1
|
Du C, Guo X, Qiu X, Jiang W, Wang X, An H, Wang J, Luo Y, Du Q, Wang R, Cheng C, Guo Y, Teng H, Ran H, Wang Z, Li P, Zhou Z, Ren J. Self-Reinforced Bimetallic Mito-Jammer for Ca 2+ Overload-Mediated Cascade Mitochondrial Damage for Cancer Cuproptosis Sensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306031. [PMID: 38342617 PMCID: PMC11022715 DOI: 10.1002/advs.202306031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/21/2024] [Indexed: 02/13/2024]
Abstract
Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.
Collapse
Affiliation(s)
- Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xiaoling Qiu
- Department of Intensive Care Unitthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Hongjin An
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Jingxue Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Ruoyao Wang
- Department of Breast and Thyroid SurgerySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Yuan Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Hua Teng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Pan Li
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Zhiyi Zhou
- Department of General PracticeChongqing General HospitalChongqing400010P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| |
Collapse
|
2
|
Liao R, Dai S, Liu B, Deng W, Tan Y, Xie Q. Photocurrent Polarity Switchable Sensing of Hyaluronidase Activity by Regulating Electrostatic Interactions between Two Semiconductors. Anal Chem 2023; 95:16754-16760. [PMID: 37919241 DOI: 10.1021/acs.analchem.3c04004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Photocurrent polarity switchable photoelectrochemical (PEC) sensing has superior accuracy and anti-interference ability to conventional PEC sensing. The development of a novel strategy for photocurrent polarity switchable sensing is of great interest. Herein, a novel strategy for photocurrent polarity switchable sensing is reported by regulating electrostatic interactions between two semiconductor photoactive materials. Hyaluronic acid (HA)-modified CuO nanosheets show a negatively charged surface, which prevents the attachment of CuO nanosheets to negatively charged CdS nanodendrite-modified photoelectrodes because of the strong electrostatic repulsion. In the presence of hyaluronidase (HAase), the specific hydrolysis of HA on the surface of CuO by HAase can yield a positively charged surface, so CuO can be attached to a CdS-modified photoelectrode via electrostatic attraction, leading to photocurrent polarity switching. The photocurrent polarity switchable detection of HAase activity is achieved with an ultralow detection limit of 2 × 10-3 U mL-1 and a wide linear detection range between 0.01 and 100 U mL-1. This work provides a new and effective photocurrent polarity switching strategy for PEC sensing and a simple and efficient method for detecting HAase activity.
Collapse
Affiliation(s)
- Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Si Dai
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Biao Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
4
|
Duan QY, Zhu YX, Jia HR, Guo Y, Zhang X, Gu R, Li C, Wu FG. Platinum-Coordinated Dual-Responsive Nanogels for Universal Drug Delivery and Combination Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203260. [PMID: 36333101 DOI: 10.1002/smll.202203260] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Developing a universal nanoplatform for efficient delivery of various drugs to target sites is urgent for overcoming various biological barriers and realizing combinational cancer treatment. Nanogels, with the advantages of both hydrogels and nanoparticles, may hold potential for addressing the above issue. Here, a dual-responsive nanogel platform (HPC nanogel) is constructed using β-cyclodextrin-conjugated hyaluronic acid (HA-βCD), polyethyleneimine (PEI), and cisplatin. HA-βCD and PEI compose the skeleton of the nanogel, and cisplatin molecules provide the junctions inside the skeleton, thus affording a multiple interactions-based nanogel. Besides, HA endows the nanogel with hyaluronidase (HAase)-responsiveness, and cisplatin guarantees the glutathione (GSH)-responsive ability, which make the nanogel a dual-responsive platform that can degrade and release the loaded drugs when encountering HAase or GSH. Additionally, the HPC nanogel possesses excellent small-molecule drug and protein loading and intracellular delivery capabilities. Especially, for proteins, their intracellular delivery via nanogels is not hindered by serum proteins, and the enzymes delivered into cells still maintain their catalytic activities. Furthermore, the nanogel can codeliver different cargoes to achieve "cocktail" chemotherapeutic efficacy and realize combination cancer therapy. Overall, the HPC nanogel can serve as a multifunctional platform capable of delivering desired drugs to treat cancer or other diseases.
Collapse
Affiliation(s)
- Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
5
|
Liu B, Bian Y, Yuan M, Zhu Y, Liu S, Ding H, Gai S, Yang P, Cheng Z, Lin J. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy. Biomaterials 2022; 289:121746. [DOI: 10.1016/j.biomaterials.2022.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
|
6
|
Chen X, Huang Q, Ruan S, Luo F, You R, Feng S, Zhu L, Wu Y, Lu Y. Self-calibration SERS sensor with “core-satellite” structure for detection of hyaluronidase activity. Anal Chim Acta 2022; 1227:340302. [DOI: 10.1016/j.aca.2022.340302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/01/2022]
|
7
|
Jiao J, He J, Li M, Yang J, Yang H, Wang X, Yang S. A porphyrin-based metallacage for enhanced photodynamic therapy. NANOSCALE 2022; 14:6373-6383. [PMID: 35411893 DOI: 10.1039/d1nr08293k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we designed an effective nanoplatform to improve the photodynamic therapy (PDT) of porphyrins. Combining a porphyrin-based metallacage (PM), hyaluronidase (HAase) and DSPE-mPEG2000 together, the nanoparticle (PM@HAase-mPEG) showed enhanced PDT efficacy. The PM improved the stability of the porphyrin, avoided its aggregation and provided cavities to concentrate oxygen molecules, which was beneficial for enhancing PDT. HAase degraded HA to increase the intracellular accumulation of nanoparticles, normalized blood vessels and relieved hypoxia in tumors. PM@HAase-mPEG inhibited the growth of tumors in a 4T1 mouse model by the generated singlet oxygen with excellent PDT efficacy. This study resolved the problems of the instability of PSs, less cellular accumulation of drugs, and tumor hypoxia that limited the anti-tumor application of PDT.
