1
|
Liu X, Gao X, Yang Y, Yang D, Guo Q, Li L, Liu S, Cong W, Lu S, Hou L, Wang B, Li N. EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis. Apoptosis 2024; 29:1161-1184. [PMID: 38743191 DOI: 10.1007/s10495-024-01967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Signal Transduction/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Animals
- Cell Line, Tumor
- Mice
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Male
- Xenograft Model Antitumor Assays
- Mice, Inbred BALB C
- Proto-Oncogene Proteins c-mdm2/metabolism
- Proto-Oncogene Proteins c-mdm2/genetics
- Female
Collapse
Affiliation(s)
- Xiaokun Liu
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Xiao Gao
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Yang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Qingming Guo
- Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Lianhui Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Shunlong Liu
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanxin Cong
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Sen Lu
- Department of Medical Laboratory, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lin Hou
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Bin Wang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Ning Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Ye B, Chen P, Lin C, Zhang C, Li L. Study on the material basis and action mechanisms of sophora davidii (Franch.) skeels flower extract in the treatment of non-small cell lung cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116815. [PMID: 37400006 DOI: 10.1016/j.jep.2023.116815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora davidii (Franch.) Skeels Flower (SDF) is a characteristic folk medicine in Yunnan and Guizhou, which can be used to prevent the occurrence of tumors. The extract of SDF (SDFE) is confirmed to be antitumor by pre-experiment. However, effective components and anticancer mechanisms of SDFE are still unclear. AIM OF THE STUDY The purpose of this study was to explore the material basis and action mechanisms of SDFE in the treatment of non-small cell carcinoma (NSCLC). MATERIALS AND METHODS UHPLC-Q-Exactive-Orbitrap-MS/MS was used to identify the chemical components of SDFE. The network pharmacology was applied to screen out the main active components, core genes and related signaling pathways of SDFE in treatment of NSCLC. Molecular docking was used to predict the affinity of major components and core targets. The database was applied to predict the mRNA and protein expression levels of core targets in NSCLC. Finally, the experiments in vitro were performed by CCK-8, flow cytometry and western blot (WB). RESULTS In this study, 98 chemical components were identified by UHPLC-Q-Exactive- Orbitrap-MS/MS. 5 main active components (namely quercetin, genistein, luteolin, kaempferol, isorhamnetin), 10 core genes (namely TP53, AKT1, STAT3, SRC, MAPK3, EGFR, JUN, EP300, TNF, PIK3R1) and 20 pathways were screened out through network pharmacology. The 5 active ingredients were molecularly docked with the core genes, and most the LibDockScore values were higher than 100. The data collected from the database indicated that TP53, AKT1 and PIK3R1 were closely related to the occurrence of NSCLC. The results of experiment in vitro showed that SDFE promoted NSCLC cells apoptosis by down-regulating the phosphorylation of PI3K, AKT and MDM2, up-regulating the phosphorylation of P53, inhibiting the expression of Bcl-2 and up-regulating the expression of Bax. CONCLUSION The combination of network pharmacology, molecular docking, database validation, and in vitro experimental validation effectively demonstrates that SDFE can promote cell apoptosis by regulating PI3K-AKT/MDM2-P53 signaling pathway, so as to treat NSCLC.
Collapse
Affiliation(s)
- Baibai Ye
- Gannan Medical University, Ganzhou, 341000, China.
| | - Ping Chen
- Gannan Medical University, Ganzhou, 341000, China.
| | - Cheng Lin
- Gannan Medical University, Ganzhou, 341000, China.
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441100, China.
| | - Linfu Li
- Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
3
|
Dong Y, Xu W, Qi D, Qu H, Jin Q, Sun M, Wang X, Quan C. CLDN6 inhibits colorectal cancer proliferation dependent on restraining p53 ubiquitination via ZO-1/PTEN axis. Cell Signal 2023; 112:110930. [PMID: 37852424 DOI: 10.1016/j.cellsig.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world. Abnormal proliferation is a chief characteristic of cancer and is the initiation of CRC progression. As an important component of tight junctions, CLDN6 regulates the proliferation of multiple tumors. Our previous study showed that CLDN6 was low expressed in CRC, and CLDN6 overexpression inhibited CRC proliferation. However, the specific mechanism of how CLDN6 works remains unclear. This research aimed to reveal the relationship between CLDN6 and clinical features, as well as the molecular mechanism by which CLDN6 inhibited CRC proliferation. We found that low expression of CLDN6 was associated with pathological grade and prognosis of CRC patients, and confirmed that CLDN6 inhibited CRC proliferation dependent on p53. Mechanically, we elucidated that CLDN6 regulated ubiquitination to enhance p53 stability and nuclear import by PTEN/AKT/MDM2 pathway. Through the PDZ-binding motif (PBM), CLDN6 bound to ZO-1 to interact with PTEN, and regulate AKT/MDM2 pathway. Collectively, our data enriched the theoretical basis for CLDN6 as a potential biomarker for diagnosis, therapy and prognosis of CRC.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China.
