1
|
Jia Z, Xiang L, Yu Z, Wang L, Fang J, Liu M, Wu X, Lu Z, Wang L. Enhanced fatty acid oxidation via SCD1 downregulation fuels cardiac reprogramming. Mol Ther 2025; 33:1749-1768. [PMID: 40007118 PMCID: PMC11997510 DOI: 10.1016/j.ymthe.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/05/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
Direct cardiac reprogramming has emerged as a promising therapeutic strategy to remuscularize injured myocardium. This approach converts non-contractile fibroblasts to induced cardiomyocytes (iCMs) that spontaneously contract, yet the intrinsic metabolic requirements driving cardiac reprogramming are not fully understood. Using single-cell metabolic flux estimation and flux balance analysis, we characterized the metabolic heterogeneity of iCMs and identified fatty acid oxidation (FAO) as a critical factor in iCM conversion. Both pharmacological and genetic inhibition of FAO impairs iCM generation. We further identified stearoyl-coenzyme A desaturase 1 (SCD1) as a metabolic switch that suppresses iCM reprogramming. Mechanistically, Scd1 knockdown activates PGC1α and PPARβ signaling, enhancing FAO-related gene expression and mitochondrial biogenesis, thereby improving reprogramming efficacy. Pharmacological manipulations targeting SCD1, PGC1α, and the PPARβ signaling axis further improved iCM generation and mitochondrial function. Our findings collectively highlight FAO as a key determinant of iCM fate and offer new therapeutic avenues for advancing reprogramming strategies.
Collapse
Affiliation(s)
- Zhenhua Jia
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lilin Xiang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cardiovascular Intervention, Wuhan 430071, China
| | - Zhangyi Yu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lenan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Junyan Fang
- College of Life Science, Wuhan University, Wuhan 430071, China
| | - Mengxin Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Xin Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cardiovascular Intervention, Wuhan 430071, China.
| | - Li Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Peng WG, Getachew A, Zhou Y. Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming. Stem Cells 2025; 43:sxaf002. [PMID: 39851272 PMCID: PMC11904897 DOI: 10.1093/stmcls/sxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Heart disease, particularly resulting from myocardial infarction (MI), continues to be a leading cause of mortality, largely due to the limited regenerative capacity of the human heart. Current therapeutic approaches seek to generate new cardiomyocytes from alternative sources. Direct cardiac reprogramming, which converts fibroblasts into induced cardiomyocytes (iCMs), offers a promising alternative by enabling in situ cardiac regeneration and minimizing tumorigenesis concerns. Here we review recent advancements in the understanding of transcriptional and epigenetic mechanisms underlying cardiac reprogramming, with a focus on key early-stage molecular events, including epigenetic barriers and regulatory mechanisms that facilitate reprogramming. Despite substantial progress, human cardiac fibroblast reprogramming and iCM maturation remain areas for further exploration. We also discuss the combinatorial roles of reprogramming factors in governing transcriptional and epigenetic changes. This review consolidates current knowledge and proposes future directions for promoting the translational potential of cardiac reprogramming techniques.
Collapse
Affiliation(s)
- William G Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| |
Collapse
|
4
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega‐Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2025; 24:e14371. [PMID: 39540462 PMCID: PMC11822649 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Roberta Noberini
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
| | - Rita S. Ferreira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of ChemistryUniversity of AveiroAveiroPortugal
- LAQV/REQUIMTEUniversity of AveiroAveiroPortugal
| | - José Teixeira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Tiziana Bonaldi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanoMilanItaly
| | - Paulo J. Oliveira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical School (MHH)HannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Sandrina Nóbrega‐Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
5
|
Harris S, Baksh SS, Wang X, Anwar I, Pratt RE, Dzau VJ, Hodgkinson CP. Nucleosome repositioning in cardiac reprogramming. PLoS One 2025; 20:e0317718. [PMID: 39813277 PMCID: PMC11734986 DOI: 10.1371/journal.pone.0317718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/01/2025] [Indexed: 01/18/2025] Open
Abstract
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture. We have recently developed a set of tools to identify significant changes in nucleosome architecture which we used to study skeletal muscle differentiation. In this report, we have applied these tools to understand nucleosome architectural changes during fibroblast to cardiac muscle reprogramming. We found that nucleosomes surrounding the transcription start sites of cardiac muscle genes induced during reprogramming were insensitive to reprogramming factors as well as to agents which enhance reprogramming efficacy. In contrast, significant changes in nucleosome architecture were observed distal to the transcription start site. These regions were associated with nucleosome build-up. In summary, investigations into nucleosome structure do not support the notion that fibroblasts to cardiac muscle cell reprogramming involves chromatin opening and suggests instead long-range effects such as breaking closed-loop inhibition.
Collapse
Affiliation(s)
- Sonalí Harris
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Syeda S. Baksh
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Iqra Anwar
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Richard E. Pratt
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Victor J. Dzau
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| | - Conrad P. Hodgkinson
- Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
6
|
Wang H, Yang J, Cai Y, Zhao Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024; 15:906-929. [PMID: 38530808 PMCID: PMC11637486 DOI: 10.1093/procel/pwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-β was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-β displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-β-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yihong Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Mohanty SK, Singh K, Kumar M, Verma SS, Srivastava R, Gnyawali SC, Palakurti R, Sahi AK, El Masry MS, Banerjee P, Kacar S, Rustagi Y, Verma P, Ghatak S, Hernandez E, Rubin JP, Khanna S, Roy S, Yoder MC, Sen CK. Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat Commun 2024; 15:10277. [PMID: 39604331 PMCID: PMC11603198 DOI: 10.1038/s41467-024-54385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Tissue nanotransfection (TNT) topically delivers Etv2, Foxc2, and Fli1 (EFF) plasmids increasing vasculogenic fibroblasts (VF) and promoting vascularization in ischemic murine skin. Human dermal fibroblasts respond to EFF nanoelectroporation with elevated expression of endothelial genes in vitro, which is linked to increased ten-eleven translocase 1/2/3 (TET) expression. Single cell RNA sequencing dependent validation of VF induction reveals a TET-dependent transcript signature. TNTEFF also induces TET expression in vivo, and fibroblast-specific EFF overexpression leads to VF-transition, with TET-activation correlating with higher 5-hydroxymethylcytosine (5-hmC) levels in VF. VF emergence requires TET-dependent demethylation of endothelial genes in vivo, enhancing VF abundance and restoring perfusion in diabetic ischemic limbs. TNTEFF improves perfusion and wound closure in diabetic mice, while increasing VF in cultured human skin explants. Suppressed in diabetes, TET1/2/3 play a critical role in TNT-mediated VF formation which supports de novo blood vessel development to rescue diabetic ischemic tissue.