Collapse
Affiliation(s)
- Jingjing Jiao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jing He
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Mengmeng Li
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Jingxia Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoqing Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Liu B, Bian Y, Liang S, Yuan M, Dong S, He F, Gai S, Yang P, Cheng Z, Lin J. One-Step Integration of Tumor Microenvironment-Responsive Calcium and Copper Peroxides Nanocomposite for Enhanced Chemodynamic/Ion-Interference Therapy. ACS NANO 2022; 16:617-630. [PMID: 34957819 DOI: 10.1021/acsnano.1c07893] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recently, various metal peroxide nanomaterials have drawn increasing attention as an efficient hydrogen peroxide (H2O2) self-supplying agent for enhanced tumor therapy. However, a single kind of metal peroxide is insufficient to achieve more effective antitumor performance. Here, a hyaluronic acid modified calcium and copper peroxides nanocomposite has been synthesized by a simple one-step strategy. After effective accumulation at the tumor site due to the enhanced permeability and retention (EPR) effect and specific recognition of hyaluronate acid with CD44 protein on the surface of tumor cells, plenty of Ca2+, Cu2+, and H2O2 can be simultaneously released in acid and hyaluronidase overexpressed tumor microenvironment (TME), generating abundant hydroxyl radical through enhanced Fenton-type reaction between Cu2+ and self-supplying H2O2 with the assistance of glutathione depletion. Overloaded Ca2+ can lead to mitochondria injury and thus enhance the oxidative stress in tumor cells. Moreover, an unbalanced calcium transport channel caused by oxidative stress can further promote tumor calcification and necrosis, which is generally defined as ion-interference therapy. As a result, the synergistic effect of Fenton-like reaction by Cu2+ and mitochondria dysfunction by Ca2+ in ROS generation is performed. Therefore, a TME-responsive calcium and copper peroxides nanocomposite based on one-step integration has been successfully established and exhibits a more satisfactory antitumor efficiency than any single kind of metal peroxide.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
9
|
Triple cascade nanocatalyst with laser-activatable O 2 supply and photothermal enhancement for effective catalytic therapy against hypoxic tumor. Biomaterials 2021; 280:121308. [PMID: 34896860 DOI: 10.1016/j.biomaterials.2021.121308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes have been combined with glucose oxidase (GOx) for dual-enzyme cascade catalytic therapy. However, their catalysis efficiency is restricted because of the hypoxia tumor microenvironment (TME). Although many methods are developed for O2 supply, the O2 leakage and consumption of H2O2 compromised their practical application. Herein, a biocompatible carbon nitride (C3N4)/nanozyme/GOx triple cascade nanocatalyst was designed with laser-activatable O2 self-supply via water splitting to relieve tumor hypoxia and thus improve the catalysis efficiency. To this end, polydopamine (PDA) nanosphere was prepared and attached with C3N4 nanosheet to improve water splitting efficiency and realize photothermal-enhanced catalysis, simultaneously. The PDA@C3N4 composite was then coated with MIL-100 (Fe), where GOx was loaded, to form C3N4/MIL-100/GOx triple cascade nanocatalyst. The triple cascade catalysis was realized with laser-activatable O2 supply from PDA@C3N4, H2O2 generation with GOx, and •OH production from peroxidase-like MIL-100 (Fe) for tumor therapy. Upon 808 nm irradiation, PDA, as a photothermal agent, realized photothermal therapy and enhanced the catalytic therapy. Thus, the synergy of laser-activatable O2 supply and photothermal enhancement in our triple cascade nanocatalyst improved the performance of catalytic therapy without drug resistance and toxicity to normal tissues.
Collapse
|
10
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
11
|
Wang Y, Gao W. A label-free and sensitive fluorescence assay for hyaluronidase activity through electrostatic-controlled quantum dots self-assembly. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211018973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A label-free fluorescence assay for hyaluronidase (HAase) activity based on self-assembly of quantum dots is developed. A cationic polymer (polycation) can induce aggregation of the negatively charged quantum dots through electrostatic interactions and the fluorescence of the quantum dots is quenched. When the polycation is mixed with hyaluronic acid (HA), intense binding of HA to the polycation makes the quantum dots free and recovery of the fluorescence of the quantum dots is observed. However, in the presence of HAase, HA is hydrolyzed into small fragments and the polycation induces reaggregation of the quantum dots. A simple and rapid fluorescence sensor with high sensitivity and selectivity for HAase activity detection is therefore successfully established with a detection limit of 0.01 U/mL. Moreover, we have demonstrated an assay that can be applied to detect HAase activity in a complex mixture sample including 1% human serum.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, People’s Republic of China
| | - Wenwen Gao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, People’s Republic of China
| |
Collapse
|
12
|
Liu B, Liang S, Wang Z, Sun Q, He F, Gai S, Yang P, Cheng Z, Lin J. A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101223. [PMID: 34145652 DOI: 10.1002/adma.202101223] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Recently, enzyme dynamic therapy (EDT) has drawn much attention as a new type of dynamic therapy. However, the selection of suitable nanocarriers to deliver chloroperoxidase (CPO) and enhancement of the level of hydrogen peroxide (H2 O2 ) in the tumor microenvironment (TME) are critical factors for improving the efficiency of EDT. In this study, a rapidly decomposing nanocomposite is designed using tetra-sulfide-bond-incorporating dendritic mesoporous organosilica (DMOS) as a nanocarrier, followed by loading CPO and sodium-hyaluronate-modified calcium peroxide nanoparticles (CaO2 -HA NPs). The nanocomposite can effectively generate singlet oxygen (1 O2 ) for tumor therapy without any exogenous stimulus via trimodal-enhanced EDT, including DMOS-induced depletion of glutathione (GSH), H2 O2 compensation from CaO2 -HA NPs in mildly acidic TME, and oxidative stress caused by overloading of Ca2+ . As tetra-sulfide bonds are sensitive to GSH, DMOS can generate hydrogen sulfide (H2 S) gas as a new kind of H2 S gas nanoreactor. Additionally, the overloading of Ca2+ can cause tumor calcification to accelerate in vivo tumor necrosis and promote computed tomography imaging efficacy. Therefore, a novel H2 S gas, EDT, and Ca2+ -interference combined therapy strategy is developed.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
13
|
Li ZX, Zhang JL, Wang J, Luo F, Qiu B, Guo LH, Lin ZY. A Novel Enzyme-Responded Controlled Release Electrochemical Biosensor for Hyaluronidase Activity Detection. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00158-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Wang W, Li D, Zhang Y, Zhang W, Ma P, Wang X, Song D, Sun Y. One-pot synthesis of hyaluronic acid-coated gold nanoparticles as SERS substrate for the determination of hyaluronidase activity. Mikrochim Acta 2020; 187:604. [PMID: 33037925 DOI: 10.1007/s00604-020-04566-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
