1
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
2
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
3
|
Katirci E, Kendirci-Katirci R, Korgun ET. Are innate lymphoid cells friend or foe in human pregnancy? Am J Reprod Immunol 2024; 91:e13834. [PMID: 38500395 DOI: 10.1111/aji.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Innate lymphoid cells (ILCs) are involved in the innate immune system because they lack specific antigen receptors and lineage markers. ILCs also display phenotypic and characteristic features of adaptive immune cells. Therefore, ILCs are functional in essential interactions between adaptive and innate immunity. ILCs are found in both lymphoid and nonlymphoid tissues and migrate to the area of inflammation during the inflammatory process. ILCs respond to pathogens by producing a variety of cytokines and are involved in the barrier defense of antigens and in many immunological processes such as allergic events. Recent research has shown that ILCs are functional during human pregnancy and have been suggested to be essential for the healthy progression of pregnancy. In this review, we focus on the role of ILCs in human pregnancy by discussing the relationship between ILCs and the pregnancy microenvironment, specifically summarizing the role of ILCs in physiological and pathological pregnancies.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Remziye Kendirci-Katirci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
An Y, Tan S, Yang J, Gao T, Dong Y. The potential role of Hippo pathway regulates cellular metabolism via signaling crosstalk in disease-induced macrophage polarization. Front Immunol 2024; 14:1344697. [PMID: 38274792 PMCID: PMC10808647 DOI: 10.3389/fimmu.2023.1344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophages polarized into distinct phenotypes play vital roles in inflammatory diseases by clearing pathogens, promoting tissue repair, and maintaining homeostasis. Metabolism serves as a fundamental driver in regulating macrophage polarization, and understanding the interplay between macrophage metabolism and polarization is crucial for unraveling the mechanisms underlying inflammatory diseases. The intricate network of cellular signaling pathway plays a pivotal role in modulating macrophage metabolism, and growing evidence indicates that the Hippo pathway emerges as a central player in network of cellular metabolism signaling. This review aims to explore the impact of macrophage metabolism on polarization and summarize the cell signaling pathways that regulate macrophage metabolism in diseases. Specifically, we highlight the pivotal role of the Hippo pathway as a key regulator of cellular metabolism and reveal its potential relationship with metabolism in macrophage polarization.
Collapse
Affiliation(s)
- Yina An
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuyu Tan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanjun Dong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
6
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
7
|
The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy? ACTA ACUST UNITED AC 2021; 2021:5523055. [PMID: 34476174 PMCID: PMC8407977 DOI: 10.1155/2021/5523055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023]
Abstract
Besides transformed cells, the tumors are composed of various cell types that contribute to undesirable tumor progression. Tumor-associated macrophages (TAMs) are the most abundant innate immune cells in the tumor microenvironment (TME). Within the TME, TAMs exhibit high plasticity and undergo specific functional metabolic alterations according to the availability of tumor tissue oxygen and nutrients, thus further contributing to tumorigenesis and cancer progression. Here, we review the main functional TAM metabolic patterns influenced by TME, including glycolysis, amino acid, and fatty acid metabolism. Moreover, this review discusses antitumor immunotherapies that affect TAM functionality by inducing cell repolarizing and metabolic profiles towards an antitumoral phenotype. Also, new macrophage-based cell therapeutic technologies recently developed using chimeric antigen receptor bioengineering are exposed, which may overcome all solid tumor physical barriers impeding the current adoptive cell therapies and contribute to developing novel cancer immunotherapies.
