1
|
Goldammer I, Mielke S, Emmert S, Furashova O, Kakkassery V. [Ophthalmic oncology in a warmer world: climate-related increase in the prevalence of eyelid cancer]. DIE OPHTHALMOLOGIE 2025; 122:4-11. [PMID: 39808279 DOI: 10.1007/s00347-024-02164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Damage induced by ultraviolet (UV) radiation plays a decisive role in the carcinogenesis of malignant tumors of the eyelids. METHODS A selective literature search was performed in PubMed and Google Scholar. RESULTS Large epidemiological studies show an increase in the prevalence of eyelid tumors in recent decades. The incidence of malignant eyelid tumors has increased especially in the white population over the last 70 years. A UV-induced damage to tumor suppressor genes and oncogenes which play a key role in the carcinogenesis of malignant eyelid tumors has been demonstrated. Strong intermittent UV exposure and sunburn have been identified as risk factors for basal cell carcinoma and malignant melanoma. For squamous cell carcinoma, cumulative UV exposure over a longer period of time is considered a risk factor. CONCLUSION In order to counteract the UV-related increase in malignant eyelid tumors, preventive protective measures, early detection and increased public awareness are essential. On the one hand, changes in behavior, appropriate clothing, wearing hats and sunglasses or contact lenses with UV filters are effective measures for UV protection. On the other hand, the underlying mechanisms of carcinogenesis should be investigated further in order to be able to carry out effective prevention and further develop treatment.
Collapse
Affiliation(s)
- I Goldammer
- Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland.
| | - S Mielke
- Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland
| | - S Emmert
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - O Furashova
- Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland
| | - V Kakkassery
- Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland
| |
Collapse
|
2
|
Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: role of abnormal apoptosis. Int Urol Nephrol 2020; 52:1049-1055. [PMID: 32026308 DOI: 10.1007/s11255-019-02372-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Genistein is recognized as a potent anti-oxidant in soybean-enriched foods, which is a kind of phytoestrogen involved in anticancer activity in various cancers. OBJECTIVE The objective of this study was to investigate the molecular mechanism of CDKN2a hypomethylation involved in the anti-tumor effect of genistein on kidney cancer. METHODS The CDKN2a expression was measured using qRT-PCR. The level of CDKN2a methylation was detected using methylation-specific PCR. The apoptosis was detected via flow-cytometric analysis. The cell viability was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Our results indicated that genistein induced cell apoptosis and inhibited the cell proliferation of kidney cancer cells. Moreover, genistein increased the expression of CDKN2a and decreased CDKN2a methylation. CONCLUSIONS Our results demonstrated that the anti-tumor effect of genistein might induce cell apoptosis and inhibit the proliferation of kidney cancer cells via regulating CDKN2a methylation.
Collapse
|
3
|
Benfodda M, Gazal S, Descamps V, Basset-Seguin N, Deschamps L, Thomas L, Lebbe C, Saiag P, Zanetti R, Sacchetto L, Chiorino G, Scatolini M, Grandchamp B, Bensussan A, Soufir N. Truncating mutations of TP53AIP1 gene predispose to cutaneous melanoma. Genes Chromosomes Cancer 2018; 57:294-303. [PMID: 29359367 DOI: 10.1002/gcc.22528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Genetic predisposition to cutaneous malignant melanoma (CMM) involves highly penetrant predisposing genes and low and intermediate penetrant predisposing alleles. However, the missing heritability in (CMM) is still high. For such and in order to identify new genetic factors for CMM, we conducted an exome sequencing study in high-risk CMM patients. Two rounds of exome sequencing were successively performed in 33 and 27 high-risk patients. We focused on genes carrying rare nonsense, frameshift, and splice variants (allelic frequency <1%) that were present in both series of exomes. An extension study was then conducted in a large cohort (1 079 CMM patients and 1 230 Caucasian ethnically matched healthy controls), and the inactivating variants frequency was compared between groups using two-sided Fisher exact test. Two TP53AIP1 truncating mutations were identified in four patients: a frameshift c.63_64insG, p.Q22Afs*81 in two patients from the same family and in the proband of a second family; and a nonsense mutation c.95 C > A, p.Ser32Stop in a patient with multiple CMMs. In all patients, TP53AIP1 truncating variants were strongly associated with CMM risk (two-sided Fisher exact test = 0.004, OR = 3.3[1.3-8.5]). Additionally, we showed that TP53AIP1 mRNA was strongly down-regulated throughout different phases of melanoma progression. TP53AIP1 gene is a TP53 target which plays a key role by inducting apoptosis in response to UV-induced DNA damage. Constitutional mutations of TP53AIP1 had previously been involved in susceptibility to prostate cancer. Our results show that constitutional truncating TP53AIP1 mutations predispose to CMM in the French population. Replication studies in other populations should be performed.