| |
Collapse
|
4
|
Niechoda A, Milewska K, Roslan J, Ejsmont K, Holownia A. Cell cycle-specific phosphorylation of p53 protein in A549 cells exposed to cisplatin and standardized air pollutants. Front Physiol 2023; 14:1238150. [PMID: 37645562 PMCID: PMC10460999 DOI: 10.3389/fphys.2023.1238150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Exposure to particulate matter is associated with DNA damage and the risk of lung cancer. Protein p53 is activated by multi-site phosphorylation in the early stages of DNA damage and affects cell outcome. Our study aimed to assess the effect of (100 µg/mL-1/24 h) standardized air pollutants: carbon black (CB), urban dust (UD), and nanoparticle carbon black (NPCB) on cell cycle, DNA damage and 53 phosphorylation at Ser 9, Ser 20, Ser 46, and Ser 392 in proliferating and quiescent A549 cells and in cells that survived cisplatin (CisPT) exposure. Phosphorylated p53 was quantified in cell subpopulations by flow cytometry using specific fluorochrome-tagged monoclonal antibodies and analysis of bivariate fluorescence distribution scatterplots. CisPT, UD and NPCB increased site-specific p53 phosphorylation producing unique patterns. NPCB activated all sites irrespectively on the cell cycle, while the UD was more selective. p53 Ser 9-P and p53 Ser 20-P positively correlated with the numbers of CisPT-treated cells at G0/G1, and NPCB and NPCB + CisPT produced a similar effect. A positive correlation and integrated response were also found between Ser 20-P and Ser 392-P in resting A549 cells treated with NPCB and CisPT but not UD. Interdependence between the expression of p53 phosphorylated at Ser 20, and Ser 392 and cell cycle arrest show that posttranslational alterations are related to functional activation. Our data suggest that p53 protein phosphorylation in response to specific DNA damage is driven by multiple independent and integrated pathways to produce functional activation critical in cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Ramesh V, Suwanmajo T, Krishnan J. Network regulation meets substrate modification chemistry. J R Soc Interface 2023; 20:20220510. [PMID: 36722169 PMCID: PMC9890324 DOI: 10.1098/rsif.2022.0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Biochemical networks are at the heart of cellular information processing. These networks contain distinct facets: (i) processing of information from the environment via cascades/pathways along with network regulation and (ii) modification of substrates in different ways, to confer protein functionality, stability and processing. While many studies focus on these factors individually, how they interact and the consequences for cellular systems behaviour are poorly understood. We develop a systems framework for this purpose by examining the interplay of network regulation (canonical feedback and feed-forward circuits) and multisite modification, as an exemplar of substrate modification. Using computational, analytical and semi-analytical approaches, we reveal distinct and unexpected ways in which the substrate modification and network levels combine and the emergent behaviour arising therefrom. This has important consequences for dissecting the behaviour of specific signalling networks, tracing the origins of systems behaviour, inference of networks from data, robustness/evolvability and multi-level engineering of biomolecular networks. Overall, we repeatedly demonstrate how focusing on only one level (say network regulation) can lead to profoundly misleading conclusions about all these aspects, and reveal a number of important consequences for experimental/theoretical/data-driven interrogations of cellular signalling systems.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thapanar Suwanmajo
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
6
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
7
|
Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci U S A 2021; 118:2003193118. [PMID: 33468664 DOI: 10.1073/pnas.2003193118] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have shown previously that phosphorylation of Mdm2 by ATM and c-Abl regulates Mdm2-p53 signaling and alters the effects of DNA damage in mice, including bone marrow failure and tumorigenesis induced by ionizing radiation. Here, we examine the physiological effects of Mdm2 phosphorylation by Akt, another DNA damage effector kinase. Surprisingly, Akt phosphorylation of Mdm2 does not alter the p53-mediated effects of ionizing radiation in cells or mice but regulates the p53 response to oxidative stress. Akt phosphorylation of Mdm2 serine residue 183 increases nuclear Mdm2 stability, decreases p53 levels, and prevents senescence in primary cells exposed to reactive oxidative species (ROS). Using multiple mouse models of ROS-induced cancer, we show that Mdm2 phosphorylation by Akt reduces senescence to promote KrasG12D-driven lung cancers and carcinogen-induced papilloma and hepatocellular carcinomas. Collectively, we document a unique physiologic role for Akt-Mdm2-p53 signaling in regulating cell growth and tumorigenesis in response to oxidative stress.
Collapse
|
8
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
9
|
Dobbelstein M, Levine AJ. Mdm2: Open questions. Cancer Sci 2020; 111:2203-2211. [PMID: 32335977 PMCID: PMC7385351 DOI: 10.1111/cas.14433] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
The Mdm2 oncoprotein and its association with p53 were discovered 30 years ago, and a cornucopia of activities and regulatory pathways have been associated with it. In this review, we will raise questions about Mdm2 and its cousin Mdm4 that we consider worth pursuing in future research, reaching from molecular structures and intracellular activities all the way to development, evolution, and cancer therapy. We anticipate that such research will not only close a few gaps in our knowledge but could add new dimensions to our current view. This compilation of questions contributes to the preparation for the 10th Mdm2 Workshop in Tokyo.
Collapse
Affiliation(s)
- Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
10
|
Li W, Peng X, Lang J, Xu C. Targeting Mouse Double Minute 2: Current Concepts in DNA Damage Repair and Therapeutic Approaches in Cancer. Front Pharmacol 2020; 11:631. [PMID: 32477121 PMCID: PMC7232544 DOI: 10.3389/fphar.2020.00631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/21/2020] [Indexed: 01/14/2023] Open
Abstract
Defects in DNA damage repair may cause genome instability and cancer development. The tumor suppressor gene p53 regulates cell cycle arrest to allow time for DNA repair. The oncoprotein mouse double minute 2 (MDM2) promotes cell survival, proliferation, invasion, and therapeutic resistance in many types of cancer. The major role of MDM2 is to inhibit p53 activity and promote its degradation. In this review, we describe the influence of MDM2 on genomic instability, the role of MDM2 on releasing p53 and binding DNA repair proteins to inhibit repair, and the regulation network of MDM2 including its transcriptional modifications, protein stability, and localization following DNA damage in genome integrity maintenance and in MDM2-p53 axis control. We also discuss p53-dependent and p53 independent oncogenic function of MDM2 and the outcomes of clinical trials that have been used with clinical inhibitors targeting p53-MDM2 to treat certain cancers.