Collapse
Affiliation(s)
- Sujit K Mohanty
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S Verma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravichand Palakurti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay K Sahi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed S El Masry
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Harris S, Baksh SS, Wang X, Anwar I, Pratt RE, Dzau VJ, Hodgkinson CP. Nucleosome repositioning in cardiac reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622077. [PMID: 39574721 PMCID: PMC11580842 DOI: 10.1101/2024.11.05.622077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture. We have recently developed a set of tools to identify significant changes in nucleosome architecture which we used to study skeletal muscle differentiation. In this report, we have applied these tools to understand nucleosome architectural changes during fibroblast to cardiac muscle reprogramming. We found that nucleosomes surrounding the transcription start sites of cardiac muscle genes induced during reprogramming were insensitive to reprogramming factors as well as to agents which enhance reprogramming efficacy. In contrast, significant changes in nucleosome architecture were observed distal to the transcription start site. These regions were associated with nucleosome build-up. In summary, investigations into nucleosome structure do not support the notion that fibroblasts to cardiac muscle cell reprogramming involves chromatin opening and suggests instead long-range effects such as breaking closed-loop inhibition.
Collapse
Affiliation(s)
- Sonalí Harris
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Syeda S. Baksh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Iqra Anwar
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Richard E. Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Victor J. Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Conrad P. Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
9
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Ambroise R, Takasugi P, Liu J, Qian L. Direct Cardiac Reprogramming in the Age of Computational Biology. J Cardiovasc Dev Dis 2024; 11:273. [PMID: 39330331 PMCID: PMC11432431 DOI: 10.3390/jcdd11090273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Rachelle Ambroise
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Anwar I, Wang X, Pratt RE, Dzau VJ, Hodgkinson CP. The impact of aging on cardiac repair and regeneration. J Biol Chem 2024; 300:107682. [PMID: 39159819 PMCID: PMC11414664 DOI: 10.1016/j.jbc.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
In contrast to neonates and lower organisms, the adult mammalian heart lacks any capacity to regenerate following injury. The vast majority of our understanding of cardiac regeneration is based on research in young animals. Research in aged individuals is rare. This is unfortunate as aging induces many changes in the heart. The first part of this review covers the main technologies being pursued in the cardiac regeneration field and how they are impacted by the aging processes. The second part of the review covers the significant amount of aging-related research that could be used to aid cardiac regeneration. Finally, a perspective is provided to suggest how cardiac regenerative technologies can be improved by addressing aging-related effects.
Collapse
Affiliation(s)
- Iqra Anwar
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Xinghua Wang
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
12
|
Keshri R, Detraux D, Phal A, McCurdy C, Jhajharia S, Chan TC, Mathieu J, Ruohola-Baker H. Next-generation direct reprogramming. Front Cell Dev Biol 2024; 12:1343106. [PMID: 38371924 PMCID: PMC10869521 DOI: 10.3389/fcell.2024.1343106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Damien Detraux
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ashish Phal
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| | - Clara McCurdy
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Samriddhi Jhajharia
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Tung Ching Chan
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. Cells 2023; 12:2805. [PMID: 38132125 PMCID: PMC10741483 DOI: 10.3390/cells12242805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (p-value < 1E-5) and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA Pol-II, including TATA-box, transcription initiator motif, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns were enriched with the Homeobox family of transcription factors and exhibited TA-rich motif sequences, suggesting potential motif-specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521 enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers, 3390 (12%) exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.H.); (X.K.); (C.W.)
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Xie Y, Van Handel B, Qian L, Ardehali R. Recent advances and future prospects in direct cardiac reprogramming. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1148-1158. [PMID: 39196156 DOI: 10.1038/s44161-023-00377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 08/29/2024]
Abstract
Cardiovascular disease remains a leading cause of death worldwide despite important advances in modern medical and surgical therapies. As human adult cardiomyocytes have limited regenerative ability, cardiomyocytes lost after myocardial infarction are replaced by fibrotic scar tissue, leading to cardiac dysfunction and heart failure. To replace lost cardiomyocytes, a promising approach is direct cardiac reprogramming, in which cardiac fibroblasts are transdifferentiated into induced cardiomyocyte-like cells (iCMs). Here we review cardiac reprogramming cocktails (including transcription factors, microRNAs and small molecules) that mediate iCM generation. We also highlight mechanistic studies exploring the barriers to and facilitators of this process. We then review recent progress in iCM reprogramming, with a focus on single-cell '-omics' research. Finally, we discuss obstacles to clinical application.
Collapse
Affiliation(s)
- Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Van Handel
- Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reza Ardehali
- Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA.
- The Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
15
|
Hwang J, Kang X, Wolf C, Touma M. Mapping Chromatin Occupancy of Ppp1r1b-lncRNA Genome-Wide Using Chromatin Isolation by RNA Purification (ChIRP)-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.04.565657. [PMID: 37961291 PMCID: PMC10635152 DOI: 10.1101/2023.11.04.565657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Long non-coding RNA (lncRNA) mediated transcriptional regulation is increasingly recognized as an important gene regulatory mechanism during development and disease. LncRNAs are emerging as critical regulators of chromatin state; yet the nature and the extent of their interactions with chromatin remain to be fully revealed. We have previously identified Ppp1r1b-lncRNA as an essential epigenetic regulator of myogenic differentiation in cardiac and skeletal myocytes in mice and humans. We further demonstrated that Ppp1r1b-lncRNA function is mediated by the interaction with the chromatin-modifying complex polycomb repressive complex 2 (PRC2) at the promoter of myogenic differentiation transcription factors, TBX5 and MyoD1. Herein, we employed an unbiased chromatin isolation by RNA purification (ChIRP) and high throughput sequencing to map the repertoire of Ppp1r1b-lncRNA chromatin occupancy genome-wide in the mouse muscle myoblast cell line. We uncovered a total of 99732 true peaks corresponding to Ppp1r1b-lncRNA binding sites at high confidence (P-value < 1e-5 and enrichment score ≥ 10). The Ppp1r1b-lncRNA-binding sites averaged 558 bp in length and were distributed widely within the coding and non-coding regions of the genome. Approximately 46% of these true peaks were mapped to gene elements, of which 1180 were mapped to experimentally validated promoter sequences. Importantly, the promoter-mapped binding sites were enriched in myogenic transcription factors and heart development while exhibiting focal interactions with known motifs of proximal promoters and transcription initiation by RNA polII, including TATA, transcription initiator, CCAAT-box, and GC-box, supporting Ppp1r1b-lncRNA role in transcription initiation of myogenic regulators. Remarkably, nearly 40% of Ppp1r1b-lncRNA-binding sites mapped to gene introns, were enriched with the Homeobox family of transcription factors, and exhibited TA-rich motif sequences, suggesting potential motif specific Ppp1r1b-lncRNA-bound introns. Lastly, more than 136521enhancer sequences were detected in Ppp1r1b-lncRNA-occupancy sites at high confidence. Among these enhancers,12% exhibited cell type/tissue-specific enrichment in fetal heart and muscles. Together, our findings provide further insights into the genome-wide Ppp1r1b-lncRNA: Chromatin interactome that may potentially dictate its function in myogenic differentiation and potentially other cellular and biological processes.