Collapse
|
8
|
Fischbeck AJ, Ruehland S, Ettinger A, Paetzold K, Masouris I, Noessner E, Mendler AN. Tumor Lactic Acidosis: Protecting Tumor by Inhibiting Cytotoxic Activity Through Motility Arrest and Bioenergetic Silencing. Front Oncol 2020; 10:589434. [PMID: 33364193 PMCID: PMC7753121 DOI: 10.3389/fonc.2020.589434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Adoptive T cell therapy (ACT) is highly effective in the treatment of hematologic malignancies, but shows limited success in solid tumors. Inactivation of T cells in the tumor milieu is a major hurdle to a wider application of ACT. Cytotoxicity is the most relevant activity for tumor eradication. Here, we document that cytotoxic T cells (CTL) in lactic acidosis exhibited strongly reduced tumor cell killing, which could be compensated partly by increasing the CTL to tumor cell ratio. Lactic acid intervened at multiple steps of the killing process. Lactic acid repressed the number of CTL that performed lytic granule exocytosis (degranulation) in tumor cell co-culture, and, additionally impaired the quality of the response, as judged by the reduced intensity of degranulation and lower secretion of cytotoxins (perforin, granzyme B, granzyme A). CTL in lactic acid switched to a low bioenergetic profile with an inability to metabolize glucose efficiently. They responded to anti-CD3 stimulation poorly with less extracellular acidification rate (ECAR). This might explain their repressed granule exocytosis activity. Using live cell imaging, we show that CTL in lactic acid have reduced motility, resulting in lower field coverage. Many CTL in lactic acidosis did not make contact with tumor cells; however, those which made contact, adhered to the tumor cell much longer than a CTL in normal medium. Reduced motility together with prolonged contact duration hinders serial killing, a defining feature of killing potency, but also locally confines cytotoxic activity, which helps to reduce the risk of collateral organ damage. These activities define lactic acid as a major signaling molecule able to orchestrate the spatial distribution of CTL inside inflamed tissue, such as cancer, as well as moderating their functional response. Lactic acid intervention and strategies to improve T cell metabolic fitness hold promise to improve the clinical efficacy of T cell–based cancer immunotherapy.
Collapse
Affiliation(s)
| | - Svenja Ruehland
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | | | - Ilias Masouris
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| | | | - Anna N Mendler
- Immunoanalytics, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
9
|
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Front Immunol 2019; 10:1462. [PMID: 31333642 PMCID: PMC6618143 DOI: 10.3389/fimmu.2019.01462] [Citation(s) in RCA: 1250] [Impact Index Per Article: 208.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Macrophages are a heterogeneous population of immune cells playing several and diverse functions in homeostatic and immune responses. The broad spectrum of macrophage functions depends on both heterogeneity and plasticity of these cells, which are highly specialized in sensing the microenvironment and modify their properties accordingly. Although it is clear that macrophage phenotypes are difficult to categorize and should be seen as plastic and adaptable, they can be simplified into two extremes: a pro-inflammatory (M1) and an anti-inflammatory/pro-resolving (M2) profile. Based on this definition, M1 macrophages are able to start and sustain inflammatory responses, secreting pro-inflammatory cytokines, activating endothelial cells, and inducing the recruitment of other immune cells into the inflamed tissue; on the other hand, M2 macrophages promote the resolution of inflammation, phagocytose apoptotic cells, drive collagen deposition, coordinate tissue integrity, and release anti-inflammatory mediators. Dramatic switches in cell metabolism accompany these phenotypic and functional changes of macrophages. In particular, M1 macrophages rely mainly on glycolysis and present two breaks on the TCA cycle that result in accumulation of itaconate (a microbicide compound) and succinate. Excess of succinate leads to Hypoxia Inducible Factor 1α (HIF1α) stabilization that, in turn, activates the transcription of glycolytic genes, thus sustaining the glycolytic metabolism of M1 macrophages. On the contrary, M2 cells are more dependent on oxidative phosphorylation (OXPHOS), their TCA cycle is intact and provides the substrates for the complexes of the electron transport chain (ETC). Moreover, pro- and anti-inflammatory macrophages are characterized by specific pathways that regulate the metabolism of lipids and amino acids and affect their responses. All these metabolic adaptations are functional to support macrophage activities as well as to sustain their polarization in specific contexts. The aim of this review is to discuss recent findings linking macrophage functions and metabolism.
Collapse
Affiliation(s)
- Antonella Viola
- Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza, Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza, Padova, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza, Padova, Italy
| | - Tommaso Scolaro
- Department of Biomedical Sciences, Istituto di Ricerca Pediatrica, University of Padova, Fondazione Città della Speranza, Padova, Italy
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
10
|
Garetto S, Sardi C, Martini E, Roselli G, Morone D, Angioni R, Cianciotti BC, Trovato AE, Franchina DG, Castino GF, Vignali D, Erreni M, Marchesi F, Rumio C, Kallikourdis M. Tailored chemokine receptor modification improves homing of adoptive therapy T cells in a spontaneous tumor model. Oncotarget 2018; 7:43010-43026. [PMID: 27177227 PMCID: PMC5190004 DOI: 10.18632/oncotarget.9280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 04/27/2016] [Indexed: 01/19/2023] Open
Abstract
In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to “hijack” their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.