A novel ultrasensitive surface-enhanced Raman spectroscopy (SERS)-based method was developed for the determination of hyaluronidase (HAase), which was based on hyaluronic acid-coated gold nanoparticles (HA-AuNPs) as a substrate, via a facile one-pot method. The detection mechanism is based on HAase which can hydrolyze HA on HA-AuNPs into hyaluronic acid oligomers, causing the originally uniformly dispersed HA-AuNPs to be disintegrated into many smaller HA-AuNPs. These oligomers in turn increase the surface shielding of AuNPs, resulting in high aggregation tendencies. As a result, the original SERS substrate was disassembled, leading to a weakening of the SERS signal at 1173 cm-1. Malachite green was also used as a Raman probe to detect the change of SERS peak intensity and to quantify HAase. Compared with other methods for the determination of HAase, this method is more convenient and efficient; its determination limit was 0.4 mU mL-1. The recoveries of HAase spiked into human urine samples ranged from 97.2 to 103.9%.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Dan Li
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yue Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Wei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
15
|
Tumor microenvironment targeting with dual stimuli-responsive nanoparticles based on small heat shock proteins for antitumor drug delivery. Acta Biomater 2020; 114:369-383. [PMID: 32688090 DOI: 10.1016/j.actbio.2020.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022]
Abstract
Tumour microenvironment (TME)-targeting nanoparticles (NPs) were developed based on Methanococcus jannaschii small heat shock proteins (Mj-sHSPs). Transactivator of transcription (TAT) were modified on the surface of Mj-sHSPs (T-HSPs) to enhance their cellular internalization ability (CIA), and a pH/enzyme dual sensitive PEG/N-(2-aminoethyl)piperidine-hyaluronic acid (PAHA) coat was combined with T-HSPs (PT-HSPs). PT-HSP NPs exhibited multi-layered morphologies and good stability against plasma protein adsorption. The release of paclitaxel (PTX) from PT-HSP NPs was negligible at physiological pH. Under conditions similar to the TME (acidic pH and overexpressed hyaluronidase (HAase)), the PAHA coat deshielded from PT-HSP NPs because of two factors: charge reversal and HAase degradation. Once the PAHA coat was shed, the size of the NPs decreased; its surface charge became positive; and remarkable drug release was triggered. Cellular experiments indicated that the CIA of PT-HSPs was shielded in the microenvironment of normal cells and recovered in that of tumour cells. In vivo imaging exhibited that the PT-HSP NPs had an impressive tumour targeting ability compared with the uncoated controls. The antitumor efficacy in vivo demonstrated that tumour-bearing mice treated with PTX-loaded PT-HSP NPs achieved better anti-tumour effects and safety than the Taxol formulation. In summary, this study provided Mj-sHSP NPs with coats that could be shed in response to the particular pH and enzymes in the TME, which improved the efficacy of tumour therapy. STATEMENT OF SIGNIFICANCE: This study reports on tumor microenvironment-targeting protein-based nanoparticles (PT-HSP NPs) for targeted tumor therapy. The NPs had a multilayered structure: a protein cage, a TAT cationic layer, and a dual-sensitive coat. PT-HSP NPs exhibited multilayered morphology, with good stability against plasma protein adsorption, and PTX release negligible at physiological pH. Under the tumor microenvironment (acidic pH and overexpressed HAase), PAHA coat deshielded from PT-HSP NPs due to two factors: the charge reversal induced by protonation of piperidines in PAHA and HAase degradation. The results of cellular uptake, cytotoxicity, in vivo imaging, and tumor inhibition experiments confirmed that PT-HSP NPs exhibited promising tumor targeting efficacy in vitro and in vivo.
Collapse
|
16
|
|
17
|
Wu J, Chen J, Feng Y, Zhang S, Lin L, Guo Z, Sun P, Xu C, Tian H, Chen X. An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. SCIENCE ADVANCES 2020; 6:eabc7828. [PMID: 32998884 PMCID: PMC7527226 DOI: 10.1126/sciadv.abc7828] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 05/05/2023]
Abstract
Immune checkpoint blockade therapy (ICT) has shown potential in the treatment of multiple tumors, but suffers poor response rate in clinic. We found that even combining ICT with chemotherapy, which was wildly used in clinical trials, failed to achieve satisfactory tumor inhibition in the B16F10 model. Thus, we further constructed a previously unexplored immune cocktail therapy and realized multiple boosting of the cancer-immunity cycle. Cocktail therapy consisted of two kinds of tumor microenvironment-responsive drug and gene delivery nanoparticles to achieve specific delivery of doxorubicin and codelivery of plasmids expressed small hairpin RNA of PD-L1 (pshPD-L1) and hyaluronidase (pSpam1) in the tumor area. Experimental evidences proved that any component in the cocktail therapy was indispensable, and the cocktail therapy exhibited excellent antitumor effects against different types of tumors. The cocktail therapy presented here offers a searching strategy for more synergistic units with ICT and is meaningful for developing more efficient antitumor immunotherapy.
Collapse
Affiliation(s)
- Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Pingjie Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
18
|
Luo J, Yang J, Li G, Yang S, Zhou Y, Li JB, Huang G, Hu Y, Zou S, Zeng Q, Yang R. Noncovalently Caged Firefly Luciferins Enable Amplifiable Bioluminescence Sensing of Hyaluronidase-1 Activity in Vivo. ACS Sens 2020; 5:1726-1733. [PMID: 32441104 DOI: 10.1021/acssensors.0c00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hyaluronidase 1 (Hyal-1) is an important enzyme involved in intracellular hyaluronic acid (HA) catabolism for performing various physiological functions, and its aberrant level is closely associated with many malignant diseases. Bioluminescence imaging is advantageous for monitoring Hyal-1 activity in vivo, but it remains challenging to design an available probe for differentiating Hyal-1 from other isoforms by a traditional strategy that covalently masks the firefly luciferase substrate. Herein, we, for the first time, present a noncovalently caging approach to construct a Hyal-1-specific bioluminogenic nanosensor by entrapping d-luciferin (d-Luc) inside the cholesterylamine-modified HA (CHA) nanoassembly to inhibit the bioluminescence production. When encountered with intracellular Hyal-1, CHA could be fully dissembled to liberate multiple copies of the loaded d-Luc, thereby emitting light by the luciferase-catalyzed bioluminescence reaction. Because of its cascade signal amplification feature, d-Luc@CHA displayed a remarkable "turn-on" response (248-fold) to 5 μg/mL Hyal-1 with a detection limit of 0.07 ng/mL. Importantly, bioluminescence imaging results validated that d-Luc@CHA could be competent for dynamically visualizing endogenous Hyal-1 changes in living cells and animals and possessed the capability of discriminating between normal and cancer cells, thus offering a promising toolbox to evaluate Hyal-1 roles in biological processes as well as to diagnose Hyal-1-related diseases.