Collapse
Affiliation(s)
- John Hwang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Xuedong Kang
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Charlotte Wolf
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Medical and Life Science, College of Life Science, University of California Los Angeles, Los Angeles, CA
| | - Marlin Touma
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, CA
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Children’s Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, College of Life Science, University of California Los Angeles, Los Angeles, CA
- Eli and Edythe Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
16
|
Perveen S, Vanni R, Lo Iacono M, Rastaldo R, Giachino C. Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration. Cells 2023; 12:1166. [PMID: 37190075 PMCID: PMC10136631 DOI: 10.3390/cells12081166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.
Collapse
Affiliation(s)
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | | | |
Collapse
|
17
|
Sun H, Pratt RE, Dzau VJ, Hodgkinson CP. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem 2023; 299:104694. [PMID: 37044217 DOI: 10.1016/j.jbc.2023.104694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity. Consequently, we hypothesized that birth imposes fundamental changes on cardiac fibroblasts which limit their regenerative capabilities. In support, we found that reprogramming efficacy in vitro was markedly lower with fibroblasts derived from adult mice versus those derived from neonatal mice. Notably, fibroblasts derived from adult mice expressed significantly higher levels of pro-angiogenic genes. Moreover, under conditions which promote angiogenesis, only fibroblasts derived from adult mice differentiated into tube-like structures. Targeted knockdown screening studies suggested a possible role for the transcription factor Epas1. Epas1 expression was higher in fibroblasts derived from adult mice and Epas1 knockdown improved reprogramming efficacy in cultured adult cardiac fibroblasts. Promoter activity assays indicated that Epas1 functions as both a transcription repressor and activator, inhibiting cardiomyocyte genes while activating angiogenic genes. Finally, the addition of an Epas1 targeting siRNA to the reprogramming cocktail markedly improved reprogramming efficacy in vivo with both the number of reprogramming events as well as cardiac function being markedly improved. Collectively, our results highlight differences between neonatal and adult cardiac fibroblasts and the dual transcriptional activities of Epas1 related to reprogramming efficacy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Hubei Province, China
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710.
| |
Collapse
|
18
|
Baksh SS, Hu J, Pratt RE, Dzau VJ, Hodgkinson CP. Rig1 receptor plays a critical role in cardiac reprogramming via YY1 signaling. Am J Physiol Cell Physiol 2023; 324:C843-C855. [PMID: 36847443 PMCID: PMC10069961 DOI: 10.1152/ajpcell.00402.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
We discovered that innate immunity plays an important role in the reprogramming of fibroblasts into cardiomyocytes. In this report, we define the role of a novel retinoic acid-inducible gene 1 Yin Yang 1 (Rig1:YY1) pathway. We found that fibroblast to cardiomyocyte reprogramming efficacy was enhanced by specific Rig1 activators. To understand the mechanism of action, we performed various transcriptomic, nucleosome occupancy, and epigenomic approaches. Analysis of the datasets indicated that Rig1 agonists had no effect on reprogramming-induced changes in nucleosome occupancy or loss of inhibitory epigenetic motifs. Instead, Rig1 agonists were found to modulate cardiac reprogramming by promoting the binding of YY1 specifically to cardiac genes. To conclude, these results show that the Rig1:YY1 pathway plays a critical role in fibroblast to cardiomyocyte reprogramming.
Collapse
Affiliation(s)
- Syeda S Baksh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Jiabiao Hu
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
19
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Direct cardiac reprogramming: basics and future challenges. Mol Biol Rep 2023; 50:865-871. [PMID: 36308583 DOI: 10.1007/s11033-022-07913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Heart failure is the leading cause of morbidity and mortality worldwide and is characterized by reduced cardiac function. Currently, cardiac transplantation therapy is applied for end-stage heart failure, but it is limited by the number of available donors. METHODS AND RESULTS Following an assessment of available literature, a narrative review was conducted to summarizes the current status and challenges of cardiac reprogramming for clinical application. Scientists have developed different regenerative treatment strategies for curing heart failure, including progenitor cell delivery and pluripotent cell delivery. Recently, a novel strategy has emerged that directly reprograms cardiac fibroblast into a functional cardiomyocyte. In this treatment, transcription factors are first identified to reprogram fibroblast into a cardiomyocyte. After that, microRNA and small molecules show great potential to optimize the reprogramming process. Some challenges regarding cell reprogramming in humans are conversion efficiency, virus utilization, immature and heterogenous induced cardiomyocytes, technical reproducibility issues, and physiological effects of depleted fibroblasts on myocardial tissue. CONCLUSION Several strategies have shown positive results in direct cardiac reprogramming. However, direct cardiac reprogramming still needs improvement if it is used as a mainstay therapy in humans, and challenges need to be overcome before cardiac reprogramming can be considered a viable therapeutic strategy. Further advances in cardiac reprogramming studies are needed in cardiac regenerative therapy.
Collapse
|
21
|
Li Q, Ma Z, Qin S, Zhao WJ. Virtual Screening-Based Drug Development for the Treatment of Nervous System Diseases. Curr Neuropharmacol 2023; 21:2447-2464. [PMID: 36043797 PMCID: PMC10616913 DOI: 10.2174/1570159x20666220830105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence rate of nervous system diseases has increased in recent years. Nerve injury or neurodegenerative diseases usually cause neuronal loss and neuronal circuit damage, which seriously affect motor nerve and autonomic nervous function. Therefore, safe and effective treatment is needed. As traditional drug research becomes slower and more expensive, it is vital to enlist the help of cutting- edge technology. Virtual screening (VS) is an attractive option for the identification and development of promising new compounds with high efficiency and low cost. With the assistance of computer- aided drug design (CADD), VS is becoming more and more popular in new drug development and research. In recent years, it has become a reality to transform non-neuronal cells into functional neurons through small molecular compounds, which provides a broader application prospect than transcription factor-mediated neuronal reprogramming. This review mainly summarizes related theory and technology of VS and the drug research and development using VS technology in nervous system diseases in recent years, and focuses more on the potential application of VS technology in neuronal reprogramming, thus facilitating new drug design for both prevention and treatment of nervous system diseases.