Collapse
Affiliation(s)
- Stefano Garetto
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Claudia Sardi
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Elisa Martini
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Diego Morone
- Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Roberta Angioni
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | | | - Anna Elisa Trovato
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | | | | | - Debora Vignali
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Marco Erreni
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center, Rozzano (Milano), Italy
| | - Federica Marchesi
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center, Rozzano (Milano), Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cristiano Rumio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano (Milano), Italy.,Humanitas University, Rozzano (Milano), Italy
| |
Collapse
|
11
|
Calì B, Molon B, Viola A. Tuning cancer fate: the unremitting role of host immunity. Open Biol 2017; 7:rsob.170006. [PMID: 28404796 PMCID: PMC5413907 DOI: 10.1098/rsob.170006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.
Collapse
Affiliation(s)
- B Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,Venetian Institute of Molecular Medicine, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - A Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
12
|
Mechanisms of immunological tolerance. Clin Biochem 2016; 49:324-8. [DOI: 10.1016/j.clinbiochem.2015.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 02/06/2023]
|
13
|
Li D, Zuo Q, Lian C, Zhang L, Shi Q, Zhang Z, Wang Y, Ahmed MF, Tang B, Xiao T, Zhang Y, Li B. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell. In Vitro Cell Dev Biol Anim 2015; 51:655-61. [PMID: 25794557 DOI: 10.1007/s11626-015-9877-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 01/23/2023]
Abstract
We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.
Collapse
Affiliation(s)
- Dong Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kolenchukova OA. FUNCTIONAL AND METABOLIC ACTIVITY OF NEUTROPHILIC GRANULOCYTES IN CASE OF ACUTE BACTERIAL RHINOSINUSITIS. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2014. [DOI: 10.15789/2220-7619-2013-3-269-274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Fraser CK, Brown MP, Diener KR, Hayball JD. Unravelling the complexity of cancer–immune system interplay. Expert Rev Anticancer Ther 2014; 10:917-34. [DOI: 10.1586/era.10.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Lamas B, Vergnaud-Gauduchon J, Goncalves-Mendes N, Perche O, Rossary A, Vasson MP, Farges MC. Altered functions of natural killer cells in response to L-Arginine availability. Cell Immunol 2012; 280:182-90. [PMID: 23399839 DOI: 10.1016/j.cellimm.2012.11.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/03/2012] [Accepted: 11/29/2012] [Indexed: 01/09/2023]
Abstract
L-Arginine (L-Arg) availability is crucial in the regulation of immune response. Indeed, L-Arg deficiency induces T-cell dysfunction and could modulate the properties of natural killer (NK) cells involved in the early host defense against infections and tumors. We explored the impact of L-Arg depletion on NK cell functions using two models - an NK-92 cell line and isolated human blood NK cells. Below 5mg/L of L-Arg, NK-92 cell proliferation was decreased and a total L-Arg depletion reduced NK-92 cell viability. NK cell cytotoxicity was significantly inhibited in presence of low L-Arg concentration (2.5 mg/L). L-Arg depletion reduced the expression of NK-92 activating receptors, NKp46 and NKp30, the expression of NK ζ chain and the NK-92 intracellular production of IFN-γ. Whatever the L-Arg concentrations tested, no significant variation in the gene expression of transporters and enzymes involved in L-Arg metabolism was found. Thus, L-Arg availability modulates the phenotypic and functional properties of NK cells.
Collapse
Affiliation(s)
- Bruno Lamas
- Clermont Université, Université d'Auvergne, EA 4233, Nutrition Cancerogenèse et Thérapie anti-tumorale, CLARA, CRNH Auvergne, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Immunotherapy of cancer: reprogramming tumor-immune crosstalk. Clin Dev Immunol 2012; 2012:760965. [PMID: 23097673 PMCID: PMC3477552 DOI: 10.1155/2012/760965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
Abstract
The advancement of cancer immunotherapy faces barriers which limit its efficacy. These include weak immunogenicity of the tumor, as well as immunosuppressive mechanisms which prevent effective antitumor immune responses. Recent studies suggest that aberrant expression of cancer testis antigens (CTAs) can generate robust antitumor immune responses, which implicates CTAs as potential targets for immunotherapy. However, the heterogeneity of tumor cells in the presence and quantity of CTA expression results in tumor escape from CTA-specific immune responses. Thus, the ability to modulate the tumor cell epigenome to homogenously induce expression of such antigens will likely render the tumor more immunogenic. Additionally, emerging studies suggest that suppression of antitumor immune responses may be overcome by reprogramming innate and adaptive immune cells. Therefore, this paper discusses recent studies which address barriers to successful cancer immunotherapy and proposes a strategy of modulation of tumor-immune cell crosstalk to improve responses in carcinoma patients.