Collapse
Affiliation(s)
- Wen Li
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinhao Peng
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Cancer Clinical Research Center & Integrative Cancer Center, Sichuan Cancer Hospital & Institute Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Lam B, Roudier E. Considering the Role of Murine Double Minute 2 in the Cardiovascular System? Front Cell Dev Biol 2020; 7:320. [PMID: 31921839 PMCID: PMC6916148 DOI: 10.3389/fcell.2019.00320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
The E3 ubiquitin ligase Murine double minute 2 (MDM2) is the main negative regulator of the tumor protein p53 (TP53). Extensive studies over more than two decades have confirmed MDM2 oncogenic role through mechanisms both TP53-dependent and TP53-independent oncogenic function. These studies have contributed to designate MDM2 as a therapeutic target of choice for cancer treatment and the number of patents for MDM2 antagonists has increased immensely over the last years. However, the question of the physiological functions of MDM2 has not been fully resolved yet, particularly when expressed and regulated physiologically in healthy tissue. Cardiovascular complications are almost an inescapable side-effect of anti-cancer therapies. While several MDM2 antagonists are entering phase I, II and even III of clinical trials, this review proposes to bring awareness on the physiological role of MDM2 in the cardiovascular system.
Collapse
Affiliation(s)
- Brian Lam
- Angiogenesis Research Group, School of Kinesiology and Health Sciences, Muscle Health Research Center, Faculty of Health, York University, Toronto, ON, Canada
| | - Emilie Roudier
- Angiogenesis Research Group, School of Kinesiology and Health Sciences, Muscle Health Research Center, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
12
|
Kannan S, Partridge AW, Lane DP, Verma CS. The Dual Interactions of p53 with MDM2 and p300: Implications for the Design of MDM2 Inhibitors. Int J Mol Sci 2019; 20:ijms20235996. [PMID: 31795143 PMCID: PMC6928821 DOI: 10.3390/ijms20235996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins that limit the activity of the tumour suppressor protein p53 are increasingly being targeted for inhibition in a variety of cancers. In addition to the development of small molecules, there has been interest in developing constrained (stapled) peptide inhibitors. A stapled peptide ALRN_6924 that activates p53 by preventing its interaction with its negative regulator Mdm2 has entered clinical trials. This stapled peptide mimics the interaction of p53 with Mdm2. The chances that this peptide could bind to other proteins that may also interact with the Mdm2-binding region of p53 are high; one such protein is the CREB binding protein (CBP)/p300. It has been established that phosphorylated p53 is released from Mdm2 and binds to p300, orchestrating the transcriptional program. We investigate whether molecules such as ALRN_6924 would bind to p300 and, to do so, we used molecular simulations to explore the binding of ATSP_7041, which is an analogue of ALRN_6924. Our study shows that ATSP_7041 preferentially binds to Mdm2 over p300; however, upon phosphorylation, it appears to have a higher affinity for p300. This could result in attenuation of the amount of free p300 available for interacting with p53, and hence reduce its transcriptional efficacy. Our study highlights the importance of assessing off-target effects of peptide inhibitors, particularly guided by the understanding of the networks of protein-protein interactions (PPIs) that are being targeted.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Correspondence: (S.K.); (C.S.V.); Tel.: +65-6478-8353 (S.K.); +65-6478-8273 (C.S.V.); Fax: +65-6478-9048 (S.K.); +65-6478-9048(C.S.V.)
| | - Anthony W. Partridge
- MSD International, Translation Medicine Research Centre, Singapore 138665, Singapore;
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648, Singapore;
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Correspondence: (S.K.); (C.S.V.); Tel.: +65-6478-8353 (S.K.); +65-6478-8273 (C.S.V.); Fax: +65-6478-9048 (S.K.); +65-6478-9048(C.S.V.)
| |
Collapse
|
13
|
Therapeutic Implications of p53 Status on Cancer Cell Fate Following Exposure to Ionizing Radiation and the DNA-PK Inhibitor M3814. Mol Cancer Res 2019; 17:2457-2468. [DOI: 10.1158/1541-7786.mcr-19-0362] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
|
14
|
HOXA2 activity regulation by cytoplasmic relocation, protein stabilization and post-translational modification. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194404. [PMID: 31323436 DOI: 10.1016/j.bbagrm.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022]
Abstract
HOX proteins are homeodomain transcription factors critically involved in patterning animal embryos and controlling organogenesis. While the functions of HOX proteins and the processes under their control begin to be well documented, the modalities of HOX protein activity regulation remain poorly understood. Here we show that HOXA2 interacts with PPP1CB, a catalytic subunit of the Ser/Thr PP1 phosphatase complex. This interaction co-localizes in the cytoplasm with a previously described HOXA2 interactor, KPC2, which belongs to the KPC E3 ubiquitin ligase complex. We provide evidence that HOXA2, PPP1CB and KPC2 define a molecularly and functionally interacting complex. Collectively, our experiments support that PPP1CB and KPC2 together inhibit the activity of HOXA2 by activating its nuclear export, but favored HOXA2 de-ubiquitination and stabilization thereby establishing a store of HOXA2 in the cytoplasm.
Collapse
|
15
|
Conway JRW, Herrmann D, Evans TRJ, Morton JP, Timpson P. Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut 2019; 68:742-758. [PMID: 30396902 PMCID: PMC6580874 DOI: 10.1136/gutjnl-2018-316822] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway.
Collapse
Affiliation(s)
- James RW Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - TR Jeffry Evans
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- Cancer Department, Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, New South Wales, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
17
|
Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, Bhattacharyya A, Zhao X. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med 2017; 8:336ra61. [PMID: 27122614 DOI: 10.1126/scitranslmed.aad9370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome.