Collapse
Affiliation(s)
- Meriem Benfodda
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Steven Gazal
- Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,UMR S 738, Faculté de Médecine Xavier Bichat, 75018, Paris, France
| | - Vincent Descamps
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Nicole Basset-Seguin
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Lydia Deschamps
- Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département d'Anatomie Pathologique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France
| | - Luc Thomas
- Département de Dermatologie, Hôpital de l'Hôtel-Dieu, 69002, Lyon, France
| | - Celeste Lebbe
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France.,Département de Dermatologie, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Philippe Saiag
- Département de Dermatologie, Hôpital Ambroise Paré, APHP, 92100, Boulogne Billancourt, France
| | - Roberto Zanetti
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy
| | - Lidia Sacchetto
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy.,Politecnico di Torino, Torino, Italy.,Università degli Studi di Torino, Torino, Italy.,Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Giovanna Chiorino
- Centre for Cancer Prevention, Piedmont Cancer Registry-CPO, Torino, Italy
| | - Maria Scatolini
- Laboratory of Molecular Oncology, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Bernard Grandchamp
- Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - Armand Bensussan
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| | - Nadem Soufir
- INSERM U976, Centre de Recherche sur la Peau, Hôpital Saint Louis, 75010, Paris, France.,Département de Génétique, Hôpital Bichat Claude Bernard, APHP, 75018, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75005, Paris, France
| |
Collapse
|
4
|
Jarrett SG, D'Orazio JA. Hormonal Regulation of the Repair of UV Photoproducts in Melanocytes by the Melanocortin Signaling Axis. Photochem Photobiol 2016; 93:245-258. [PMID: 27645605 DOI: 10.1111/php.12640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022]
Abstract
Melanoma is the deadliest form of skin cancer because of its propensity to spread beyond the primary site of disease and because it resists many forms of treatment. Incidence of melanoma has been increasing for decades. Although ultraviolet radiation (UV) has been identified as the most important environmental causative factor for melanoma development, UV-protective strategies have had limited efficacy in melanoma prevention. UV mutational burden correlates with melanoma development and tumor progression, underscoring the importance of UV in melanomagenesis. However, besides amount of UV exposure, melanocyte UV mutational load is influenced by the robustness of nucleotide excision repair, the genome maintenance pathway charged with removing UV photoproducts before they cause permanent mutations in the genome. In this review, we highlight the importance of the melanocortin hormonal signaling axis on regulating efficiency of nucleotide excision repair in melanocytes. By understanding the molecular mechanisms by which nucleotide excision repair can be increased, it may be possible to prevent many cases of melanoma by reducing UV mutational burden over time.
