeks, the wounds treated with the taurine-loaded dressing achieved a significant closure to nearly 92% compared with the sterile gauze, as control, which showed nearly 68% of wound closure. The histological examination of the wounds revealed that the wounds treated with the taurine-loaded dressing had densely packed collagen fibers with parallel alignment. Whereas, the sterile gauze–treated wounds had loosely packed collagen fibers with an irregular arrangement. Our results provided evidence supporting the possible applicability of the taurine-loaded wound dressings for successful wound treatment.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Naseri-Nosar
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Samadian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roksana Tajerian
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Departments of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cell Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Taurine improves glucose tolerance in STZ-induced insulin-deficient diabetic mice. Diabetol Int 2018; 9:234-242. [PMID: 30603373 DOI: 10.1007/s13340-018-0353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Blood glucose levels fluctuate considerably in diabetic patients with reduced secretion of endogenous insulin. We previously reported that glucagon is secreted excessively in these patients and that taurine increases glucagon secretion in vitro. Therefore, we hypothesized that glucose tolerance would further deteriorate when taurine was administered to diabetic mice incapable of insulin secretion. We generated four groups of streptozotocin (STZ)-treated C57BL/6J mice (STZ-mice): STZ-mice without taurine treatment (STZ-Con), STZ-mice treated with 0.5% (w/v) taurine (STZ-0.5% Tau), STZ-mice treated with 1% (w/v) taurine (STZ-1% Tau), and STZ-mice treated with 2% (w/v) taurine (STZ-2% Tau). Mice were treated for 4 weeks, and then, we evaluated glucose tolerance, pancreatic β-cell area and α-cell area, pancreatic insulin and glucagon content, and daily blood glucose variability. As a result, following the administration of taurine, glucose tolerance improved, both pancreatic β- and α-cell area increased, and both insulin and glucagon content increased. In the 1% taurine administration group, blood glucose variability decreased. These unexpected results suggest that taurine improves glucose tolerance, in spite of its subsequent increased glucagon production, partly by increasing pancreatic β-cells and insulin production in vivo.
Collapse
|
11
|
Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, Saez E, Kondo T, Siuzdak G, Lairson LL. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol 2018; 14:22-28. [PMID: 29131145 PMCID: PMC5928791 DOI: 10.1038/nchembio.2517] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
Abstract
Endogenous metabolites play essential roles in the regulation of cellular identity and activity. Here we have investigated the process of oligodendrocyte precursor cell (OPC) differentiation, a process that becomes limiting during progressive stages of demyelinating diseases, including multiple sclerosis, using mass-spectrometry-based metabolomics. Levels of taurine, an aminosulfonic acid possessing pleotropic biological activities and broad tissue distribution properties, were found to be significantly elevated (∼20-fold) during the course of oligodendrocyte differentiation and maturation. When added exogenously at physiologically relevant concentrations, taurine was found to dramatically enhance the processes of drug-induced in vitro OPC differentiation and maturation. Mechanism of action studies suggest that the oligodendrocyte-differentiation-enhancing activities of taurine are driven primarily by its ability to directly increase available serine pools, which serve as the initial building block required for the synthesis of the glycosphingolipid components of myelin that define the functional oligodendrocyte cell state.
Collapse
Affiliation(s)
- Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Mingliang Fang
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Sadrian
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - J Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Warren C Plaisted
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Bernard P C Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
12
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
Understanding taurine CNS activity using alternative zebrafish models. Neurosci Biobehav Rev 2017; 83:525-539. [PMID: 28916270 DOI: 10.1016/j.neubiorev.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Taurine is a highly abundant "amino acid" in the brain. Despite the potential neuroactive role of taurine in vertebrates has long been recognized, the underlying molecular mechanisms related to its pleiotropic effects in the brain remain poorly understood. Due to the genetic tractability, rich behavioral repertoire, neurochemical conservation, and small size, the zebrafish (Danio rerio) has emerged as a powerful candidate for neuropsychopharmacology investigation and in vivo drug screening. Here, we summarize the main physiological roles of taurine in mammals, including neuromodulation, osmoregulation, membrane stabilization, and antioxidant action. In this context, we also highlight how zebrafish models of brain disorders may present interesting approaches to assess molecular mechanisms underlying positive effects of taurine in the brain. Finally, we outline recent advances in zebrafish drug screening that significantly improve neuropsychiatric translational researches and small molecule screens.