Collapse
Affiliation(s)
- Qian Li
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Zhaobin Ma
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, Yunnan, P.R. China
| | - Shuhua Qin
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, Yunnan, P.R. China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
22
|
Liu M, Liu J, Zhang T, Wang L. Direct cardiac reprogramming: Toward the era of multi-omics analysis. CELL INSIGHT 2022; 1:100058. [PMID: 37193352 PMCID: PMC10120284 DOI: 10.1016/j.cellin.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 05/18/2023]
Abstract
Limited regenerative capacity of adult cardiomyocytes precludes heart repair and regeneration after cardiac injury. Direct cardiac reprograming that converts scar-forming cardiac fibroblasts (CFs) into functional induced-cardiomyocytes (iCMs) offers promising potential to restore heart structure and heart function. Significant advances have been achieved in iCM reprogramming using genetic and epigenetic regulators, small molecules, and delivery strategies. Recent researches on the heterogeneity and reprogramming trajectories elucidated novel mechanisms of iCM reprogramming at single cell level. Here, we review recent progress in iCM reprogramming with a focus on multi-omics (transcriptomic, epigenomic and proteomic) researches to investigate the cellular and molecular machinery governing cell fate conversion. We also highlight the future potential using multi-omics approaches to dissect iCMs conversion for clinal applications.
Collapse
Affiliation(s)
- Mengxin Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jie Liu
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Tong Zhang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Wang
- Department of Cardiology, Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
23
|
Ricketts SN, Qian L. The heart of cardiac reprogramming: The cardiac fibroblasts. J Mol Cell Cardiol 2022; 172:90-99. [PMID: 36007393 DOI: 10.1016/j.yjmcc.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Yuan J, Peng H, Mo B, Yin C, Fang G, Li Y, Wang Y, Chen R, Wang Q. Inhibition of Wdr5 Attenuates Ang-II-Induced Fibroblast-to-Myofibroblast Transition in Cardiac Fibrosis by Regulating Mdm2/P53/P21 Pathway. Biomolecules 2022; 12:1574. [PMID: 36358925 PMCID: PMC9687631 DOI: 10.3390/biom12111574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Cardiac fibrosis is an important pathological process in many diseases. Wdr5 catalyzes the trimethylation of lysine K4 on histone H3. The effects of Wdr5 on the cardiac fibrosis phenotype and the activation or transformation of cardiac fibroblasts were investigated by Ang-II-infused mice by osmotic mini-pump and isolated primary neonatal rat cardiac fibroblasts. We found that the Wdr5 expression and histone H3K4me3 modification were significantly increased in Ang-II-infused mice. By stimulating primary neonatal rat cardiac fibroblasts with Ang II, we detected that the expression of Wdr5 and H3K4me3 modification were also significantly increased. Two Wdr5-specific inhibitors, and the lentivirus that transfected Sh-Wdr5, were used to treat primary mouse cardiac fibroblasts, which not only inhibited the histone methylation by Wdr5 but also significantly reduced the activation and migration ability of Ang-II-treated fibroblasts. To explore its mechanism, we found that the inhibition of Wdr5 increased the expression of P53, P21. Cut&Tag-qPCR showed that the inhibition of Wdr5 significantly reduced the enrichment of H3K4me3 in the Mdm2 promoter region. For in vivo experiments, we finally proved that the Wdr5 inhibitor OICR9429 significantly reduced Ang-II-induced cardiac fibrosis and increased the expression of P21 in cardiac fibroblasts. Inhibition of Wdr5 may mediate cardiac fibroblast cycle arrest through the Mdm2/P53/P21 pathway and alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Renhua Chen
- Department of Cardiology, Quanzhou Hospital of Traditional Chinese Medicine, #388 SunJiang Road, Quanzhou 362000, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| |
Collapse
|
25
|
Kong X, Yan K, Deng P, Fu H, Sun H, Huang W, Jiang S, Dai J, Zhang QC, Liu JJG, Xi Q. LncRNA-Smad7 mediates cross-talk between Nodal/TGF-β and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells. Nucleic Acids Res 2022; 50:10526-10543. [PMID: 36134711 PMCID: PMC9561265 DOI: 10.1093/nar/gkac780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor β (TGF-β) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-β and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-β and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.
Collapse
Affiliation(s)
- Xiaohui Kong
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pujuan Deng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Fu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongyao Sun
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing 100084, China
| | - Wenze Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.,MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun-Jie Gogo Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Wang H, Keepers B, Qian Y, Xie Y, Colon M, Liu J, Qian L. Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes. Cell Stem Cell 2022; 29:1491-1504.e9. [PMID: 36206732 PMCID: PMC9557912 DOI: 10.1016/j.stem.2022.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
Abstract
Direct reprogramming has revolutionized the fields of stem cell biology and regenerative medicine. However, the common mechanisms governing how reprogramming cells undergo transcriptome and epigenome remodeling (i.e., regulatome remodeling) have not been investigated. Here, by characterizing early changes in the regulatome of three different types of direct reprogramming, we identify lineage-specific features as well as common regulatory transcription factors. Of particular interest, we discover that the neuronal factor Ascl1 possesses cross-lineage potential; together with Mef2c, it drives efficient cardiac reprogramming toward a mature and induced cardiomyocyte phenotype. Through ChIP-seq and RNA-seq, we find that MEF2C drives the shift in ASCL1 binding away from neuronal genes toward cardiac genes, guiding their co-operative epigenetic and transcription activities. Together, these findings demonstrate the existence of common regulators of different direct reprogramming and argue against the premise that transcription factors possess only lineage-specific capabilities for altering cell fate - the basic premise used to develop direct reprogramming approaches.
Collapse
Affiliation(s)
- Haofei Wang
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin Keepers
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunzhe Qian
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yifang Xie
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marazzano Colon
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Targeting Epigenetic Regulation of Cardiomyocytes through Development for Therapeutic Cardiac Regeneration after Heart Failure. Int J Mol Sci 2022; 23:ijms231911878. [PMID: 36233177 PMCID: PMC9569953 DOI: 10.3390/ijms231911878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death globally, with no cure currently. Therefore, there is a dire need to further understand the mechanisms that arise during heart failure. Notoriously, the adult mammalian heart has a very limited ability to regenerate its functional cardiac cells, cardiomyocytes, after injury. However, the neonatal mammalian heart has a window of regeneration that allows for the repair and renewal of cardiomyocytes after injury. This specific timeline has been of interest in the field of cardiovascular and regenerative biology as a potential target for adult cardiomyocyte repair. Recently, many of the neonatal cardiomyocyte regeneration mechanisms have been associated with epigenetic regulation within the heart. This review summarizes the current and most promising epigenetic mechanisms in neonatal cardiomyocyte regeneration, with a specific emphasis on the potential for targeting these mechanisms in adult cardiac models for repair after injury.