Collapse
Affiliation(s)
- Stuart G Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY
| | - John A D'Orazio
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY.,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY.,Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY.,Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
5
|
Di Lorenzo S, Fanale D, Corradino B, Caló V, Rinaldi G, Bazan V, Giordano A, Cordova A, Russo A. Absence of germline CDKN2A mutation in Sicilian patients with familial malignant melanoma: Could it be a population-specific genetic signature? Cancer Biol Ther 2016; 17:83-90. [PMID: 26650572 DOI: 10.1080/15384047.2015.1108494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Germline CDKN2A mutations have been described in 25% to 40% of melanoma families from several countries. Sicilian population is genetically different from the people of Europe and Northern Italy because of its historical background, therefore familial melanoma could be due to genes different from high-penetrance CDKN2A gene. Four hundred patients with cutaneous melanoma were observed in a 6-years period at the Plastic Surgery Unit of the University of Palermo. Forty-eight patients have met the criteria of the Italian Society of Human Genetics (SIGU) for the diagnosis of familial melanoma and were screened for CDKN2A and CDK4 mutations. Mutation testing revealed that none of the families carried mutations in CDK4 and only one patient harboured the rare CDKN2A p.R87W mutation. Unlike other studies, we have not found high mutation rate of CDKN2A in patients affected by familial melanoma or multiple melanoma. This difference could be attributed to different factors, including the genetic heterogeneity of the Sicilian population. It is likely that, as in the Australian people, the inheritance of familial melanoma in this island of the Mediterranean Sea is due to intermediate/low-penetrance susceptibility genes, which, together with environmental factors (as latitude and sun exposure), could determine the occurrence of melanoma.
Collapse
Affiliation(s)
- Sara Di Lorenzo
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Daniele Fanale
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Bartolo Corradino
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Valentina Caló
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Gaetana Rinaldi
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Viviana Bazan
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| | - Antonio Giordano
- c Sbarro Institute for Cancer Research and Molecular Medicine, Temple University , Philadelphia , PA 19122 , USA
| | - Adriana Cordova
- a Department of Surgical , Oncological and Oral Sciences, Section of Plastic Surgery, University of Palermo , 90127 Palermo , Italy
| | - Antonio Russo
- b Department of Surgical , Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo , 90127 Palermo , Italy
| |
Collapse
|
6
|
Nucleotide Excision Repair and Vitamin D--Relevance for Skin Cancer Therapy. Int J Mol Sci 2016; 17:372. [PMID: 27058533 PMCID: PMC4848881 DOI: 10.3390/ijms17040372] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation.
Collapse
|
7
|
Flisikowski K, Flisikowska T, Sikorska A, Perkowska A, Kind A, Schnieke A, Switonski M. Germline gene polymorphisms predisposing domestic mammals to carcinogenesis. Vet Comp Oncol 2015; 15:289-298. [PMID: 26575426 DOI: 10.1111/vco.12186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/15/2015] [Accepted: 09/20/2015] [Indexed: 12/31/2022]
Abstract
Cancer is a complex disease caused in part by predisposing germline gene polymorphisms. Knowledge of carcinogenesis in companion mammals (dog and cat) and some livestock species (pig and horse) is quite advanced. The prevalence of certain cancers varies by breed in these species, suggesting the presence of predisposing genetic variants in susceptible breeds. This review summarizes the present understanding of germline gene polymorphisms, including BRCA1, BRCA2, MC1R, KIT, NRAS and RAD51, associated with predisposition to melanoma, mammary cancer, osteosarcoma and histiocytic sarcoma in dogs, cats, pigs and horses. The predisposing variants in these species are discussed in the context of human germline gene polymorphisms associated with the same types of cancer.
Collapse
Affiliation(s)
- K Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - T Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - A Sikorska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - A Perkowska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - A Kind
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - A Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - M Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
8
|
van Kempen LC, Redpath M, Robert C, Spatz A. Molecular pathology of cutaneous melanoma. Melanoma Manag 2014; 1:151-164. [PMID: 30190820 DOI: 10.2217/mmt.14.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is associated with strong prognostic phenotypic features, such as gender, Breslow's thickness and ulceration, although the biological significance of these variables is largely unknown. It is likely that these features are surrogates of important biological events rather than directly promoting cutaneous melanoma progression. In this article, we address the molecular mechanisms that drive these phenotypic changes. Furthermore, we present a comprehensive overview of recurrent genetic abnormalities, both germline and somatic, in relation to cutaneous melanoma subtypes, ultraviolet exposure and anatomical localization, as well as pre-existing and targeted therapy-induced mutations that may contribute to resistance. The increasing knowledge of critically important oncogenes and tumor-suppressor genes is promoting a transition in melanoma diagnosis, in which single-gene testing will be replaced by multiplex and multidimensional analyses that combine classical histopathological characteristics with the molecular profile for the prognostication and selection of melanoma therapy.