Collapse
|
14
|
Li XW, Gao HY, Liu J. The role of taurine in improving neural stem cells proliferation and differentiation. Nutr Neurosci 2017; 20:409-415. [PMID: 26906683 DOI: 10.1080/1028415x.2016.1152004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Taurine is one of the most abundant amino acids in the central nervous system and has important functions in the promotion of brain development. This study aimed to determine the mechanistic role of taurine in improving neuronal proliferation, stem cell proliferation, and neural differentiation. METHODS The data for this review were primarily retrieved from the PubMed database from 1985 to 2015 in English. The search string included the keywords taurine, brain development, neuronal, stem cell, proliferation, differentiation, and others. Relevant publications were identified, retrieved, and reviewed. RESULTS This review introduces the source, function, and mechanisms of taurine in brain development and provides additional detail regarding the mechanistic role of taurine in improving neuronal proliferation, stem cell proliferation, and neural differentiation. Many studies concerning these aspects are discussed. CONCLUSIONS Taurine plays an important role in brain development, including neuronal proliferation, stem cell proliferation, and differentiation, via several mechanisms. Taurine can be directly used in clinical applications to improve brain development because it has no toxic effects on humans.
Collapse
Affiliation(s)
- Xiang-Wen Li
- a Department of Neonatology & NICU of Bayi Children's Hospital , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
- b Graduate School of the Liaoning Medical College , Jinzhou City 121001 , Liaoning province , China
| | - Hong-Yan Gao
- c Department of Scientific Research , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
| | - Jing Liu
- a Department of Neonatology & NICU of Bayi Children's Hospital , the Army General Hospital of the Chinese PLA , Beijing 100700 , China
| |
Collapse
|
15
|
Huang L, Chen M, Zhang W, Sun X, Liu B, Ge J. Retinoid acid and taurine promote NeuroD1-induced differentiation of induced pluripotent stem cells into retinal ganglion cells. Mol Cell Biochem 2017; 438:67-76. [PMID: 28766169 DOI: 10.1007/s11010-017-3114-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/15/2017] [Indexed: 01/11/2023]
Abstract
Induced pluripotent stem cells (iPSCs) possess the capacity to differentiate into multiple cell types including retinal neurons. Despite substantial progress in the transcriptional regulation of iPSC differentiation process, the efficiency of generation of retinal neurons from iPSCs is still low. In this study, we investigated the role of transcription factor NeuroD1 in the differentiation of iPSCs into retinal neurons. We observed that retrovirus-mediated NeuroD1 overexpression in iPSCs increased the efficiency of neuronal differentiation. Immunostaining analysis showed that NeuroD1 overexpression increased the expression of retina ganglion cell markers including Islet-1, Math5, Brn3b, and Thy1.2. Retinoid acid (RA) and taurine further improved the differentiation efficiency of iPSCs overexpressing NeuroD1. However, RA and taurine did not promote differentiation in the absence of NeuroD1 overexpression. Together, our study provides new evidence in transcription factor-regulated stem cell differentiation in vitro.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Mengfei Chen
- Head&Neck Surgery Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Weizhong Zhang
- Ophthalmology Department, Sir Runrun Hospital Affiliated With Nanjing Medical University, Nanjing, 325200, China
| | - Xuerong Sun
- Institute of Aging Research, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523808, China
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmologic Center, Sun Yet-sen University, Guangzhou, 510060, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmologic Center, Sun Yet-sen University, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Glick NR, Fischer MH. Potential Benefits of Ameliorating Metabolic and Nutritional Abnormalities in People With Profound Developmental Disabilities. Nutr Metab Insights 2017; 10:1178638817716457. [PMID: 35185339 PMCID: PMC8855413 DOI: 10.1177/1178638817716457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Background: People with profound developmental disabilities have some of the most severe neurological impairments seen in society, have accelerated mortality due to huge medical challenges, and yet are often excluded from scientific studies. They actually have at least 2 layers of conditions: (1) the original disability and (2) multiple under-recognized and underexplored metabolic and nutritional imbalances involving minerals (calcium, zinc, and selenium), amino acids (taurine, tryptophan), fatty acids (linoleic acid, docosahexaenoic acid, arachidonic acid, adrenic acid, Mead acid, plasmalogens), carnitine, hormones (insulinlike growth factor 1), measures of oxidative stress, and likely other substances and systems. Summary: This review provides the first list of metabolic and nutritional abnormalities commonly found in people with profound developmental disabilities and, based on the quality of life effects of similar abnormalities in neurotypical people, indicates the potential effects of these abnormalities in this population which often cannot communicate symptoms. Key messages: We propose that improved understanding and management of these disturbed mechanisms would enhance the quality of life of people with profound developmental disabilities. Such insights may also apply to people with other conditions associated with disability, including some diseases requiring stem cell implantation and living in microgravity.