Collapse
|
28
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
29
|
Basara G, Bahcecioglu G, Ozcebe SG, Ellis BW, Ronan G, Zorlutuna P. Myocardial infarction from a tissue engineering and regenerative medicine point of view: A comprehensive review on models and treatments. BIOPHYSICS REVIEWS 2022; 3:031305. [PMID: 36091931 PMCID: PMC9447372 DOI: 10.1063/5.0093399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 05/12/2023]
Abstract
In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.
Collapse
Affiliation(s)
- Gozde Basara
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - S. Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Pinar Zorlutuna
- Present address: 143 Multidisciplinary Research Building, University of Notre Dame, Notre Dame, IN 46556. Author to whom correspondence should be addressed:. Tel.: +1 574 631 8543. Fax: +1 574 631 8341
| |
Collapse
|
30
|
Conservation of miR combo based direct cardiac reprogramming. Biochem Biophys Rep 2022; 31:101310. [DOI: 10.1016/j.bbrep.2022.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
|
31
|
He L, Wang Y, Luo J. Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ 2022; 10:e13823. [PMID: 35959481 PMCID: PMC9359132 DOI: 10.7717/peerj.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and reoxygenation (H/R) play a prevalent role in heart-related diseases. Histone demethylases are involved in myocardial injury. In this study, the mechanism of the lysine-specific histone demethylase 1A (KDM1A/LSD1) on cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury (MIRI) was investigated. Firstly, HL-1 cells were treated with H/R to establish the MIRI models. The expressions of KDM1A and Sex Determining Region Y-Box Transcription Factor 9 (SOX9) in H/R-treated HL-1 cells were examined. The cell viability, markers of myocardial injury (LDH, AST, and CK-MB) and apoptosis (Bax and Bcl-2), and Caspase-3 and Caspase-9 protein activities were detected, respectively. We found that H/R treatment promoted cardiomyocyte apoptosis and downregulated KDM1A, and overexpressing KDM1A reduced apoptosis in H/R-treated cardiomyocytes. Subsequently, tri-methylation of lysine 4 on histone H3 (H3K4me3) level on the SOX9 promoter region was detected. We found that KDM1A repressed SOX9 transcription by reducing H3K4me3. Then, HL-1 cells were treated with CPI-455 and plasmid pcDNA3.1-SOX9 and had joint experiments with pcDNA3.1-KDM1A. We disclosed that upregulating H3K4me3 or overexpressing SOX9 reversed the inhibitory effect of overexpressing KDM1A on apoptosis of H/R-treated cardiomyocytes. In conclusion, KDM1A inhibited SOX9 transcription by reducing the H3K4me3 on the SOX9 promoter region and thus inhibited H/R-induced apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Lin He
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Yanbo Wang
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Jin Luo
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
32
|
Ko T, Nomura S. Manipulating Cardiomyocyte Plasticity for Heart Regeneration. Front Cell Dev Biol 2022; 10:929256. [PMID: 35898398 PMCID: PMC9309349 DOI: 10.3389/fcell.2022.929256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological heart injuries such as myocardial infarction induce adverse ventricular remodeling and progression to heart failure owing to widespread cardiomyocyte death. The adult mammalian heart is terminally differentiated unlike those of lower vertebrates. Therefore, the proliferative capacity of adult cardiomyocytes is limited and insufficient to restore an injured heart. Although current therapeutic approaches can delay progressive remodeling and heart failure, difficulties with the direct replenishment of lost cardiomyocytes results in a poor long-term prognosis for patients with heart failure. However, it has been revealed that cardiac function can be improved by regulating the cell cycle or changing the cell state of cardiomyocytes by delivering specific genes or small molecules. Therefore, manipulation of cardiomyocyte plasticity can be an effective treatment for heart disease. This review summarizes the recent studies that control heart regeneration by manipulating cardiomyocyte plasticity with various approaches including differentiating pluripotent stem cells into cardiomyocytes, reprogramming cardiac fibroblasts into cardiomyocytes, and reactivating the proliferation of cardiomyocytes.
Collapse
|
33
|
Pinnamaneni JP, Singh VP, Kim MB, Ryan CT, Pugazenthi A, Sanagasetti D, Mathison M, Yang J, Rosengart TK. p63 silencing induces epigenetic modulation to enhance human cardiac fibroblast to cardiomyocyte-like differentiation. Sci Rep 2022; 12:11416. [PMID: 35794145 PMCID: PMC9259667 DOI: 10.1038/s41598-022-15559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Direct cell reprogramming represents a promising new myocardial regeneration strategy involving in situ transdifferentiation of cardiac fibroblasts into induced cardiomyocytes. Adult human cells are relatively resistant to reprogramming, however, likely because of epigenetic restraints on reprogramming gene activation. We hypothesized that modulation of the epigenetic regulator gene p63 could improve the efficiency of human cell cardio-differentiation. qRT-PCR analysis demonstrated significantly increased expression of a panel of cardiomyocyte marker genes in neonatal rat and adult rat and human cardiac fibroblasts treated with p63 shRNA (shp63) and the cardio-differentiation factors Hand2/Myocardin (H/M) versus treatment with Gata4, Mef2c and Tbx5 (GMT) with or without shp63 (p < 0.001). FACS analysis demonstrated that shp63+ H/M treatment of human cardiac fibroblasts significantly increased the percentage of cells expressing the cardiomyocyte marker cTnT compared to GMT treatment with or without shp63 (14.8% ± 1.4% versus 4.3% ± 1.1% and 3.1% ± 0.98%, respectively; p < 0.001). We further demonstrated that overexpression of the p63-transactivation inhibitory domain (TID) interferes with the physical interaction of p63 with the epigenetic regulator HDAC1 and that human cardiac fibroblasts treated with p63-TID+ H/M demonstrate increased cardiomyocyte marker gene expression compared to cells treated with shp63+ H/M (p < 0.05). Whereas human cardiac fibroblasts treated with GMT alone failed to contract in co-culture experiments, human cardiac fibroblasts treated with shp63+ HM or p63-TID+ H/M demonstrated calcium transients upon electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes. These findings demonstrate that p63 silencing provides enhanced rat and human cardiac fibroblast transdifferentiation into induced cardiomyocytes compared to a standard reprogramming strategy. p63-TID overexpression may be a useful reprogramming strategy for overcoming epigenetic barriers to human fibroblast cardio-differentiation.