Collapse
Affiliation(s)
- Léon C van Kempen
- McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Margaret Redpath
- McGill University, Montreal, QC, Canada.,McGill University, Montreal, QC, Canada
| | - Caroline Robert
- Gustave Roussy Cancer Institute, Villejuif, Paris, France.,Gustave Roussy Cancer Institute, Villejuif, Paris, France
| | - Alan Spatz
- McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,Department of Pathology, Jewish General Hospital, 3755 Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada.,McGill University, Montreal, QC, Canada.,Lady Davis Institute for Medical Research, Montreal, QC, Canada.,Department of Pathology, Jewish General Hospital, 3755 Cote Ste Catherine, Montreal, QC, H3T 1E2, Canada
| |
Collapse
|
9
|
Hussain MRM, Baig M, Mohamoud HSA, Ulhaq Z, Hoessli DC, Khogeer GS, Al-Sayed RR, Al-Aama JY. BRAF gene: From human cancers to developmental syndromes. Saudi J Biol Sci 2014; 22:359-73. [PMID: 26150740 PMCID: PMC4486731 DOI: 10.1016/j.sjbs.2014.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/05/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
The BRAF gene encodes for a serine/threonine protein kinase that participates in the MAPK/ERK signalling pathway and plays a vital role in cancers and developmental syndromes (RASopathies). The current review discusses the clinical significance of the BRAF gene and other members of RAS/RAF cascade in human cancers and RAS/MAPK syndromes, and focuses the molecular basis and clinical genetics of BRAF to better understand its parallel involvement in both tumourigenesis and RAS/MAPK syndromes—Noonan syndrome, cardio-facio-cutaneous syndrome and LEOPARD syndrome.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- Faculty of Genetic Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ; CAS-Institute of microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Mukhtiar Baig
- Faculty of Medicine, King Abdulaziz University, Rabigh Branch, Saudi Arabia
| | - Hussein Sheik Ali Mohamoud
- Human Genetics Research Centre, Division of Biomedical Sciences (BMS), St. George's University of London (SGUL), London, UK
| | - Zaheer Ulhaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ghaidaa Siraj Khogeer
- Department of Biology, Genomics and Biotechnology Section, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ranem Radwan Al-Sayed
- Department of Biology, Genomics and Biotechnology Section, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
10
|
Genome-wide DNA methylation profile of leukocytes from melanoma patients with and without CDKN2A mutations. Exp Mol Pathol 2014; 97:425-32. [PMID: 25236571 DOI: 10.1016/j.yexmp.2014.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
Melanoma is a highly aggressive cancer, accounting for up to 75% of skin cancer deaths. A small proportion of melanoma cases can be ascribed to the presence of highly penetrant germline mutations, and approximately 40% of hereditary melanoma cases are caused by CDKN2A mutations. The current study sought to investigate whether the presence of germline CDKN2A mutations or the occurrence of cutaneous melanoma would result in constitutive genome-wide DNA methylation changes. The leukocyte methylomes of two groups of melanoma patients (those with germline CDKN2A mutations and those without CDKN2A mutations) were analyzed together with the profile of a control group of individuals. A pattern of DNA hypomethylation was detected in the CDKN2A-negative patients relative to both CDKN2A-mutated patients and controls. Additionally, we delineated a panel of 90 CpG sites that were differentially methylated in CDKN2A-mutated patients relative to controls. Although we identified a possible constitutive epigenetic signature in CDKN2A-mutated patients, the occurrence of reported SNPs at the detected CpG sites complicated the data interpretation. Thus, further studies are required to elucidate the impact of these findings on melanoma predisposition and their possible effect on the penetrance of CDKN2A mutations.