Collapse
|
18
|
Bron L, Jandus C, Andrejevic-Blant S, Speiser DE, Monnier P, Romero P, Rivals JP. Prognostic value of arginase-II expression and regulatory T-cell infiltration in head and neck squamous cell carcinoma. Int J Cancer 2012; 132:E85-93. [DOI: 10.1002/ijc.27728] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/28/2012] [Indexed: 12/11/2022]
|
19
|
Yang B, Wang X, Ren X. Amino acid metabolism related to immune tolerance by MDSCs. Int Rev Immunol 2012; 31:177-83. [PMID: 22587019 DOI: 10.3109/08830185.2012.679989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in most cancer patients. Due to their significant role in blocking immune responses, MDSCs are strategic obstacles to immunotherapy that require activation of the host's cell-mediated and innate immune responses. Following a brief description of the immunosuppressive MDSCs, the authors review the discovered mechanisms of amino acid metabolism that MDSCs use to suppress the activation of T cells. Given the heterogeneity of MDSCs and the variety of suppressive mechanisms employed by MDSCs, it is essential to understand which group of these cells and mechanisms are dominant.
Collapse
Affiliation(s)
- Baohong Yang
- Department of Biotherapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, China
| | | | | |
Collapse
|
20
|
Tate DJ, Patterson JR, Velasco-Gonzalez C, Carroll EN, Trinh J, Edwards D, Aiyar A, Finkel-Jimenez B, Zea AH. Interferon-gamma-induced nitric oxide inhibits the proliferation of murine renal cell carcinoma cells. Int J Biol Sci 2012; 8:1109-20. [PMID: 22991499 PMCID: PMC3445049 DOI: 10.7150/ijbs.4694] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/26/2012] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs) has not improved significantly. It is likely that the lack of responses can be due to the tumor's ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ), indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS) protein, resulting in a sustained elevation of nitric oxide (NO) and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.
Collapse
Affiliation(s)
- David J Tate
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. ACTA ACUST UNITED AC 2011; 208:1949-62. [PMID: 21930770 PMCID: PMC3182051 DOI: 10.1084/jem.20101956] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blocking CCL2 nitration in tumors promoted CD8+ influx and reduced tumor growth and prolonged survival in mice when combined with adoptive cell therapy. Tumor-promoted constraints negatively affect cytotoxic T lymphocyte (CTL) trafficking to the tumor core and, as a result, inhibit tumor killing. The production of reactive nitrogen species (RNS) within the tumor microenvironment has been reported in mouse and human cancers. We describe a novel RNS-dependent posttranslational modification of chemokines that has a profound impact on leukocyte recruitment to mouse and human tumors. Intratumoral RNS production induces CCL2 chemokine nitration and hinders T cell infiltration, resulting in the trapping of tumor-specific T cells in the stroma that surrounds cancer cells. Preconditioning of the tumor microenvironment with novel drugs that inhibit CCL2 modification facilitates CTL invasion of the tumor, suggesting that these drugs may be effective in cancer immunotherapy. Our results unveil an unexpected mechanism of tumor evasion and introduce new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Barbara Molon
- Istituto Oncologico Veneto, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Venetian Oncological Institute, 35128 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saleem SJ, Conrad DH. Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. Int Immunopharmacol 2011; 11:808-15. [PMID: 21426948 DOI: 10.1016/j.intimp.2011.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) differentiate into mature lineage restricted blood cells under the influence of a complex network of hematopoietic cytokines, cytokine-mediated transcriptional regulators, and manifold intercellular signaling pathways. The classical model of hematopoiesis proposes that progenitor cells undergo a dichotomous branching into myelo-erythroid and lymphoid lineages. Nonetheless, erythroid and lymphoid restricted progenitors retain their myeloid potential, supporting the existence of an alternative 'myeloid-based' mechanism of hematopoiesis. In this case, abnormal pathology is capable of dysregulating hematopoiesis in favor of myelopoiesis. The accumulation of immature CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) has been shown to correlate with the presence of several hematopoietic cytokines, transcription factors and signaling pathways, lending support to this hypothesis. Although the negative role of MDSCs in cancer development is firmly established, it is now understood that MDSCs can exert a paradoxical, positive effect on transplantation, autoimmunity, and sepsis. Our conflicted understanding of MDSC function and the complexity of hematopoietic cytokine signaling underscores the need to elucidate molecular pathways of MDSC expansion for the development of novel MDSC-based therapeutics.