Collapse
Affiliation(s)
- Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ismat Bhuiyan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian E Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica L Miller
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
18
|
Chan JV, Ping Koh DX, Liu Y, Joseph TL, Lane DP, Verma CS, Tan YS. Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53. Oncotarget 2017; 8:112825-112840. [PMID: 29348869 PMCID: PMC5762554 DOI: 10.18632/oncotarget.22829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Murine double minute 4 protein (MDMX) is crucial for the regulation of the tumor suppressor protein p53. Phosphorylation of the N-terminal domain of MDMX is thought to affect its binding with the transactivation domain of p53, thus playing a role in p53 regulation. In this study, the effects of MDMX phosphorylation on the binding of p53 were investigated using molecular dynamics simulations. It is shown that in addition to the previously proposed mechanism in which phosphorylated Y99 of MDMX inhibits p53 binding through steric clash with P27 of p53, the N-terminal lid of MDMX also appears to play an important role in regulating the phosphorylation-dependent interactions between MDMX and p53. In the proposed mechanism, phosphorylated Y99 aids in pulling the lid into the p53-binding pocket, thus inhibiting the binding between MDMX and p53. Rebinding of p53 appears to be facilitated by the subsequent phosphorylation of Y55, which draws the lid away from the binding pocket by electrostatic attraction of the lid's positively charged N-terminus. The ability to target these mechanisms for the proper regulation of p53 could have important implications for understanding cancer biology and for drug development.
Collapse
Affiliation(s)
- Jane Vin Chan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Dawn Xin Ping Koh
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Yun Liu
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Thomas L Joseph
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - David P Lane
- p53 Laboratory, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| |
Collapse
|
19
|
Bai DP, Zhang XF, Zhang GL, Huang YF, Gurunathan S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine 2017; 12:6521-6535. [PMID: 28919752 PMCID: PMC5592910 DOI: 10.2147/ijn.s140071] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NPs) are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3). Methods ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Results Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H2AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy. Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H2AX, p53, and LC3 and downregulation of Bcl-2. Conclusion The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades.
Collapse
Affiliation(s)
- Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Guo-Liang Zhang
- Dong-E-E-Jiao Co., Ltd., Shandong, China.,National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong, China
| | - Yi-Fan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Deben C, Op de Beeck K, Van den Bossche J, Jacobs J, Lardon F, Wouters A, Peeters M, Van Camp G, Rolfo C, Deschoolmeester V, Pauwels P. MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients. J Cancer 2017; 8:2154-2162. [PMID: 28819417 PMCID: PMC5560132 DOI: 10.7150/jca.19254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/26/2017] [Indexed: 01/03/2023] Open
Abstract
Objectives: Two functional polymorphisms in the MDM2 promoter region, SNP309T>G and SNP285G>C, have been shown to impact MDM2 expression and cancer risk. Currently available data on the prognostic value of MDM2 SNP309 in non-small cell lung cancer (NSCLC) is contradictory and unavailable for SNP285. The goal of this study was to clarify the role of these MDM2 SNPs in the outcome of NSCLC patients. Materials and Methods: In this study we genotyped SNP309 and SNP285 in 98 NSCLC adenocarcinoma patients and determined MDM2 mRNA and protein levels. In addition, we assessed the prognostic value of these common SNPs on overall and progression free survival, taking into account the TP53 status of the tumor. Results and Conclusion: We found that the SNP285C allele, but not the SNP309G allele, was significantly associated with increased MDM2 mRNA expression levels (p = 0.025). However, we did not observe an association with MDM2 protein levels for SNP285. The SNP309G allele was significantly associated with the presence of wild type TP53 (p = 0.047) and showed a strong trend towards increased MDM2 protein levels (p = 0.068). In addition, patients harboring the SNP309G allele showed a worse overall survival, but only in the presence of wild type TP53. The SNP285C allele was significantly associated with an early age of diagnosis and metastasis. Additionally, the SNP285C allele acted as an independent predictor for worse progression free survival (HR = 3.97; 95% CI = 1.51 - 10.42; p = 0.005). Our data showed that both SNP309 (in the presence of wild type TP53) and SNP285 act as negative prognostic markers for NSCLC patients, implicating a prominent role for these variants in the outcome of these patients.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Ken Op de Beeck
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Jolien Van den Bossche
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Guy Van Camp
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Christian Rolfo
- Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium.,Phase-1 Early Clinical Trials Unit, Antwerp University Hospital Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium
| |
Collapse
|
21
|
Huang WR, Chi PI, Chiu HC, Hsu JL, Nielsen BL, Liao TL, Liu HJ. Avian reovirus p17 and σA act cooperatively to downregulate Akt by suppressing mTORC2 and CDK2/cyclin A2 and upregulating proteasome PSMB6. Sci Rep 2017; 7:5226. [PMID: 28701787 PMCID: PMC5507987 DOI: 10.1038/s41598-017-05510-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Although we have shown that avian reovirus (ARV) p17-mediated inhibition of Akt leads to induction of autophagy, the precise mechanisms remain largely unknown. This study has identified a specific mechanism by which ARV coordinately regulates the degradation of ribosomal proteins by p17-mediated activation of E3 ligase MDM2 that targets ribosomal proteins and by σA-mediated upregulation of proteasome PSMB6. In addition to downregulating ribosomal proteins, p17 reduces mTORC2 assembly and disrupts mTORC2-robosome association, both of which inactivate mTORC2 leading to inhibition of Akt phosphorylation at S473. Furthermore, we discovered that p17 binds to and inhibits the CDK2/cyclin A2 complex, further inhibiting phosphorylation of Akt S473. The negative effect of p17 on mTORC2 assembly and Akt phosphorylation at S473 is reversed in cells treated with insulin or overexpression of CDK2. The carboxyl terminus of p17 is necessary for interaction with CDK2 and for induction of autophagy. Furthermore, p17-mediated upregulation of LC3-II could be partially reversed by overexpression of CDK2. The present study provides mechanistic insights into cooperation between p17 and σA proteins of ARV to negatively regulate Akt by downregulating complexes of mTORC2 and CDK2/cyclin A2 and upregulating PSMB6, which together induces autophagy and cell cycle arrest and benefits virus replication.