Collapse
|
11
|
Polymorphisms in the p27kip-1 and prohibitin genes denote novel genes associated with melanoma risk in Brazil, a high ultraviolet index region. Melanoma Res 2014; 23:231-6. [PMID: 23624368 DOI: 10.1097/cmr.0b013e3283612483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ultraviolet (UV) radiation is a major environmental risk factor to the development of cutaneous melanoma as it induces pyrimidine dimers in DNA. Genes that exert their function by arresting the cell cycle are critical to avoid carcinogenic mutations, allowing the processing of DNA repair systems. This study was carried out to evaluate the role of polymorphisms in cell cycle genes such as TP53, p27, CDKN2A, prohibitin, and GADD153 in melanoma risk as well as their influence on known risk factors in a high UV index region. A hospital-based case-control study was carried out in Brazil to evaluate the contribution of polymorphisms in cell cycle genes toward melanoma risk. The study comprised 202 melanoma patients and 210 controls. The polymorphisms analyzed were TP53 Arg72Pro, p27 Val109Gly, GADD153 Phe10Phe (rs697221), CDKN2A 3'UTR C540G, and prohibitin 3'UTR C1703T. As regards, p27 Val109Gly, both heterozygous and homozygous Gly genotypes were shown to be protective genotypes on calculating both crude and adjusted odds ratios (ORs) for age, sex, and educational level [OR 0.37; 95% confidence interval (CI) 0.16-0.87; P<0.05]. Similarly, the prohibitin TT genotype increased melanoma risk in the crude and adjusted analyses (OR 2.40; 95% CI 1.10-5.26; P<0.05). The p27 Gly protective genotype decreased the risk for melanoma in a stratified analysis of the known risk factors such as hair and eye color, sunburns, pigmented lesions, and European ancestry. The prohibitin TT genotype increased the risk of melanoma by such host factors. Our results showed for the first time that polymorphisms in p27 Val109Gly and in prohibitin 3'UTR C1703T genotypes modulate the risk to melanoma in a high UV index region.
Collapse
|
12
|
Abstract
Familial melanoma accounts for approximately a tenth of all melanoma cases. The most commonly known melanoma susceptibility gene is the highly penetrant CDKN2A (p16INK4a) locus, which is transmitted in an autosomal dominant fashion and accounts for approximately 20-50 % of familial melanoma cases. Mutated p16INK4a shows impaired capacity to inhibit the cyclin D1-CDK4 complex, allowing for unchecked cell cycle progression. Mutations in the second protein coded by CDKN2A, p14ARF, are much less common and result in proteasomal degradation of p53 with subsequent accumulation of DNA damage as the cell progresses through the cell cycle without a functional p53-mediated DNA damage response. Mutations in CDK4 that impair the inhibitory interaction with p16INK4a also increase melanoma risk but these mutations are extremely rare. Genes of the melanin biosynthetic pathway, including MC1R and MITF, have also been implicated in melanomagenesis. MC1R variants were traditionally thought to increase risk for melanoma secondary to intensified UV-mediated DNA damage in the setting of absent photoprotective eumelanin. Accumulation of pheomelanin, which appears to have a carcinogenic effect regardless of UV exposure, may be a more likely mechanism. Impaired SUMOylation of the E318K variant of MITF results in increased transcription of genes that confer melanocytes with a pro-malignant phenotype. Mutations in the tumor suppressor BAP1 enhance the metastatic potential of uveal melanoma and predispose to cutaneous/ocular melanoma, atypical melanocytic tumors, and other internal malignancies (COMMON syndrome). Genome-wide association studies have identified numerous low-risk alleles. Although several melanoma susceptibility genes have been identified, risk assessment tools have been developed only for the most common gene implicated with hereditary melanoma, CDKN2A. MelaPRO, a validated model that relies on Mendelian inheritance and Bayesian probability theories, estimates carrier probability for CDKN2A and future risk of melanoma taking into account a patient's family and past medical history of melanoma. Genetic testing for CDKN2A mutations is currently available but the Melanoma Genetics Consortium recommends offering such testing to patients only in the context of research protocols because clinical utility is uncertain.