Collapse
Affiliation(s)
- Jaya Pratap Pinnamaneni
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Vivek P. Singh
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Mary B. Kim
- grid.416167.30000 0004 0442 1996Department of Surgery, Mount Sinai Hospital, New York, NY 10029 USA
| | - Christopher T. Ryan
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Aarthi Pugazenthi
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Deepthi Sanagasetti
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Megumi Mathison
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Jianchang Yang
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| | - Todd K. Rosengart
- grid.39382.330000 0001 2160 926XMichael E. De Bakey Department of Surgery, Baylor College of Medicine, 1 Moursund St, Houston, TX-77030 USA
| |
Collapse
|
34
|
Xie Y, Liu J, Qian L. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Semin Cell Dev Biol 2022; 122:37-43. [PMID: 34304993 PMCID: PMC8782931 DOI: 10.1016/j.semcdb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
The adult human heart has limited regenerative capacity. As such, the massive cardiomyocyte loss due to myocardial infarction leads to scar formation and adverse cardiac remodeling, which ultimately results in chronic heart failure. Direct cardiac reprogramming that converts cardiac fibroblast into functional cardiomyocyte-like cells (also called iCMs) holds great promise for heart regeneration. Cardiac reprogramming has been achieved both in vitro and in vivo by using a variety of cocktails that comprise transcription factors, microRNAs, or small molecules. During the past several years, great progress has been made in improving reprogramming efficiency and understanding the underlying molecular mechanisms. Here, we summarize the direct cardiac reprogramming methods, review the current advances in understanding the molecular mechanisms of cardiac reprogramming, and highlight the novel insights gained from single-cell omics studies. Finally, we discuss the remaining challenges and future directions for the field.
Collapse
|
35
|
Garry GA, Bassel-Duby R, Olson EN. Direct reprogramming as a route to cardiac repair. Semin Cell Dev Biol 2022; 122:3-13. [PMID: 34246567 PMCID: PMC8738780 DOI: 10.1016/j.semcdb.2021.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023]
Abstract
Ischemic heart disease is the leading cause of morbidity, mortality, and healthcare expenditure worldwide due to an inability of the heart to regenerate following injury. Thus, novel heart failure therapies aimed at promoting cardiomyocyte regeneration are desperately needed. In recent years, direct reprogramming of resident cardiac fibroblasts to induced cardiac-like myocytes (iCMs) has emerged as a promising therapeutic strategy to repurpose the fibrotic response of the injured heart toward a functional myocardium. Direct cardiac reprogramming was initially achieved through the overexpression of the transcription factors (TFs) Gata4, Mef2c, and Tbx5 (GMT). However, this combination of TFs and other subsequent cocktails demonstrated limited success in reprogramming adult human and mouse fibroblasts, constraining the clinical translation of this therapy. Over the past decade, significant effort has been dedicated to optimizing reprogramming cocktails comprised of cardiac TFs, epigenetic factors, microRNAs, or small molecules to yield efficient cardiac cell fate conversion. Yet, efficient reprogramming of adult human fibroblasts remains a significant challenge. Underlying mechanisms identified to accelerate this process have been centered on epigenetic remodeling at cardiac gene regulatory regions. Further studies to achieve a refined understanding and directed means of overcoming epigenetic barriers are merited to more rapidly translate these promising therapies to the clinic.
Collapse
Affiliation(s)
- Glynnis A. Garry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence: Eric N. Olson, Ph.D. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9148, Tel: 214-648-1187,
| |
Collapse
|
36
|
Jiang L, Liang J, Huang W, Ma J, Park KH, Wu Z, Chen P, Zhu H, Ma JJ, Cai W, Paul C, Niu L, Fan GC, Wang HS, Kanisicak O, Xu M, Wang Y. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther 2022; 30:54-74. [PMID: 34678511 PMCID: PMC8753567 DOI: 10.1016/j.ymthe.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian-Jie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
37
|
Zhou Y, Zhang J. Remuscularization of Ventricular Infarcts Using the Existing Cardiac Cells. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:51-78. [DOI: 10.1007/978-3-030-86140-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
38
|
Wang H, Yang Y, Qian Y, Liu J, Qian L. Delineating chromatin accessibility re-patterning at single cell level during early stage of direct cardiac reprogramming. J Mol Cell Cardiol 2022; 162:62-71. [PMID: 34509499 PMCID: PMC8766888 DOI: 10.1016/j.yjmcc.2021.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Direct conversion of cardiac fibroblast into induced cardiomyocytes (iCMs) by forced expression of cardiac transcription factors, such as Mef2c, Gata4, and Tbx5 (MGT), holds great promise for regenerative medicine. The process of cardiac reprogramming consists of waves of transcriptome remodelling events. However, how this transcriptome remodelling is driven by the upstream chromatin landscape alteration is still unclear. In this study, we performed single-cell ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) on early reprogramming iCMs given the known epigenetic changes as early as day 3. This approach unveiled networks of transcription factors (TFs) involved in the early shift of chromatin accessibility during cardiac reprogramming. Combining our analysis with functional assays, we identified Smad3 to be a bimodal TF in cardiac reprogramming, a barrier in the initiation of reprogramming and a facilitator during the intermediate stage of reprogramming. Moreover, integrative analysis of scATAC-seq with scRNA-seq data led to the identification of active TFs important for iCM conversion. Finally, we discovered a global rewiring of cis-regulatory interactions of cardiac genes along the reprogramming trajectory. Collectively, our scATAC-seq study and the integrative analysis with scRNA-seq data provided valuable resources to understand the epigenomic heterogeneity and its alteration in relation to transcription changes during early stage of cardiac reprogramming.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Yunzhe Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States of America,McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America,Corresponding author Dr. Li Qian, 111 Mason Farm Rd, University of North Carolina, Chapel Hill Chapel Hill, NC 27599, Phone: 919-962-0340, Fax: 919-966-6012,
| |
Collapse
|
39
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
40
|
Shao T, Xue Y, Fang M. Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Front Cell Dev Biol 2021; 9:771466. [PMID: 34869368 PMCID: PMC8633401 DOI: 10.3389/fcell.2021.771466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a key pathophysiological process that contributes to heart failure. Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present study aims to investigate the mechanism whereby transcription of chloride channel accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed Clca2 expression at the transcriptional level likely via the E-box element between -516 and -224 of the Clca2 promoter. Further analysis revealed that Twist1 bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may contribute to FMyT and cardiac fibrosis.