Collapse
Affiliation(s)
- Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jue-Liang Hsu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Tsai-Ling Liao
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
22
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
23
|
Aiken J, Birot O. The Vascular Endothelial Growth Factor-A phosphorylates Murine Double Minute-2 on its Serine 166 via the Extracellular Signal-Regulated Kinase 1/2 and p90 Ribosomal S6 Kinase in primary human endothelial cells. Biochem Biophys Res Commun 2016; 478:1548-54. [PMID: 27591897 DOI: 10.1016/j.bbrc.2016.08.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Murine Double Minute-2 (Mdm2) has been identified as an essential regulator of skeletal muscle angiogenesis and the pro-angiogenic activity of endothelial cells. We have recently demonstrated that the pro-angiogenic Vascular Endothelial Growth Factor-A (VEGF-A) is a potent upstream regulator of Mdm2 phosphorylation on its Serine 166 (p-Ser166-Mdm2), a protein modification leading to an increase in endothelial cell migration. Here, we investigated the kinase signaling pathways that could be responsible for mediating VEGF-A-dependent Mdm2 phosphorylation. Incubation of primary human dermal microvascular endothelial cells with recombinant VEGF-A for 15 min led to increased phosphorylation levels of VEGF-receptor-2, Mdm2, Akt, Extracellular Signal-Regulated Kinase 1/2 (ERK1/2), and p90 Ribosomal S6 Kinase (p90RSK) proteins. In addition to being linked to VEGF-A signaling, Akt, ERK1/2 and p90RSK have been shown to potentially lead to Mdm2 phosphorylation. We therefore next analyzed which of these kinases could be responsible for VEGF-A-dependent Mdm2 phosphorylation on Serine 166 by using kinase-specific pharmacological inhibitors. Inhibition of ERK1/2 phosphorylation by UO126 entirely abrogated the response of p-Ser166-Mdm2 to VEGF-A treatment, while Akt phosphorylation inhibition by wortmannin led to further elevations in p-Ser166-Mdm2. p90RSK has been identified as a potential candidate downstream of ERK1/2 that could induce Mdm2 Ser166 phosphorylation. Two independent p90RSK inhibitors, FMK and BI-D1870, each led to an entire loss of p-Ser166-Mdm2 responsiveness to VEGF-A. Taken together, our results demonstrate that VEGF-A driven Mdm2 phosphorylation on Ser166 is dependent on the ERK1/2/p90RSK signaling pathway in primary human endothelial cells, furthering our understanding of the complex relationship between Mdm2 and VEGF-A in a physiological context.
Collapse
Affiliation(s)
- Julian Aiken
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
24
|
Allosteric Interactions by p53 mRNA Govern HDM2 E3 Ubiquitin Ligase Specificity under Different Conditions. Mol Cell Biol 2016; 36:2195-205. [PMID: 27215386 DOI: 10.1128/mcb.00113-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
HDM2 and HDMX are key negative regulatory factors of the p53 tumor suppressor under normal conditions by promoting its degradation or preventing its trans activity, respectively. It has more recently been shown that both proteins can also act as positive regulators of p53 after DNA damage. This involves phosphorylation by ATM on serine residues HDM2(S395) and HDMX(S403), promoting their respective interaction with the p53 mRNA. However, the underlying molecular mechanisms of how these phosphorylation events switch HDM2 and HDMX from negative to positive regulators of p53 is not known. Our results show that these phosphorylation events reside within intrinsically disordered domains and change the conformation of the proteins. The modifications promote the exposition of N-terminal interfaces that support the formation of a new HDMX-HDM2 heterodimer independent of the C-terminal RING-RING interaction. The E3 ubiquitin ligase activity of this complex toward p53 is prevented by the p53 mRNA ligand but, interestingly, does not affect the capacity to ubiquitinate HDMX and HDM2. These results show how ATM-mediated modifications of HDMX and HDM2 switch HDM2 E3 ubiquitin ligase activity away from p53 but toward HDMX and itself and illustrate how the substrate specificity of HDM2 E3 ligase activity is regulated.
Collapse
|
25
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
26
|
Esfandiari A, Hawthorne TA, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther 2016; 15:379-91. [PMID: 26832796 DOI: 10.1158/1535-7163.mct-15-0651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/23/2015] [Indexed: 01/10/2023]
Abstract
Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumors. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies, and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor, GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor-induced p53(Ser15) phosphorylation, p53-mediated global transcriptional activity, and apoptosis. The investigated cell line pairs were relatively insensitive to single-agent GSK2830371. However, a non-growth-inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harboring PPM1D-activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor-induced cell death endpoints that were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53(Ser15), known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388-induced p53 transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53(Ser15) and its potential use as a biomarker for response to this combination regimen.
Collapse
Affiliation(s)
- Arman Esfandiari
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas A Hawthorne
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom. Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Lunec
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
27
|
Kimura M, Mizukami S, Watanabe Y, Hasegawa-Baba Y, Onda N, Yoshida T, Shibutani M. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens. J Toxicol Sci 2016; 41:91-104. [PMID: 26763396 DOI: 10.2131/jts.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | |
Collapse
|
28
|
Deben C, Deschoolmeester V, Lardon F, Rolfo C, Pauwels P. TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol 2015; 99:63-73. [PMID: 26689115 DOI: 10.1016/j.critrevonc.2015.11.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
The p53 pathway has been extensively studied for its role in carcinogenesis. Disruption of the pathway occurs in more than half of all cancers, often leading to a worse prognosis for the patient. In recent years several compounds have been successfully developed to target and restore the p53 pathway, either by blocking the MDM2-p53 interaction, restoring wild type conformation of mutant p53, or exploiting the presence of mutant p53 by blocking DNA damage repair pathways. In this review the known data on the role of p53 on prognosis and response to commonly used chemotherapeutics in non-small cell lung cancer is summarized. The focus is on the presence of genetic alterations in the TP53 or MDM2 gene, p53's main negative regulator. In addition, promising therapeutic options will be discussed in relation to specific alterations in the p53 pathway.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Christian Rolfo
- Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium; Phase-1 Early Clinical Trials Unit, Antwerp University Hospital, Antwerp, Belgium.