Collapse
|
13
|
Nikolaou V, Stratigos AJ. Emerging trends in the epidemiology of melanoma. Br J Dermatol 2014; 170:11-9. [PMID: 23815297 DOI: 10.1111/bjd.12492] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma (CM) is one of the most rapidly growing cancers worldwide, with a consistent increase in incidence among white populations over the past four decades. Despite the early detection of primarily thin melanomas and the improved survival rates observed in several countries, the rate of thick melanomas has remained constant or continues to increase, especially in the older age group. Current considerations in the epidemiology of melanoma focus on the observed survival benefit of females vs. males, the contributing role of indoor tanning in melanoma risk and the diverse effect of sun exposure in the development of different types of melanoma with respect to their clinical and mutational profile. Certain well-known risk factors, such as skin, hair and eye pigmentation and melanocytic naevi have been validated in large-scale association studies, while additional lifestyle factors and iatrogenic exposures, such as immunosuppressive agents and nonsteroidal anti-inflammatory drugs are being investigated. In addition, genome-wide association studies have revealed genetic loci that underlie the genetic susceptibility of melanoma, some of which are related to known risk factors. Recently, an interesting association of melanoma with Parkinson disease has been noted, with a higher than expected frequency of melanoma in patients with Parkinson disease and vice versa. This review article provides an update in the epidemiology of cutaneous melanoma and discusses recent developments in the field.
Collapse
Affiliation(s)
- V Nikolaou
- Department of Dermatology, Andreas Sygros Hospital, University of Athens Medical School, 5 Dragoumi Street, Athens, 16121, Greece
| | | |
Collapse
|
14
|
Amaro-Ortiz A, Vanover JC, Scott TL, D'Orazio JA. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model. J Vis Exp 2013. [PMID: 24056496 DOI: 10.3791/50670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.
Collapse
|
15
|
Tan X, Anzick SL, Khan SG, Ueda T, Stone G, Digiovanna JJ, Tamura D, Wattendorf D, Busch D, Brewer CC, Zalewski C, Butman JA, Griffith AJ, Meltzer PS, Kraemer KH. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency. Hum Mutat 2013; 34:1250-9. [PMID: 23661601 DOI: 10.1002/humu.22354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.
Collapse
Affiliation(s)
- Xiaohui Tan
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4258, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bourillon A, Hu HH, Hetet G, Lacapere JJ, André J, Descamps V, Basset-Seguin N, Ogbah Z, Puig S, Saiag P, Bagot M, Bensussan A, Grandchamp B, Dumaz N, Soufir N. Genetic variation at KIT locus may predispose to melanoma. Pigment Cell Melanoma Res 2012; 26:88-96. [PMID: 23020152 DOI: 10.1111/pcmr.12032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/28/2012] [Indexed: 01/06/2023]
Abstract
As loss of KIT frequently occurs in melanoma progression, we hypothesized that KIT is implicated in predisposition to melanoma (MM). Thus, we sequenced the KIT coding region in 112 familial MM cases and 143 matched controls and genotyped tag single-nucleotide polymorphisms (SNPs) in two cohorts of melanoma patients and matched controls. Five rare KIT substitutions, all predicted possibly or probably deleterious, were identified in five patients, but none in controls [RR = 2.26 (1.26-2.26)]. Expressed in melanocyte lines, three substitutions inhibited KIT signaling. Comparison with exomes database (7020 alleles) confirmed a significant excess of rare deleterious KIT substitutions in patients. Additionally, a common SNP, rs2237028, was associated with MM risk, and 6 KIT variants were associated with nevus count. Our data strongly suggest that rare KIT substitutions predispose to melanoma and that common variants at KIT locus may also impact nevus count and melanoma risk.
Collapse
Affiliation(s)
- Agnes Bourillon
- Département de Génétique, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De Mozzi P, Alexandroff A, Johnston G. Updates from the British Association of Dermatologists 91st Annual Meeting, 5-7 July 2011, London, U.K. Br J Dermatol 2012; 167:232-9. [DOI: 10.1111/j.1365-2133.2012.11080.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|