Collapse
Affiliation(s)
- Jinqiu Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jinfeng Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Guangjie Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jun-Bin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ge Huang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Shuangfa Zou
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, P. R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| |
Collapse
|
19
|
Clinical Applications of Hyaluronidase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:255-277. [PMID: 31482503 DOI: 10.1007/978-981-13-7709-9_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyaluronidases are enzymes that degrade hyaluronic acid, which constitutes an essential part of the extracellular matrix. Initially discovered in bacteria, hyaluronidases are known to be widely distributed in nature and have been found in many classes including insects, snakes, fish and mammals. In the human, six different hyaluronidases, HYAL1-4, HYAL-P1 and PH-20, have been identified. PH-20 exerts the strongest biologic activity, is found in high concentrations in the testicles and can be localized on the head and the acrosome of human spermatozoa. Today, animal-derived bovine or ovine testicular hyaluronidases as well as synthetic hyaluronidases are clinically applied as adjuncts to increase the bioavailability of drugs, for the therapy of extravasations, or for the management of complications associated with the aesthetic injection of hyaluronic acid-based fillers. Further applications in the fields of surgery, aesthetic medicine, immunology, oncology, and many others can be expected for years to come. Here, we give an overview over the molecular and cellular mode of action of hyaluronidase and the hyaluronic acid metabolism, as well as over current and potential future clinical applications of hyaluronidase.
Collapse
|
20
|
Li Y, Yang S, Guo L, Xiao Y, Luo J, Li Y, Wong MS, Yang R. Differentiation of Intracellular Hyaluronidase Isoform by Degradable Nanoassembly Coupled with RNA-Binding Fluorescence Amplification. Anal Chem 2019; 91:6887-6893. [PMID: 30990018 DOI: 10.1021/acs.analchem.9b01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyaluronidase has two cruical isoforms, hyaluronidase-1 (Hyal-1) and hyaluronidase-2 (Hyal-2), which are essential for cellular hyaluronic acid (HA) catabolism to generate different-sized oligosaccharide fragments for performing different physiological functions. In particular, Hyal-1 is the major tumor-derived hyaluronidase. Thus, specific detection of one hyaluronidase isoform, especially Hyal-1, in live cells is of scientific significance but remains challenging. Herein, by use of differentiated tolerance capability of an amphiphilic HA-based nanoassembly to Hyal-1 and Hyal-2, we rationally design a Hyal-1 specific nanosensor, consisting of cholesterylamine-modified HA nanoassembly (CHA) and RNA-binding fluorophores (RBF). The RBF molecules were entrapped in CHA to switch off their fluorescence via aggregation caused quenching. However, CHA can be disassembled by Hyal-1 to release RBF, resulting in fluorescence activation. Moreover, the fluorescence of the released RBF is further enhanced by cytoplasm RNA. Owing to this cascade signal amplification, this nanosensor RBF@CHA displays a significant change of signal-to-background-noise ratio (120-fold) toward 16 μg/mL Hyal-1 in cellular lysates. In contrast, it is resistant to Hyal-2. By virtue of its selective and sensitive characteristics under a complicated matrix, RBF@CHA had been successfully applied for specifically visualizing Hyal-1 over Hyal-2 inside live cells for the first time, detecting a low level of intracellular Hyal-1 and distinguishing normal and cancer cells with different expressions of Hyal-1. This approach would be useful to better understand biological functions and related diseases of intracellular Hyal-1.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Sheng Yang
- School of Chemistry and Food Engineering , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Lei Guo
- Department of Chemistry and Institute of Molecular Functional Materials , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| | - Yue Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Jinqiu Luo
- School of Chemistry and Food Engineering , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| | - Yinhui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China
| | - Man Shing Wong
- Department of Chemistry and Institute of Molecular Functional Materials , Hong Kong Baptist University , Kowloon Tong , Hong Kong SAR , People's Republic of China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , People's Republic of China.,School of Chemistry and Food Engineering , Changsha University of Science and Technology , Changsha 410114 , People's Republic of China
| |
Collapse
|
21
|
Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis 2019; 13:e0007048. [PMID: 31002673 PMCID: PMC6493768 DOI: 10.1371/journal.pntd.0007048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/01/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background The hyaluronidase enzyme is generally known as a spreading factor in animal venoms. Although its activity has been demonstrated in several organisms, a deeper knowledge about hyaluronidase and the venom spreading process from the bite/sting site until its elimination from the victim's body is still in need. Herein, we further pursued the goal of demonstrating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom biodistribution. Methods and principal findings We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the venom distribution kinetics in mice. To understand the hyaluronidase’s role in the venom’s biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluronidase serum. Venom biodistribution was monitored by scintigraphic images of treated animals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid, and kidneys. In general, results revealed that hyaluronidase inhibition delays venom components distribution, when compared to the non-neutralized 99mTc-TsV control group. Scintigraphic images showed that the majority of the immunoneutralized venom is retained at the injection site, whereas non-treated venom is quickly biodistributed throughout the animal’s body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen, and thyroid, which gradually decreases over time. On the other hand, immunoneutralized 99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluronidase serum at zero, ten, and 30 min post venom injection showed that late inhibition of hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration time. Altogether, our data show that immunoneutralization of hyaluronidase prevents venom spreading from the injection site. Conclusions By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum, the results obtained in the present work show that hyaluronidase has a key role not only in the venom spreading from the inoculation point to the bloodstream, but also in venom biodistribution from the bloodstream to target organs. Our findings demonstrate that hyaluronidase is indeed an important spreading factor of TsV and its inhibition can be used as a novel first-aid strategy in envenoming. Hyaluronidases are known as the venom components responsible for disseminating toxins from the injection site to the victim’s organism. Therefore, understanding how the venom distribution occurs and the role of hyaluronidases in this process is crucial in the field of toxinology. In this study, we inhibited Tityus serrulatus venom (TsV) hyaluronidase’s action using specific anti-Ts-hyaluronidase antibodies. Labeling TsV with a radioactive compound enabled monitoring of its biodistribution in mice. Our results show that, upon hyaluronidase inhibition, TsV remains at the injection site for longer, and only a reduced amount of the venom reaches the bloodstream. Consequently, the venom arrives later at target organs like the heart, liver, lungs, spleen, and thyroid. Considering the possible application of hyaluronidase inhibition as a therapeutic resource in envenoming first-aid treatment, we performed the administration of hyaluronidase neutralizing antibodies at different times after TsV injection. We observed that TsV remains in the bloodstream and its arrival at tissues is delayed by 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration times. Our data show that hyaluronidase plays a crucial role in TsV spreading from the injection site to the bloodstream and from the bloodstream to the organs, thus suggesting that its inhibition can help to improve envenoming’s treatment.