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
29
|
Aiken J, Roudier E, Ciccone J, Drouin G, Stromberg A, Vojnovic J, Olfert IM, Haas T, Gustafsson T, Grenier G, Birot O. Phosphorylation of murine double minute‐2 on Ser
166
is downstream of VEGF‐A in exercised skeletal muscle and regulates primary endothelial cell migration and
FoxO
gene expression. FASEB J 2015; 30:1120-34. [DOI: 10.1096/fj.15-276964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Julian Aiken
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| | - Emilie Roudier
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| | - Joseph Ciccone
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| | - Genevieve Drouin
- Department of SurgeryUniversite de SherbrookeSherbrookeQuébecCanada
| | - Anna Stromberg
- Department of Laboratory MedicineDivision of Clinical PhysiologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Jovana Vojnovic
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| | - I. Mark Olfert
- Center for Cardiovascular and Respiratory Sciences and Division of Exercise PhysiologyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Tara Haas
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| | - Thomas Gustafsson
- Department of Laboratory MedicineDivision of Clinical PhysiologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | | | - Olivier Birot
- Faculty of HealthSchool of Kinesiology and Health ScienceAngiogenesis Research GroupYork UniversityTorontoOntarioCanada
| |
Collapse
|
30
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
31
|
Rosso M, Polotskaia A, Bargonetti J. Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget 2015; 6:34573-91. [PMID: 26416444 PMCID: PMC4741474 DOI: 10.18632/oncotarget.5312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
A single nucleotide polymorphism (T to G) in the mdm2 P2 promoter, mdm2 SNP309, leads to MDM2 overexpression promoting chemotherapy resistant cancers. Two mdm2 G/G SNP309 cancer cell lines, MANCA and A875, have compromised wild-type p53 that co-localizes with MDM2 on chromatin. We hypothesized that MDM2 in these cells inhibited transcription initiation at the p53 target genes p21 and puma. Surprisingly, following etoposide treatment transcription initiation occurred at the compromised target genes in MANCA and A875 cells similar to the T/T ML-1 cell line. In all cell lines tested there was equally robust recruitment of total and initiated RNA polymerase II (Pol II). We found that knockdown of MDM2 in G/G cells moderately increased expression of subsets of p53 target genes without increasing p53 stability. Importantly, etoposide and actinomycin D treatments increased histone H3K36 trimethylation in T/T, but not G/G cells, suggesting a G/G correlated inhibition of transcription elongation. We therefore tested a chemotherapeutic agent (8-amino-adenosine) that induces p53-independent cell death for higher clinically relevant cytotoxicity. We demonstrated that T/T and G/G mdm2 SNP309 cells were equally sensitive to 8-amino-adenosine induced cell death. In conclusion for cancer cells overexpressing MDM2, targeting MDM2 may be less effective than inducing p53-independent cell death.
Collapse
Affiliation(s)
- Melissa Rosso
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| | - Alla Polotskaia
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| |
Collapse
|
32
|
Verreault M, Schmitt C, Goldwirt L, Pelton K, Haidar S, Levasseur C, Guehennec J, Knoff D, Labussière M, Marie Y, Ligon AH, Mokhtari K, Hoang-Xuan K, Sanson M, Alexander BM, Wen PY, Delattre JY, Ligon KL, Idbaih A. Preclinical Efficacy of the MDM2 Inhibitor RG7112 in MDM2-Amplified and TP53 Wild-type Glioblastomas. Clin Cancer Res 2015; 22:1185-96. [PMID: 26482041 DOI: 10.1158/1078-0432.ccr-15-1015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/27/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. EXPERIMENTAL DESIGN We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCL), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. RESULTS MDM2-amplified PDCLs were 44 times more sensitive than TP53-mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μmol/L vs. 21.9 μmol/L). MDM4-amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μmol/L), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μmol/L). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. CONCLUSIONS These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2-amplified models suggests that additional markers of response to MDM2 inhibitors must be identified.
Collapse
Affiliation(s)
- Maite Verreault
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. Institut du Cerveau et de la Moëlle épinière, Centre de neuroimagerie de recherche, CHU Pitié-Salpêtrière, 47, Bd de l'Hôpital, Paris, France
| | - Charlotte Schmitt
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Lauriane Goldwirt
- Laboratoire de Pharmacologie Biologique, Hôpital Saint-Louis, 1, avenue Claude-Vellefaux, Paris, France
| | - Kristine Pelton
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Boston Children's Hospital, Boston, Massachusetts
| | - Samer Haidar
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Boston Children's Hospital, Boston, Massachusetts
| | - Camille Levasseur
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Jeremy Guehennec
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - David Knoff
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Boston Children's Hospital, Boston, Massachusetts
| | - Marianne Labussière
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Yannick Marie
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Azra H Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts.
| | - Karima Mokhtari
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital universitaire Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neuropathologie R Escourolle, 47, Bd de l'Hôpital, Paris, France
| | - Khê Hoang-Xuan
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital universitaire Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neuropathologie R Escourolle, 47, Bd de l'Hôpital, Paris, France
| | - Marc Sanson
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital universitaire Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neuropathologie R Escourolle, 47, Bd de l'Hôpital, Paris, France. OncoNeuroThèque biobank, Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Yves Delattre
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital universitaire Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neuropathologie R Escourolle, 47, Bd de l'Hôpital, Paris, France. OncoNeuroThèque biobank, Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France
| | - Keith L Ligon
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Pathology, Harvard Medical School, Boston, Massachusetts. Boston Children's Hospital, Boston, Massachusetts
| | - Ahmed Idbaih
- Inserm, U 1127, Paris, France. CNRS, UMR 7225, Paris, France. Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France. Institut du Cerveau et de la Moëlle épinière, ICM, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital universitaire Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, 47, Bd de l'Hôpital, Paris, France. AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neuropathologie R Escourolle, 47, Bd de l'Hôpital, Paris, France.