Collapse
Affiliation(s)
- Sheinei J Saleem
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | |
Collapse
|
23
|
Abstract
Self tolerance is dependent on mechanisms that operate on T cells and B cells from the earliest stages, that is, from when they first express anti-self-receptors in the primary lymphoid organs of the thymus and bone marrow, all the way through to when they engage with self antigens in the peripheral immune system and within tissues themselves. This continuum of checkpoints and fail-safes ensures that the risk of developing harmful autoimmune diseases remains very small. Certain tissues have a degree of privilege that allows them to mute the immune response against them by mechanisms that are also well represented in cancers. An understanding of the underlying mechanisms of self tolerance is hoped to spawn a new range of therapeutics designed to both reprogram the immune system to avoid long-term intense immunosuppression, and to override the immune system to achieve more effective immunity against cancers and persistent viral infections.
Collapse
|
24
|
Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D, Ragni N, Moretta L, Mingari MC. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A 2010; 107:11918-23. [PMID: 20547831 PMCID: PMC2900704 DOI: 10.1073/pnas.1001749107] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are thought to play a major role in pregnancy by inhibiting the maternal immune system and preventing fetal rejection. In decidual tissues, NK cells (dNK) reside in close contact with particular myelomonocytic CD14(+) (dCD14(+)) cells. Here we show that the interaction between dNK and dCD14(+) cells results in induction of Tregs. The interaction is mediated by soluble factors as shown by transwell experiments, and the prominent role of IFN-gamma is revealed by the effect of a neutralizing monoclonal antibody. Following interaction with dNK cells, dCD14(+) cells express indoleamine 2,3-dioxygenase (IDO), which, in turn, induces Tregs. Notably, unlike peripheral blood NK (pNK) cells, dNK cells are resistant to inhibition by the IDO metabolite L-kynurenine. "Conditioned" dCD14(+) cells also may induce Tregs through transforming growth factor-beta (TGF-beta) production or CTLA-4-mediated interactions, as indicated by the effect of specific neutralizing Abs. Remarkably, only the interaction between dNK and dCD14(+) cells results in Treg induction, whereas other coculture combinations involving either NK or CD14(+) cells isolated from peripheral blood are ineffective. Our study provides interesting clues to understanding how the crosstalk between decidual NK and CD14(+) cells may initiate a process that leads to Treg induction and immunosuppression. Along this line, it is conceivable that an impaired function of these cells may result in pregnancy failure.
Collapse
Affiliation(s)
- Paola Vacca
- Giannina Gaslini Institute, 16147 Genoa, Italy
| | - Claudia Cantoni
- Giannina Gaslini Institute, 16147 Genoa, Italy
- Departments of Experimental Medicine
- Center of Excellence for Biomedical Research University of Genoa, and
| | - Massimo Vitale
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | | | | | - Daniela Fenoglio
- Internal Medicine, University of Genoa, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research University of Genoa, and
| | | | - Lorenzo Moretta
- Giannina Gaslini Institute, 16147 Genoa, Italy
- Departments of Experimental Medicine
- Center of Excellence for Biomedical Research University of Genoa, and
| | - Maria Cristina Mingari
- Departments of Experimental Medicine
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
25
|
Defective infiltration of natural killer cells in MICA/B-positive renal cell carcinoma involves beta(2)-integrin-mediated interaction. Neoplasia 2009; 11:662-71. [PMID: 19568411 DOI: 10.1593/neo.09296] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 01/07/2023] Open
Abstract
We have explored MICA/B expression and its relationship with innate inflammatory infiltrate in renal cell carcinoma (RCC). The expression of MICA/B, CD16, CD56, and CD68 in 140 RCC lesions contained in a tissue microarray (TMA) was investigated by immunohistochemistry. MICA/B gene and protein expressions in Caki-1 cells were analyzed by reverse transcription-polymerase chain reaction and flow cytometry, respectively. Natural killer (NK) cells were studied by flow cytometry. All the RCC lesions (n = 140) were MICA/B-positive. MICA/B was mainly expressed in the cytoplasm of tumor cells, whereas stromal cells were negative. Renal cell carcinoma lesions showed low NK cell infiltration, although they were rich in CD16(+)CD56(-) cells, strongly resembling macrophages. CD16(+) macrophage infiltration was more frequently detectable in metastatic lesions compared with primary tumors (P = .0223) and was associated with poor RCC differentiation (P = .007). To investigate mechanisms potentially