Collapse
|
22
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
23
|
Ma L, Gao W, Han X, Qu F, Xia L, Kong RM. A label-free and fluorescence turn-on assay for sensitive detection of hyaluronidase based on hyaluronan-induced perylene self-assembly. NEW J CHEM 2019. [DOI: 10.1039/c8nj06343e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A label-free and fluorescence turn-on assay for sensitive detection of HAase based on HA–PDI nanoaggregates was reported.
Collapse
Affiliation(s)
- Lin Ma
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| | - Wenjuan Gao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| | - Xue Han
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| | - Lian Xia
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu Shandong 273165
- P. R. China
| |
Collapse
|
24
|
Hyaluronic acid-modified [19F]FDG-conjugated magnetite nanoparticles: in vitro bioaffinities and HPLC analyses in organs. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6282-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bull Math Biol 2018; 80:3184-3226. [DOI: 10.1007/s11538-018-0515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
|
26
|
pH-sensitive fluorescent hyaluronic acid nanogels for tumor-targeting and controlled delivery of doxorubicin and nitric oxide. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Moga MA, Dimienescu OG, Arvătescu CA, Ifteni P, Pleş L. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer. Molecules 2018; 23:E692. [PMID: 29562696 PMCID: PMC6017821 DOI: 10.3390/molecules23030692] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Cristian Andrei Arvătescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Petru Ifteni
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleş
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
28
|
Tityus serrulatus Scorpion Venom: In Vitro Tests and Their Correlation with In Vivo Lethal Dose Assay. Toxins (Basel) 2017; 9:toxins9120380. [PMID: 29168766 PMCID: PMC5744100 DOI: 10.3390/toxins9120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
Scorpion stings are the main cause of human envenomation in Brazil and, for the treatment of victims, the World Health Organization (WHO) recommends the use of antivenoms. The first step to achieve effective antivenom is to use a good quality venom pool and to evaluate it, with LD50 determination as the most accepted procedure. It is, however, time-consuming and requires advanced technical training. Further, there are significant ethical concerns regarding the number of animals required for testing. Hence, we investigated the correspondence between LD50 results, in vitro assays, and a strong correlation with proteolytic activity levels was observed, showing, remarkably, that proteases are potential toxicity markers for Tityus serrulatus venom. The comparison of reversed-phase chromatographic profiles also has a potential application in venoms’ quality control, as there were fewer neurotoxins detected in the venom with high LD50 value. These results were confirmed by mass spectrometry analysis. Therefore, these methods could precede the LD50 assay to evaluate the venom excellence by discriminating—and discarding—poor-quality batches, and, consequently, with a positive impact on the number of animals used. Notably, proposed assays are fast and inexpensive, being technically and economically feasible in Tityus serrulatus venom quality control to produce effective antivenoms.
Collapse
|
29
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron 2017; 96:300-307. [DOI: 10.1016/j.bios.2017.05.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/18/2022]
|
31
|
Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, Chen G. Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay. Anal Chem 2017; 89:8384-8390. [PMID: 28730807 DOI: 10.1021/acs.analchem.7b01705] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) emerge as excellent fluorescent nanomaterials, but the full exploitation and application of their exceptional properties in the development of fluorescence assay are still rare. In this work, cationic carbon dots (C-CDs) covered with plenty of positive charges on the surface were synthesized through a facile ultrasonic method. Negatively charged hyaluronic acid (HA) caused the aggregation of positively charged C-CDs and neutral red (NR) along its linear chain via electrostatic adsorption, leading to a remarkable Förster resonance energy transfer (FRET) from C-CDs to NR. However, the presence of hyaluronidase (HAase) resulted in the enzymolysis of HA, as well as the liberation of C-CDs and NR. The corresponding change of fluorescence color from red to green-yellow afforded a reliable ratiometric assay for HAase. Also the ratio of fluorescence intensity for C-CDs (I525) to that for NR (I630) was used for quantitative detection of HAase. The proposed sensing system was easily operated in aqueous media with a detection limit of 0.05 U/mL. This strategy provides a new approach for the wider application of some special CDs in detecting biomolecules.
Collapse
Affiliation(s)
- Weiqiang Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China
| | - Jiancong Ni
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China.,Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University , Zhangzhou, 363000, China
| | - Fang Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China.,College of Biological Science and Engineering, Fuzhou University , Fuzhou, Fujian 350116, China
| | - Wen Weng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry and Environment, Minnan Normal University , Zhangzhou, 363000, China
| | - Qiaohua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China
| | - Guonan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University , Fuzhou, Fujian 350116, China
| |
Collapse
|
32
|
Wang T, Yu X, Han L, Liu T, Liu Y, Zhang N. Tumor microenvironment dual-responsive core-shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. Int J Nanomedicine 2017; 12:4773-4788. [PMID: 28740384 PMCID: PMC5503489 DOI: 10.2147/ijn.s134378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As the tumor microenvironment (TME) develops, it is critical to take the alterations of pH value, reduction and various enzymes of the TME into consideration when constructing the desirable co-delivery systems. Herein, TME pH and enzyme dual-responsive core–shell nanoparticles were prepared for the efficient co-delivery of chemotherapy drug and plasmid DNA (pDNA). A novel pH-responsive, positively charged drug loading material, doxorubicin (DOX)-4-hydrazinobenzoic acid (HBA)-polyethyleneimine (PEI) conjugate (DOX-HBA-PEI, DHP), was synthesized to fabricate positively charged polyion complex inner core DHP/DNA nanoparticles (DDN). Hyaluronic acid (HA) was an enzyme-responsive shell which could protect the core and enhance the co-delivery efficiency through CD44-mediated endocytosis. The HA-shielded pH and enzyme dual-responsive nanoparticles (HDDN) were spherical with narrow distribution. The particle size of HDDN was 148.3±3.88 nm and the zeta potential was changed to negative (−18.1±2.03 mV), which led to decreased cytotoxicity. The cumulative release of DOX from DHP at pH 5.0 (66.4%) was higher than that at pH 7.4 (30.1%), which indicated the pH sensitivity of DHP. The transfection efficiency of HDDN in 10% serum was equal to that in the absence of serum, while the transfection of DDN was significantly decreased in the presence of 10% serum. Furthermore, cellular uptake studies and co-localization assay showed that HDDN were internalized effectively through CD44-mediated endocytosis in the tumor cells. The efficient co-delivery of DOX and pEGFP was confirmed by fluorescent image taken by laser confocal microscope. It can be concluded that TME dual-responsive HA-shielded core–shell nanoparticles could be considered as a promising platform for the co-delivery of chemotherapy drug and pDNA.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xiaoyue Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Leiqiang Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Tingxian Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Na Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
33
|
Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 2017; 114:33-42. [PMID: 28455187 PMCID: PMC5581991 DOI: 10.1016/j.addr.2017.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Despite the advent of immune checkpoint blockade for effective treatment of advanced malignancies, only a minority of patients responds to therapy and significant immune-related adverse events remain to be minimized. Innovations in engineered drug delivery systems and controlled release strategies can improve drug accumulation at and retention within target cells and tissues in order to enhance therapeutic efficacy while simultaneously reducing drug exposure in off target tissues to minimize the potential for treatment-associated toxicities. This review will outline basic principles of the immune physiology of checkpoint signaling, the existing knowledge of dose-efficacy relationships in checkpoint inhibition, the influence of administration route on treatment efficacy, as well as the resulting checkpoint inhibitor antibody biodistribution profiles amongst target versus systemic tissues. It will also highlight recent successes in the application of drug delivery principles and technologies towards augmenting checkpoint blockade therapy in cancer. Delivery strategies that have been developed for other therapeutic and immunotherapy applications with as-of-yet underexplored potential in checkpoint inhibition therapy will also be discussed.