| |
Collapse
|
33
|
Ravid O, Shoshani O, Sela M, Weinstock A, Sadan TW, Gur E, Zipori D, Shani N. Relative genomic stability of adipose tissue derived mesenchymal stem cells: analysis of ploidy, H19 long non-coding RNA and p53 activity. Stem Cell Res Ther 2014; 5:139. [PMID: 25519840 PMCID: PMC4446078 DOI: 10.1186/scrt529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/12/2014] [Indexed: 12/24/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are multipotent and have been derived from various tissues. Although MSCs share many basic features, they often display subtle tissue specific differences. We previously demonstrated that bone marrow (BM) MSCs frequently become polyploid in culture. This tendency was mediated by a reduction in the expression of H19 long non-coding RNA during the transition from a diploid to a polyploid state. Methods MSCs were derived from both BM and adipose tissue of mice and expanded under normoxic and hypoxic culture conditions. Cells were stained by propidium iodide and their ploidy was evaluated by FACS. Gene expression of independent MSC preparations was compared by quantitative real time PCR and protein expression levels by Western blot analysis. p53 silencing in MSCs was performed by a specific small hairpin RNA (shRNA). Results We set to examine whether genomic instability is common to MSCs originating from different tissues. It is demonstrated that adipose derived MSCs (ASCs) tend to remain diploid during culture while a vast majority of BM MSCs become polyploid. The diploid phenotype of ASCs is correlated with reduced H19 expression compared to BM MSCs. Under hypoxic conditions (3% oxygen) both ASCs and BM MSCs demonstrate increased RNA expression of H19 and Vascular endothelial growth factor A. Importantly, ASC gene expression is significantly less variable than BM MSCs under both oxygen conditions, indicating to their superior homogeneity. Gene expression analysis revealed that p53 target genes, often induced by DNA damage, are up-regulated in ASCs under basal conditions. However, p53 activation following treatment with DNA damaging agents was strongly elevated in BM MSCs compared to ASCs. We found that p53 is involved in maintaining the stable diploid state of ASCs as p53 shRNA induced ploidy changes in ASCs but not in BM MSCs. Conclusions The increased genomic stability of murine ASCs together with their lower H19 expression and relative homogeneity suggest a tissue specific higher stability of ASCs compared to BM MSCs, possibly due to higher activity of p53. The tissue specific differences between MSCs from a different tissue source may have important consequences on the use of various MSCs both in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/scrt529) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. JOURNAL OF INFLAMMATION-LONDON 2014; 11:23. [PMID: 25152696 PMCID: PMC4142057 DOI: 10.1186/1476-9255-11-23] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism.
Collapse
Affiliation(s)
- Srabani Pal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, India
| | - Asif Ali
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | | | - Subhash C Mandal
- Pharmacognosy and Phytotherapy laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
35
|
Eischen CM, Lozano G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat 2014; 35:728-37. [PMID: 24488925 DOI: 10.1002/humu.22524] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
The potent transcriptional activity of p53 (Trp53, TP53) must be kept in check for normal cell growth and survival. Tumors, which drastically deviate from these parameters, have evolved multiple mechanisms to inactivate TP53, the most prevalent of which is the emergence of TP53 missense mutations, some of which have gain-of-function activities. Another important mechanism by which tumors bypass TP53 functions is via increased levels of two TP53 inhibitors, MDM2, and MDM4. Studies in humans and in mice reveal the complexity of TP53 regulation and the exquisite sensitivity of this pathway to small changes in regulation. Here, we summarize the factors that impinge on TP53 activity and thus cell death/arrest or tumor development.
Collapse
Affiliation(s)
- Christine M Eischen
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee
| | | |
Collapse
|
36
|
Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:137-49. [DOI: 10.1016/j.bbamcr.2013.05.022] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/16/2013] [Accepted: 05/23/2013] [Indexed: 01/09/2023]
|
37
|
Levav-Cohen Y, Goldberg Z, Tan KH, Alsheich-Bartok O, Zuckerman V, Haupt S, Haupt Y. The p53-Mdm2 loop: a critical juncture of stress response. Subcell Biochem 2014; 85:161-86. [PMID: 25201194 DOI: 10.1007/978-94-017-9211-0_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.
Collapse
Affiliation(s)
- Yaara Levav-Cohen
- Lautenberg Center, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Huart AS, Saxty B, Merritt A, Nekulova M, Lewis S, Huang Y, Vojtesek B, Kettleborough C, Hupp TR. A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg Med Chem Lett 2013; 23:5578-85. [PMID: 24007918 DOI: 10.1016/j.bmcl.2013.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form 'p53-activating' signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.
Collapse
Affiliation(s)
- Anne-Sophie Huart
- p53 Signal Transduction Group, University of Edinburgh Cancer Research Centre in the Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fåhraeus R, Olivares-Illana V. MDM2's social network. Oncogene 2013; 33:4365-76. [PMID: 24096477 DOI: 10.1038/onc.2013.410] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 12/22/2022]
Abstract
MDM2 is considered a hub protein due to its capacity to interact with a large number of different partners of which p53 is most well described. MDM2 is an E3 ubiquitin ligase, and many, but not all, of its interactions relate directly to this activity, such as substrates, adaptors or bridges, promoters, inhibitors or complementary factors. Some interactions serve regulatory functions that in response to cellular stresses control the localisation and functions of MDM2 including protein kinases, ribosomal proteins and proteases. Moreover, interactions with nucleotides serve other functions such as mRNA to regulate protein synthesis and DNA to control transcription. To perform such a pleiotropic panorama of different functions, MDM2 is subjected to a multitude of post-translational modifications and is expressed in different isoforms. The large and diverse interactome is made possible due to the plasticity of MDM2 and in this review we have listed the MDM2 interactions until now and we will discuss how this multifaceted protein can interact with such a variety of substrates to provide a key intermediary role in different signalling pathways.