underlying the lack of NK cells infiltration into MICA/B-positive RCC lesions, we used Caki-1 RCC cells. Caki-1 expressed MICA and MICB genes. However, MICA protein was not detectable in Caki-1 cells, whereas MICB protein was detectable in their cytoplasm and on the cell membrane. Coculture of peripheral blood mononuclear cells with Caki-1, K562, HCT116, respectively, resulted in CD56(+)CD16(+) NK cells deletion without affecting CD56(+)/CD16(-) NK subset and immature NK cells generated in vitro from CD34(+) cells. Natural killer cell apoptosis seemed to be preferentially triggered by cancer cells because HLA-A0201(+) NK cells were only marginally affected by allogeneic HLA-A0201(-) peripheral blood mononuclear cells. Caki-1 cell-mediated NK cell apoptosis was reduced by an anti-beta(2)-integrin (CD18) monoclonal antibody but was NKG2D-, granule exocytosis-, and caspase-independent.
Collapse
|
26
|
Whiteside TL. Tricks tumors use to escape from immune control. Oral Oncol 2009; 45:e119-23. [PMID: 19467917 DOI: 10.1016/j.oraloncology.2009.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 12/12/2022]
Abstract
Tumor escape from the host immune system has been a major problem in immunotherapy of human malignancies. Human tumors are known to develop escape strategies, which might differ among tumors of the same histology. This suggests that host-tumor interactions create the tumor microenvironment that is unique for every tumor. Recent advances in cancer immunology allow for a better understanding of the mechanisms tumors use to execute immune escape and of the relationship the tumor establishes with immune cells. It is now feasible to obtain an "immune signature" of the tumor, that is to define the genetic, molecular and functional profiles of immune cells in the tumor microenvironment. This knowledge might be critically important for the personalized selection of available therapies and thus for clinical outcome.
Collapse
|
27
|
Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 2009; 222:162-79. [PMID: 18364001 DOI: 10.1111/j.1600-065x.2008.00602.x] [Citation(s) in RCA: 489] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence indicates that the Achilles' heel of cancer immunotherapies is often the complex interplay of tumor-derived factors and deviant host properties, which involve a wide range of immune elements in the lymphoid and myeloid compartments. Regulatory lymphocytes, tumor-conditioned myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and dysfunctional and immature dendritic cells take part in a complex immunoregulatory network. Despite the fact that some mechanisms governing tumor-induced immune tolerance and suppression are starting to be better understood and their complexity dissected, little is known about the diachronic picture of immune tolerance. Based on observations of MDSCs, we present a time-structured and topologically consistent idea of tumor-dependent tolerance progression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Ilaria Marigo
- Department of Oncology and Surgical Sciences, Padova University, Padova, Italy, and Venetian Institute for Molecular Medicine, Padova, Italy
| | | | | | | | | |
Collapse
|
28
|
Mehrotra S, Mougiakakos D, Christian Johansson C, Voelkel‐Johnson C, Kiessling R. Chapter 6 Oxidative Stress and Lymphocyte Persistence. Adv Cancer Res 2009; 102:197-227. [DOI: 10.1016/s0065-230x(09)02006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Caramalho I, Faroudi M, Padovan E, Müller S, Valitutti S. Visualizing CTL/melanoma cell interactions: multiple hits must be delivered for tumour cell annihilation. J Cell Mol Med 2008; 13:3834-46. [PMID: 19017355 DOI: 10.1111/j.1582-4934.2008.00586.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is well established that cytotoxic T lymphocytes (CTL) can kill target cells offering a very small number of specific peptide/MHC complexes (pMHC). It is also known that lethal hit delivery is a very rapid response that occurs within a few minutes after cell-cell contact. Whether cytotoxicity is efficient and rapid in the context of CTL interaction with target cells derived from solid tumours is still elusive. We addressed this question by visualizing the dynamics of human CTL interaction with melanoma cells and their efficiency in eliciting cytotoxicity. Our results show that in spite of CTL activation to lethal hit delivery, killing of melanoma cells is not efficient. Time-lapse microscopy experiments demonstrate that individual CTL rapidly polarize their lytic machinery towards target cells, yet the apoptotic process in melanoma cells is defective or 'delayed' as compared to conventional targets. These results indicate that although CTL activation to lethal hit delivery can be viewed as a 'digital' phenomenon rapidly triggered by a few ligands, melanoma cell annihilation is an 'analogue' response requiring multiple hits and prolonged contact time.