Collapse
Affiliation(s)
- Norris R Glick
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Milton H Fischer
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
He W, Cui L, Zhang C, Zhang X, He J, Xie Y, Chen Y. Sonic hedgehog promotes neurite outgrowth of cortical neurons under oxidative stress: Involving of mitochondria and energy metabolism. Exp Cell Res 2017; 350:83-90. [DOI: 10.1016/j.yexcr.2016.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 12/29/2022]
|
18
|
Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen–Glucose Deprivation. Neurochem Res 2015; 40:2348-56. [DOI: 10.1007/s11064-015-1726-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/27/2015] [Accepted: 09/21/2015] [Indexed: 01/31/2023]
|
19
|
Brousse B, Magalon K, Durbec P, Cayre M. Region and dynamic specificities of adult neural stem cells and oligodendrocyte precursors in myelin regeneration in the mouse brain. Biol Open 2015; 4:980-92. [PMID: 26142314 PMCID: PMC4542288 DOI: 10.1242/bio.012773] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Myelin regeneration can occur in the brain following demyelination. Parenchymal oligodendrocyte progenitors (pOPC) are known to play a crucial role in this process. Neural stem cells (NSC) residing in the ventricular-subventricular zone (V-SVZ) also have the ability to generate oligodendrocytes but their contribution to endogenous myelin repair was so far considered to be negligible. Here, we addressed the relative contribution of pOPC and V-SVZ-derived neural progenitors (SVZdNP) to remyelination in cuprizone mouse models of acute or chronic corpus callosum (CC) demyelination. Using genetic tracing, we uncover an unexpected massive and precocious recruitment of SVZdNP in the anterior CC after acute demyelination. These cells very quickly adopt an oligodendrocytic fate and robustly generate myelinating cells as efficiently as pOPC do. In more posterior areas of the CC, SVZdNP recruitment is less important whereas pOPC contribute more, underlining a regionalization in the mobilization of these two cell populations. Strikingly, in a chronic model when demyelination insult is sustained in time, SVZdNP minimally contribute to myelin repair, a failure associated with a depletion of NSC and a drastic drop of progenitor cell proliferation in V-SVZ. In this context, pOPC remain reactive, and become the main contributors to myelin regeneration. Altogether our results highlight a region and context-dependent contribution of SVZdNP to myelin repair that can equal pOPC. They also raise the question of a possible exhaustion of V-SVZ proliferation potential in chronic pathologies.
Collapse
Affiliation(s)
- Béatrice Brousse
- Aix-Marseille Université, IBDM-UMR7288, Marseille 13288, France CNRS, IBDM-UMR7288, Marseille 13288, France
| | - Karine Magalon
- Aix-Marseille Université, IBDM-UMR7288, Marseille 13288, France CNRS, IBDM-UMR7288, Marseille 13288, France
| | - Pascale Durbec
- Aix-Marseille Université, IBDM-UMR7288, Marseille 13288, France CNRS, IBDM-UMR7288, Marseille 13288, France
| | - Myriam Cayre
- Aix-Marseille Université, IBDM-UMR7288, Marseille 13288, France CNRS, IBDM-UMR7288, Marseille 13288, France
| |
Collapse
|
20
|
Gebara E, Udry F, Sultan S, Toni N. Taurine increases hippocampal neurogenesis in aging mice. Stem Cell Res 2015; 14:369-79. [PMID: 25889858 DOI: 10.1016/j.scr.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.
Collapse
Affiliation(s)
- Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Florian Udry
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Sébastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| | - Nicolas Toni
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland.
| |
Collapse
|
21
|
Taurine Enhances Proliferation and Promotes Neuronal Specification of Murine and Human Neural Stem/Progenitor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:457-72. [DOI: 10.1007/978-3-319-15126-7_36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine--from organism to organelle. Acta Physiol (Oxf) 2015; 213:191-212. [PMID: 25142161 DOI: 10.1111/apha.12365] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content.
Collapse
Affiliation(s)
- I. H. Lambert
- Section of Cellular and Developmental Biology; Department of Biology; University of Copenhagen; Copenhagen Ø Denmark
| | - D. M. Kristensen
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| | - J. B. Holm
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - O. H. Mortensen
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|