Collapse
Affiliation(s)
- Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
41
|
Li B, Hon GC. Single-Cell Genomics: Catalyst for Cell Fate Engineering. Front Bioeng Biotechnol 2021; 9:748942. [PMID: 34733831 PMCID: PMC8558416 DOI: 10.3389/fbioe.2021.748942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
As we near a complete catalog of mammalian cell types, the capability to engineer specific cell types on demand would transform biomedical research and regenerative medicine. However, the current pace of discovering new cell types far outstrips our ability to engineer them. One attractive strategy for cellular engineering is direct reprogramming, where induction of specific transcription factor (TF) cocktails orchestrates cell state transitions. Here, we review the foundational studies of TF-mediated reprogramming in the context of a general framework for cell fate engineering, which consists of: discovering new reprogramming cocktails, assessing engineered cells, and revealing molecular mechanisms. Traditional bulk reprogramming methods established a strong foundation for TF-mediated reprogramming, but were limited by their small scale and difficulty resolving cellular heterogeneity. Recently, single-cell technologies have overcome these challenges to rapidly accelerate progress in cell fate engineering. In the next decade, we anticipate that these tools will enable unprecedented control of cell state.
Collapse
Affiliation(s)
- Boxun Li
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gary C. Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
42
|
Wingo M, Rafii S. Endothelial reprogramming for vascular regeneration: Past milestones and future directions. Semin Cell Dev Biol 2021; 122:50-55. [PMID: 34548212 DOI: 10.1016/j.semcdb.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells are critical mediators of health and disease. Regenerative medicine techniques that target the endothelium hold vast promise for improving lifespan and quality of life worldwide. Regenerative therapies via induced pluripotent stem cells (IPSCs) have helped demonstrate disease mechanisms, but so far, concerns regarding their function, malignant potential, and expense have limited therapeutic potential. One alternative approach is direct reprogramming of somatic cells, which avoids the pluripotent state and allows for in vivo reprogramming. Transcription factors from endothelial development have yielded essential transcription factors and small molecules that induce endothelial cell fate. Most direct cell reprogramming strategies targeting endothelial cells use ETV2, a pioneer transcription factor to specify endothelial lineage via histone-modifying enzymes. Many different types of starting cells and strategies, including lentiviral transduction, inducing innate immunity, and small molecule signaling have been leveraged for reprogramming. However, so far therapeutic benefit of these strategies remains unproven. Future research will have to solve scalability, safety, and efficacy hurdles before being ready for the clinic. However, researchers have already discovered meaningful insights into disease mechanisms and development through direct reprogramming.
Collapse
Affiliation(s)
- Matthew Wingo
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
43
|
Testa G, Di Benedetto G, Passaro F. Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration. Int J Mol Sci 2021; 22:ijms22179517. [PMID: 34502423 PMCID: PMC8431232 DOI: 10.3390/ijms22179517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
The adult human heart can only adapt to heart diseases by starting a myocardial remodeling process to compensate for the loss of functional cardiomyocytes, which ultimately develop into heart failure. In recent decades, the evolution of new strategies to regenerate the injured myocardium based on cellular reprogramming represents a revolutionary new paradigm for cardiac repair by targeting some key signaling molecules governing cardiac cell fate plasticity. While the indirect reprogramming routes require an in vitro engineered 3D tissue to be transplanted in vivo, the direct cardiac reprogramming would allow the administration of reprogramming factors directly in situ, thus holding great potential as in vivo treatment for clinical applications. In this framework, cellular reprogramming in partnership with nanotechnologies and bioengineering will offer new perspectives in the field of cardiovascular research for disease modeling, drug screening, and tissue engineering applications. In this review, we will summarize the recent progress in developing innovative therapeutic strategies based on manipulating cardiac cell fate plasticity in combination with bioengineering and nanotechnology-based approaches for targeting the failing heart.
Collapse
Affiliation(s)
- Gianluca Testa
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Interdepartmental Center for Nanotechnology Research—NanoBem, University of Molise, 86100 Campobasso, Italy
| | - Giorgia Di Benedetto
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
- Correspondence:
| |
Collapse
|
44
|
Liu Z, Ruter DL, Quigley K, Tanke NT, Jiang Y, Bautch VL. Single-Cell RNA Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under Homeostatic Laminar Flow. Arterioscler Thromb Vasc Biol 2021; 41:2575-2584. [PMID: 34433297 PMCID: PMC8454496 DOI: 10.1161/atvbaha.121.316797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells (ECs) that form the innermost layer of all vessels exhibit heterogeneous cell behaviors and responses to pro-angiogenic signals that are critical for vascular sprouting and angiogenesis. Once vessels form, remodeling and blood flow lead to EC quiescence, and homogeneity in cell behaviors and signaling responses. These changes are important for the function of mature vessels, but whether and at what level ECs regulate overall expression heterogeneity during this transition is poorly understood. Here, we profiled EC transcriptomic heterogeneity, and expression heterogeneity of selected proteins, under homeostatic laminar flow.
Collapse
Affiliation(s)
- Ziqing Liu
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.)
| | - Dana L Ruter
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,Now with KBI Biopharma, Inc, RTP, NC (D.L.R.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.).,Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.)
| | | | | | - Yuchao Jiang
- Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.).,Department of Biostatistics (Y.J.).,Department of Genetics (Y.J.)
| | - Victoria L Bautch
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.).,Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.).,Curriculum in Cell Biology and Physiology (N.T.T., V.L.B.).,Department of Biology, University of North Carolina, Chapel Hill (V.L.B.)
| |
Collapse
|
45
|
Yamakawa H, Ieda M. Cardiac regeneration by direct reprogramming in this decade and beyond. Inflamm Regen 2021; 41:20. [PMID: 34193320 PMCID: PMC8247073 DOI: 10.1186/s41232-021-00168-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Japan faces an increasing incidence of heart disease, owing to a shift towards a westernized lifestyle and an aging demographic. In cases where conventional interventions are not appropriate, regenerative medicine offers a promising therapeutic option. However, the use of stem cells has limitations, and therefore, “direct cardiac reprogramming” is emerging as an alternative treatment. Myocardial regeneration transdifferentiates cardiac fibroblasts into cardiomyocytes in situ. Three cardiogenic transcription factors: Gata4, Mef2c, and Tbx5 (GMT) can induce direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs), in mice. However, in humans, additional factors, such as Mesp1 and Myocd, are required. Inflammation and immune responses hinder the reprogramming process in mice, and epigenetic modifiers such as TET1 are involved in direct cardiac reprogramming in humans. The three main approaches to improving reprogramming efficiency are (1) improving direct cardiac reprogramming factors, (2) improving cell culture conditions, and (3) regulating epigenetic factors. miR-133 is a potential candidate for the first approach. For the second approach, inhibitors of TGF-β and Wnt signals, Akt1 overexpression, Notch signaling pathway inhibitors, such as DAPT ((S)-tert-butyl 2-((S)-2-(2-(3,5-difluorophenyl) acetamido) propanamido)-2-phenylacetate), fibroblast growth factor (FGF)-2, FGF-10, and vascular endothelial growth factor (VEGF: FFV) can influence reprogramming. Reducing the expression of Bmi1, which regulates the mono-ubiquitination of histone H2A, alters histone modification, and subsequently the reprogramming efficiency, in the third approach. In addition, diclofenac, a non-steroidal anti-inflammatory drug, and high level of Mef2c overexpression could improve direct cardiac reprogramming. Direct cardiac reprogramming needs improvement if it is to be used in humans, and the molecular mechanisms involved remain largely elusive. Further advances in cardiac reprogramming research are needed to bring us closer to cardiac regenerative therapy.