Collapse
Affiliation(s)
- David M Francis
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
34
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
35
|
Cha J, Kang SG, Kim P. Strategies of Mesenchymal Invasion of Patient-derived Brain Tumors: Microenvironmental Adaptation. Sci Rep 2016; 6:24912. [PMID: 27108713 PMCID: PMC4842976 DOI: 10.1038/srep24912] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
The high mortality in glioblastoma multiforme (GBM) patients is primarily caused by extensive infiltration into adjacent tissue and subsequent rapid recurrence. There are no clear therapeutic strategies that target the infiltrative subpopulation of GBM mass. Using mesenchymal mode of invasion, the GBM is known to widely infiltrate by interacting with various unique components within brain microenvironment such as hyaluronic acid (HA)-rich matrix and white matter tracts. However, it is unclear how these GBM microenvironments influence the strategies of mesenchymal invasion. We hypothesize that GBM has different strategies to facilitate such invasion through adaptation to their local microenvironment. Using our in vitro biomimetic microenvironment platform for three-dimensional GBM tumorspheres (TSs), we found that the strategies of GBM invasion were predominantly regulated by the HA-rich ECM microenvironment, showing marked phenotypic changes in the presence of HA, which were mainly mediated by HA synthase (HAS). Interestingly, after inhibition of the HAS gene, GBM switched their invasion strategies to a focal adhesion (FA)-mediated invasion. These results demonstrate that the microenvironmental adaptation allowed a flexible invasion strategy for GBM. Using our model, we suggest a new inhibitory pathway for targeting infiltrative GBM and propose an importance of multi-target therapy for GBM, which underwent microenvironmental adaptation.
Collapse
Affiliation(s)
- Junghwa Cha
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
36
|
Huang Y, Song C, Li H, Zhang R, Jiang R, Liu X, Zhang G, Fan Q, Wang L, Huang W. Cationic Conjugated Polymer/Hyaluronan-Doxorubicin Complex for Sensitive Fluorescence Detection of Hyaluronidase and Tumor-Targeting Drug Delivery and Imaging. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21529-21537. [PMID: 26331442 DOI: 10.1021/acsami.5b06799] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyaluronidase (HAase) is becoming a new type of tumor marker since it has been demonstrated to be overexpressed in various kinds of cancer cells. In this study, we described a novel fluorescence method for sensitive, rapid, and convenient HAase detection and tumor-targeting drug delivery and imaging, using a probe prepared by electrostatic assembly of a cationic conjugated polymer (CCP) and anionic hyaluronan (HA) conjugated with the anticancer drug doxorubicin (Dox). The CCP we used was poly{[9,9-bis(6'-(N,N,N-diethylmethylammonium)hexyl)-2,7-fluorenylene ethynylene]-alt-co-[2,5-bis(3'-(N,N,N-diethylmethylammonium)-1'-oxapropyl)-1,4-phenylene]} tetraiodide (PFEP). HA is a natural mucopolysaccharide that can be hydrolyzed by HAase into fragments with low molecular weights. In the PFEP/HA-Dox complex, the fluorescence of PFEP was efficiently quenched due to electron transfer from PFEP to Dox. After the PFEP/HA-Dox complex was exposed to HAase or was taken up by cancer cells through the specific binding between HA and CD44 receptor, HA was degraded by HAase to release the Dox, leading to the recovery of PFEP fluorescence to the "turn-on" state. Moreover, the degree of fluorescence recovery was quantitatively correlated with the concentrations of HAase. Compared with many previously reported methods, our work did not require laborious multiple modifications of HA that may affect the activity of HAase. This point, combined with the excellent optoelectronic property of conjugated polymer, endowed this method with high sensitivity (detection limit: 0.075 U/mL), high specificity, and rapid response, making it applicable for reliable and routine detection of HAase. This fluorescent probe was successfully utilized to detect HAase levels in human urine samples; furthermore, it can also be employed as a multifunctional system by realizing tumor-targeting drug delivery and cell imaging simultaneously. The development of this fluorescence method showed promising potential for early tumor diagnosis and therapy based on HAase detection.
Collapse
Affiliation(s)
- Yanqin Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Caixia Song
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Huichang Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Rui Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University , Nanjing 211189, China
| | - Rongcui Jiang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Xingfen Liu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Guangwei Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications , Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
37
|
Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. Int J Cell Biol 2015; 2015:563818. [PMID: 26448754 PMCID: PMC4581549 DOI: 10.1155/2015/563818] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/05/2015] [Indexed: 01/22/2023] Open
Abstract
Hyaluronan signaling properties are unique among other biologically active molecules, that they are apparently not influenced by postsynthetic molecular modification, but by hyaluronan fragment size. This review summarizes the current knowledge about the generation of hyaluronan fragments of different size and size-dependent differences in hyaluronan signaling as well as their downstream biological effects.
Collapse
|
38
|
Yamaguchi Y, Koketsu M. Isolation and analysis of polysaccharide showing high hyaluronidase inhibitory activity in Nostochopsis lobatus MAC0804NAN. J Biosci Bioeng 2015; 121:345-8. [PMID: 26296532 DOI: 10.1016/j.jbiosc.2015.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022]
Abstract
An active substance with high hyaluronidase inhibitory effect was isolated from the edible cyanobacterium Nostochopsis lobatus MAC0804NAN strain and characterized. The active component in the hot water extract was purified by anion exchange and gel filtration chromatography and was found to be a polysaccharide. The IC(50) against hyaluronidase of the purified polysaccharide was 7.18 μg/ml whose inhibitory activity is 14.5 times stronger than that of disodium cromoglycate (DSCG), an anti-allergy medication. The carbohydrate composition which was analyzed by GC-MS and NMR was found to be composed mainly of glucose, glucuronic acid, fucose, 2-O-methylfucose, mannose, galactose and xylose.