Collapse
Affiliation(s)
- Iris Caramalho
- INSERM, Centre de Physiopathologie de Toulouse Purpan, Section Dynamique moléculaire des interactions lymphocytaires, Toulouse, France.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Proline, a unique proteogenic secondary amino acid, has its own metabolic system with special features. Recent findings defining the regulation of this system led us to propose that proline is a stress substrate in the microenvironment of inflammation and tumorigenesis. The criteria for proline as a stress substrate are: 1) the enzymes utilizing proline respond to stress signaling; 2) there is a large, mobilizable pool of proline; and 3) the metabolism of proline serves special stress functions. Studies show that the proline-utilizing enzyme, proline oxidase (POX)/proline dehydrogenase (PRODH), responds to genotoxic, inflammatory, and nutrient stress. Proline as substrate is stored as collagen in extracellular matrix, connective tissue, and bone and it is rapidly released from this reservoir by the sequential action of matrix metalloproteinases, peptidases, and prolidase. Special functions include the use of proline by POX/PRODH to generate superoxide radicals that initiate apoptosis by intrinsic and extrinsic pathways. Under conditions of nutrient stress, proline is an energy source. It provides carbons for the tricarboxylic acid cycle and also participates in the proline cycle. The latter, catalyzed by mitochondrial POX and cytosolic pyrroline-5-carboxylate reductase, shuttles reducing potential from the pentose phosphate pathway into mitochondria to generate ATP and oxidizing potential to activate the cytosolic pentose phosphate pathway.
Collapse
Affiliation(s)
- James M Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
31
|
Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 2008; 3:e2599. [PMID: 18612415 PMCID: PMC2440522 DOI: 10.1371/journal.pone.0002599] [Citation(s) in RCA: 506] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/30/2008] [Indexed: 01/02/2023] Open
Abstract
Background There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.
Collapse
Affiliation(s)
- Patrizia Pellegatti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
| | | | - Giovanna Bianchi
- Laboratory of Oncology, Giannina Gaslini Institute, Genoa, Italy
| | | | - Vito Pistoia
- Laboratory of Oncology, Giannina Gaslini Institute, Genoa, Italy
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
32
|
Ridolfi L, Petrini M, Fiammenghi L, Riccobon A, Ridolfi R. Human embryo immune escape mechanisms rediscovered by the tumor. Immunobiology 2008; 214:61-76. [PMID: 19159828 DOI: 10.1016/j.imbio.2008.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 01/05/2023]
Abstract
Towards the end of the 1990s, the two opposing theories on immunosurveillance and immunostimulation were extensively studied by researchers in an attempt to understand the complex mechanisms that regulate the relation between tumors and the host's immune system. Both theories probably have elements that would help us to comprehend how the host can induce anti-tumor clinical responses through stimulation of the immune system and which could also give us a deeper insight into the mechanisms of tumor immunosuppression. The model that most resembles the behavior of tumor cells in terms of growth, infiltration and suppression of the immune system of the environment in which they live is undoubtedly that of the embryonic cell. The fetus behaves like an allogenic transplant within the mother's body, using every means it has to escape from and defend itself against the mother's immune system. The majority of these mechanisms are the same as those found in tumor cells: antigenic loss, lack of expression of classic HLA-I molecules, production of immunosuppressive cytokines, induction of lack of expression of co-stimulatory molecules in antigen presenting cells, and induction of apoptosis in infiltrating lymphocytes, with activation of a type Th2 regulatory lymphocyte response. A careful and comparative study of key mechanisms capable of triggering tolerance or cytotoxicity in both embryonic and tumor cells could prove immensely valuable in designing new strategies for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Laura Ridolfi
- Immunotherapy and Somatic Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Via Maroncelli 40, Meldola 47014, Italy.
| | | | | | | | | |
Collapse
|