Collapse
Affiliation(s)
- Hiroyuki Yamakawa
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjiku-ku, Tokyo, 160-8582, Japan. .,Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki, 305-8575, Japan.
| |
Collapse
|
46
|
Sadahiro T, Ieda M. In vivo reprogramming as a new approach to cardiac regenerative therapy. Semin Cell Dev Biol 2021; 122:21-27. [PMID: 34210577 DOI: 10.1016/j.semcdb.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are a common cause of death worldwide. Adult cardiomyocytes have limited regenerative capacity after injury, and there is growing interest in cardiac regeneration as a new therapeutic strategy. There are several limitations of induced pluripotent stem cell-based transplantation therapy with respect to efficiency and risks of tumorigenesis. Direct reprogramming enables the conversion of terminally differentiated cells into target cell types using defined factors. In most cardiac diseases, activated fibroblasts proliferate in the damaged heart and contribute to the progression of heart failure. In vivo cardiac reprogramming, in which resident cardiac fibroblasts are converted into cardiomyocytes in situ, is expected to become a new cardiac regenerative therapy. Indeed, we and other groups have demonstrated that in vivo reprogramming improves cardiac function and reduces fibrosis after myocardial infarction. In this review, we summarize recent discoveries and developments related to in vivo reprogramming. In addition, issues that need to be resolved for clinical application are described.
Collapse
Affiliation(s)
- Taketaro Sadahiro
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba City, Ibaraki 305-8575, Japan.
| |
Collapse
|
47
|
Lim CK, Efthymios M, Tan W, Autio MI, Tiang Z, Li PY, Foo RSY. Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300. J Mol Cell Cardiol 2021; 160:15-26. [PMID: 34146546 DOI: 10.1016/j.yjmcc.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/01/2022]
Abstract
AIMS Direct cardiac reprogramming represents an attractive way to reversing heart damage caused by myocardial infarction because it removes fibroblasts, while also generating new functional cardiomyocytes. Yet, the main hurdle for bringing this technique to the clinic is the lack of efficacy with current reprogramming protocols. Here, we describe our unexpected discovery that DMSO is capable of significantly augmenting direct cardiac reprogramming in vitro. METHODS AND RESULTS Upon induction with cardiac transcription factors- Gata4, Hand2, Mef2c and Tbx5 (GHMT), the treatment of mouse embryonic fibroblasts (MEFs) with 1% DMSO induced ~5 fold increase in Myh6-mCherry+ cells, and significantly upregulated global expression of cardiac genes, including Myh6, Ttn, Nppa, Myh7 and Ryr2. RNA-seq confirmed upregulation of cardiac gene programmes and downregulation of extracellular matrix-related genes. Treatment of TGF-β1, DMSO, or SB431542, and the combination thereof, revealed that DMSO most likely targets a separate but parallel pathway other than TGF-β signalling. Subsequent experiments using small molecule screening revealed that DMSO enhances direct cardiac reprogramming through inhibition of the CBP/p300 bromodomain, and not its acetyltransferase property. CONCLUSION In conclusion, our work points to a direct molecular target of DMSO, which can be used for augmenting GHMT-induced direct cardiac reprogramming and possibly other cell fate conversion processes.
Collapse
Affiliation(s)
- Choon Kiat Lim
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456, Singapore
| | - Motakis Efthymios
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wilson Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Peter Yiqing Li
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| |
Collapse
|
48
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
49
|
EZH2 as an epigenetic regulator of cardiovascular development and diseases. J Cardiovasc Pharmacol 2021; 78:192-201. [PMID: 34029268 DOI: 10.1097/fjc.0000000000001062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
ABSTRACT Enhancer of zeste homolog 2(EZH2) is an enzymatic subunit of polycomb repressive complex 2 (PRC2) and is responsible for catalyzing mono-, di-, and trimethylation of histone H3 at lysine-27(H3K27me1/2/3). Many noncoding RNAs or signaling pathways are involved in EZH2 functional alterations. This new epigenetic regulation of target genes is able to silence downstream gene expression and modify physiological and pathological processes in heart development, cardiomyocyte regeneration and cardiovascular diseases such as hypertrophy, ischemic heart diseases, atherosclerosis and cardiac fibrosis. Targeting the function of EZH2 could be a potential therapeutic approach for cardiovascular diseases.
Collapse
|
50
|
Garry GA, Bezprozvannaya S, Chen K, Zhou H, Hashimoto H, Morales MG, Liu N, Bassel-Duby R, Olson EN. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nat Cell Biol 2021; 23:467-475. [PMID: 33941892 DOI: 10.1038/s41556-021-00668-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Direct cardiac reprogramming of fibroblasts to cardiomyocytes presents an attractive therapeutic strategy to restore cardiac function following injury. Cardiac reprogramming was initially achieved through overexpression of the transcription factors Gata4, Mef2c and Tbx5; later, Hand2 and Akt1 were found to further enhance this process1-5. Yet, staunch epigenetic barriers severely limit the ability of these cocktails to reprogramme adult fibroblasts6,7. We undertook a screen of mammalian gene regulatory factors to discover novel regulators of cardiac reprogramming in adult fibroblasts and identified the histone reader PHF7 as the most potent activating factor8. Mechanistically, PHF7 localizes to cardiac super enhancers in fibroblasts, and through cooperation with the SWI/SNF complex, it increases chromatin accessibility and transcription factor binding at these sites. Furthermore, PHF7 recruits cardiac transcription factors to activate a positive transcriptional autoregulatory circuit in reprogramming. Importantly, PHF7 achieves efficient reprogramming in the absence of Gata4. Here, we highlight the underexplored necessity of cardiac epigenetic readers, such as PHF7, in harnessing chromatin remodelling and transcriptional complexes to overcome critical barriers to direct cardiac reprogramming.
Collapse
Affiliation(s)
- Glynnis A Garry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huanyu Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hisayuki Hashimoto
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,The Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|