Collapse
Affiliation(s)
- Yuji Yamaguchi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; MAC Gifu Research Institute, MicroAlgae Corporation, 4-15 Akebono, Gifu 500-8148, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
39
|
Grass GD, Dai L, Qin Z, Parsons C, Toole BP. CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res 2015; 123:351-73. [PMID: 25081536 DOI: 10.1016/b978-0-12-800092-2.00013-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Major determinants that influence negative outcome in cancer patients are the abilities of cancer cells to resist current therapies and to invade surrounding host tissue, consequently leading to local and metastatic dissemination. Hyaluronan (HA), a prominent constituent of the tumor microenvironment, not only provides structural support but also interacts with cell surface receptors, especially CD44, that influence cooperative signaling pathways leading to chemoresistance and invasiveness. CD147 (emmprin; basigin) is a member of the Ig superfamily that has also been strongly implicated in chemoresistance and invasiveness. CD147 both regulates HA synthesis and interacts with the HA receptors, CD44, and LYVE-1. Increased CD147 expression induces formation of multiprotein complexes containing CD44 (or LYVE-1) as well as members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or monocarboxylate transporter families, which become assembled in specialized lipid raft domains along with CD147 itself. In each case, multivalent HA-receptor interactions are essential for formation or stabilization of the lipid raft complexes and for downstream signaling pathways or transporter activities that are driven by these complexes. We conclude that cooperativity between HA, HA receptors, and CD147 may be a major driver of the interconnected pathways of invasiveness and chemoresistance widely critical to malignancy.
Collapse
Affiliation(s)
- G Daniel Grass
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Lu Dai
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhiqiang Qin
- Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Chris Parsons
- Department of Medicine, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Microbiology, Immunology & Parasitology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Bryan P Toole
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
40
|
Abstract
Hyaluronic acid or hyaluronan (HA) is perhaps one of the most uncomplicated large polymers that regulates several normal physiological processes and, at the same time, contributes to the manifestation of a variety of chronic and acute diseases, including cancer. Members of the HA signaling pathway (HA synthases, HA receptors, and HYAL-1 hyaluronidase) have been experimentally shown to promote tumor growth, metastasis, and angiogenesis, and hence each of them is a potential target for cancer therapy. Furthermore, as these members are also overexpressed in a variety of carcinomas, targeting of the HA family is clinically relevant. A variety of targeted approaches have been developed to target various HA family members, including small-molecule inhibitors and antibody and vaccine therapies. These treatment approaches inhibit HA-mediated intracellular signaling that promotes tumor cell proliferation, motility, and invasion, as well as induction of endothelial cell functions. Being nontoxic, nonimmunogenic, and versatile for modifications, HA has been used in nanoparticle preparations for the targeted delivery of chemotherapy drugs and other anticancer compounds to tumor cells through interaction with cell-surface HA receptors. This review discusses basic and clinical translational aspects of targeting each HA family member and respective treatment approaches that have been described in the literature.
Collapse
|
41
|
El-Tantawy NL. Helminthes and insects: maladies or therapies. Parasitol Res 2014; 114:359-77. [PMID: 25547076 DOI: 10.1007/s00436-014-4260-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
Abstract
By definition, parasites cause harm to their hosts. But, considerable evidence from ancient traditional medicine has supported the theory of using parasites and their products in treating many diseases. Maggots have been used successfully to treat chronic, long-standing, infected wounds which failed to respond to conventional treatment by many beneficial effects on the wound including debridement, disinfection, and healing enhancement. Maggots are also applied in forensic medicine to estimate time between the death and discovery of a corpse and in entomotoxicology involving the potential use of insects as alternative samples for detecting drugs and toxins in death investigations. Leeches are segmented invertebrates, famous by their blood-feeding habits and used in phlebotomy to treat various ailments since ancient times. Leech therapy is experiencing resurgence nowadays in health care principally in plastic and reconstructive surgery. Earthworms provide a source of medicinally useful products with potential antimicrobial, antiviral, and anticancer properties. Lumbrokinases are a group of fibrinolytic enzymes isolated and purified from earthworms capable of degrading plasminogen-rich and plasminogen-free fibrin and so can be used to treat various conditions associated with thrombotic diseases. Helminth infection has been proved to have therapeutic effects in both animal and human clinical trials with promising evidence in treating many allergic diseases and can block the induction of or reduce the severity of some autoimmune disorders as Crohn's disease or ulcerative colitis. What is more, venomous arthropods such as scorpions, bees, wasps, spiders, ants, centipedes, snail, beetles, and caterpillars. The venoms and toxins from these arthropods provide a promising source of natural bioactive compounds which can be employed in the development of new drugs to treat diseases as cancer. The possibility of using these active molecules in biotechnological processes can make these venoms and toxins a valuable and promising source of natural bioactive compounds. The therapeutic use of helminthes and insects will be of great value in biomedicine and further studies on insect toxins will contribute extensively to the development of Biomedical Sciences.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt,
| |
Collapse
|
42
|
Siponen M, Kullaa A, Nieminen P, Salo T, Pasonen-Seppänen S. Altered expression of hyaluronan, HAS1-2, and HYAL1-2 in oral lichen planus. J Oral Pathol Med 2014; 44:401-9. [PMID: 25421996 DOI: 10.1111/jop.12294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is an immune-mediated mucosal disease of unclear etiology and of unresolved pathogenesis. Hyaluronan (HA) is an extracellular matrix glycosaminoglycan involved in inflammation and tumor progression. However, its presence in OLP has not been reported. We therefore aimed to study the immunohistochemical expression of HA, its receptor CD44, hyaluronan synthases (HAS1-3), and hyaluronidases (HYAL1-2) in OLP. METHODS The presence of HA, CD44, HAS1-3, and HYAL1-2 was studied by immunohistochemical methods in 55 OLP and 23 control oral mucosal specimens (CTR). The localization, intensity, and differences of the epithelial expression between OLP and CTRs were analyzed. RESULTS HA and CD44 were found on cell membranes in the epithelial basal and intermediate layers in CTR and OLP specimens. The HA staining intensity was stronger in the basal layer of the epithelium in OLP than in CTRs (P < 0.001). HAS1 (P = 0.001) and HAS2 (P < 0.001) showed stronger staining in the basal and weaker staining in the superficial (P < 0.001) epithelial layers in OLP than in CTRs. The immunostaining of HAS3 was low in both OLP and CTRs. Positive HYAL1 and HYAL2 staining were mainly found in the basal and intermediate epithelial layers, and their intensities were significantly increased in OLP, except HYAL 2 in the intermediate epithelial layer. CONCLUSIONS HA, HAS1-2, and HYAL1-2 have altered expression in OLP compared to CTRs and may therefore have a role in OLP pathogenesis.
Collapse
Affiliation(s)
- Maria Siponen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Arja Kullaa
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Educational Dental Clinic, Health Center of Oulu, Oulu, Finland
| | - Pentti Nieminen
- Medical Informatics and Statistics Research Group, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Institute of Dentistry, University of Helsinki, Helsinki, Finland.,Graduate Program in Estomatopatologia, Piracicaba Dental School, University of Campinas, Piracicaba-São Paulo, Brazil
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Pucca MB, Amorim FG, Cerni FA, Bordon KDCF, Cardoso IA, Anjolette FAP, Arantes EC. Influence of post-starvation extraction time and prey-specific diet in Tityus serrulatus scorpion venom composition and hyaluronidase activity. Toxicon 2014; 90:326-36. [PMID: 25199494 DOI: 10.1016/j.toxicon.2014.08.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023]
Abstract
The role of diet in venom composition has been a topic of intense research interest. This work presents evidence that the variation in the venom composition from the scorpion Tityus serrulatus (Ts) is closely associated with post-starvation extraction time and prey-specific diet. The scorpions were fed with cockroach, cricket, peanut beetle or giant Tenebrio. The venoms demonstrated a pronounced difference in the total protein and toxins composition, which was evaluated by electrophoresis, reversed-phase chromatography, densitometry, hyaluronidase activity and N-terminal sequencing. Indeed, many toxins and peptides, such as Ts1, Ts2, Ts4, Ts5, Ts6, Ts15, Ts19 frag. II, hypotensins 1 and 3, PAPE peptide and peptide 9797 (first described in Ts venom), were all identified in different proportions in the analyzed Ts venoms. This study is pioneer on assessing the influence of the starvation time and the prey diet on hyaluronidase activity as well as to describe a modification of Tricine-gel-electrophoresis to evaluate this enzyme activity. Altogether, this study reveal a large contribution of the extraction time and diet on Ts venom variability as well as present a background to recommend the cockroach diet to obtain higher protein content and the cricket diet to obtain higher hyaluronidase specific activity.
Collapse
Affiliation(s)
- Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Iara Aimê Cardoso
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernando Antonio Pino Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
44
|
Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 2014; 65:1056-74. [PMID: 24399703 DOI: 10.1016/s1734-1140(13)71465-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Indexed: 12/17/2022]
Abstract
The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.
Collapse
Affiliation(s)
- Michał S Karbownik
- Department of Pharmacology, Medical University of Lodz, Żeligowskiego 7/9, PL 90-752 Łódź, Poland. ;
| | | |
Collapse
|
45
|
Kato Y, Ninomiya M, Yamaguchi Y, Koketsu M. Synthesis of triazole- and tetrazole-xyloside analogues as potent hyaluronidase inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Xie H, Zeng F, Wu S. Ratiometric Fluorescent Biosensor for Hyaluronidase with Hyaluronan As Both Nanoparticle Scaffold and Substrate for Enzymatic Reaction. Biomacromolecules 2014; 15:3383-9. [DOI: 10.1021/bm500890d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huafei Xie
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
47
|
Caspersen MB, Roubroeks JP, Qun L, Shan H, Fogh J, RuiDong Z, Tømmeraas K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohydr Polym 2014; 107:25-30. [DOI: 10.1016/j.carbpol.2014.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/01/2023]
|
48
|
Xia X, Liu R, Li Y, Xue S, Liu Q, Jiang X, Zhang W, Ding K. Cloning and molecular characterization of scorpion Buthus martensi venom hyaluronidases: a novel full-length and diversiform noncoding isoforms. Gene 2014; 547:338-45. [PMID: 24973698 DOI: 10.1016/j.gene.2014.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/06/2014] [Accepted: 06/23/2014] [Indexed: 11/16/2022]
Abstract
Hyaluronidase is a common component of scorpion venom and has been considered as "spreading factor" that promotes a fast penetration of the venom in the anaphylactic reaction. In the current study, a novel full-length of hyaluronidase BmHYI and three noncoding isoforms of BmHYII, BmHYIII and BmHYIV were cloned by using a combined strategy based on peptide sequencing and Rapid Amplification of cDNA Ends (RACE). BmHYI has 410 amino acid residues containing the catalytic, positional and five potential N-glycosylation sites. The deduced protein sequence of BmHYI shares significant identity with venom hyaluronidases from bees and snakes. The phylogenetic analysis showed early divergence and independent evolution of BmHYI from other hyaluronidases. An extraordinarily high level of sequence similarity was detected among four sequences. But, BmHYII, BmHYIII and BmHYIV were short of stop-codon in the open reading frame and poly(A) signal in the 3' end.
Collapse
Affiliation(s)
- Xichao Xia
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China.
| | - Rongzhi Liu
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Yi Li
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Shipeng Xue
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Qingchun Liu
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Xiao Jiang
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Wenjuan Zhang
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| | - Ke Ding
- Basal Medical College of Nanyang Medical University, Nanyang, 473041 Henan Province, China
| |
Collapse
|
49
|
Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon 2014; 83:91-120. [DOI: 10.1016/j.toxicon.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
50
|
Horta CCR, Magalhães BDF, Oliveira-Mendes BBR, do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis 2014; 8:e2693. [PMID: 24551256 PMCID: PMC3923731 DOI: 10.1371/journal.pntd.0002693] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized. Methods and principal findings We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues. Conclusions Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process. In Brazil, accidents with scorpion stings have been a serious public health problem, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. Therefore, efforts have been made to understand the characteristics of the molecules present in scorpion venoms. These venoms are complex mixtures, in which neurotoxins are the main toxic components. Ts venom also contains enzymes, such as hyaluronidase, that have not been well characterized. In this study, we described for the first time two sequences of Ts hyaluronidase isoforms: TsHyal-1 and TsHyal-2. We purified native hyaluronidase from Ts venom and produced anti-hyaluronidase serum in rabbits. This serum neutralized hyaluronidase activity present in Ts venom. In vivo neutralization assays showed that anti-hyaluronidase serum inhibited and delayed mouse death after injection of a lethal dose (50% lethal dose, LD50) of Ts venom. This work confirms the influence of hyaluronidase in Ts venom lethality and paves the way for the development of new strategies for scorpionism therapy.
Collapse
Affiliation(s)
- Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara de Freitas Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra Duarte
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|