Collapse
Affiliation(s)
- R Fåhraeus
- Cibles Therapeutiques, Equipe Labellisée Ligue Contre le Cancer, INSERM Unité 940, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris, France
| | - V Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava, Zona Universitaria, San Luis Potosí, México
| |
Collapse
|
40
|
RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013; 2013:271347. [PMID: 24078903 PMCID: PMC3775453 DOI: 10.1155/2013/271347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/01/2013] [Indexed: 11/24/2022] Open
Abstract
A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor
initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated
and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as
p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53
is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic
response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a
variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between
p53 and RUNX family in response to DNA damage.
Collapse
|
41
|
Abstract
The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.
Collapse
Affiliation(s)
- Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | | | | |
Collapse
|
42
|
Sanchez M, Picard N, Sauvé K, Tremblay A. Coordinate regulation of estrogen receptor β degradation by Mdm2 and CREB-binding protein in response to growth signals. Oncogene 2013; 32:117-126. [PMID: 22349818 DOI: 10.1038/onc.2012.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
The biological actions of estrogen are mediated via estrogen receptors ERα and ERβ. Yet, other cellular signaling events that also impact ER functions have an important role in breast carcinogenesis. Here, we show that activation of ErbB2/ErbB3 tyrosine kinase receptors with growth factor heregulin-β prompts ERβ degradation by the 26S proteasome, a mechanism that requires the coactivator cAMP response element-binding (CREB)-binding protein (CBP). We found that CBP promotes ERβ ubiquitination and degradation through enhancement of the PI3-K/Akt pathway by heregulin-β, an effect potentiated by a negatively charged hinge region of ERβ. Activated Akt triggered the recruitment of E3 ubiquitin ligase Mdm2 to ERβ, which was further stabilized by CBP, resulting in ERβ poly-ubiquitination. Mutation of CBP Thr-1872 or Mdm2 Ser-186/188 Akt sites resulted in a dissociation of the ERβ-CBP-Mdm2 complex and reduced ERβ turnover. We found that the decrease in ERβ induced by heregulin-β was associated with reduced target gene promoter occupancy and enhanced proliferation of breast cancer cells. However, knockdown of Mdm2 restored endogenous ERβ levels resulting in reduction of breast cancer cell growth. These studies identify a tripartite Akt-regulated phosphorylation mechanism that functions to hamper normal ERβ activity and turnover through the concerted actions of CBP and Mdm2 in response to growth factor signaling pathways in breast cancer cells.
Collapse
Affiliation(s)
- M Sanchez
- Ste-Justine Hospital Research Center, Department of Biochemistry, University of Montreal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
43
|
Lau R, Niu MY, Pratt MAC. cIAP2 represses IKKα/β-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle 2012; 11:4009-19. [PMID: 23032264 DOI: 10.4161/cc.22223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular inhibitor of apoptosis proteins (cIAP1 and cIAP2) function to prevent apoptosis and are often overexpressed in various cancers. However, mutations in cIAP1/2 can activate the alternative NFκB pathway through IκBα-kinase-α (IKKα) and are associated with hematopoetic malignancies. In the current study, we found that knockdown of cIAP2 in human mammary epithelial cells resulted in activation of MDM2 through increased SUMOylation and profound reduction of the pool of MDM2 not phosphorylated at Ser166. cIAP2 siRNA markedly decreased p53 levels, which were rescued by addition of the MDM2 inhibitor, Nutlin3a. An IAP antagonist, which induces cIAP degradation, transiently increased MDM2 mRNA. Simultaneous transfection of siRNA for cIAP2 and IKKα reduced MDM2 protein, while expression of a kinase-dead IKKβ strongly increased non-Ser166 P-MDM2. Inhibition of either IKKα or -β partially rescued p53 levels, while concomitant IKKα/β inhibition fully rescued p53 after cIAP2 knockdown. Surprisingly, IKKα knockdown alone increased SUMO-MDM2, suggesting that in the absence of activation, IKKα can prevent MDM2 SUMOylation. cIAP2 knockdown disrupted the interaction between the MDM2 SUMO ligase, PIAS1 and IKKα. Partial knockdown of cIAP2 cooperated with (V12) H-ras-transfected mammary epithelial cells to enhance colony formation. In summary, our data identify a novel role for cIAP2 in maintaining wild-type p53 levels by preventing both an NFκB-mediated increase and IKKα/-β-dependent transcriptional and post-translational modifications of MDM2. Thus, mutations or reductions in cIAP2 could contribute to cancer promotion, in part, through downregulation of p53.
Collapse
Affiliation(s)
- Rosanna Lau
- Breast Cancer Research Lab, University of Ottawa Department of Cellular and Molecular Medicine, Ottawa, ON, Canada
| | | | | |
Collapse
|
44
|
Verkhivker GM. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics. PLoS One 2012; 7:e40897. [PMID: 22815859 PMCID: PMC3397965 DOI: 10.1371/journal.pone.0040897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022] Open
Abstract
Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require further integration of computational and experimental studies and may help to guide drug design of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- School of Computational Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America.
| |
Collapse
|
45
|
Wei S, Chen X, McGraw K, Zhang L, Komrokji R, Clark J, Caceres G, Billingsley D, Sokol L, Lancet J, Fortenbery N, Zhou J, Eksioglu EA, Sallman D, Wang H, Epling-Burnette PK, Djeu J, Sekeres M, Maciejewski JP, List A. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion. Oncogene 2012; 32:1110-20. [PMID: 22525275 DOI: 10.1038/onc.2012.139] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allelic deletion of the RPS14 gene is a key effector of the hypoplastic anemia in patients with myelodysplastic syndrome (MDS) and chromosome 5q deletion (del(5q)). Disruption of ribosome integrity liberates free ribosomal proteins to bind to and trigger degradation of mouse double minute 2 protein (MDM2), with consequent p53 transactivation. Herein we show that p53 is overexpressed in erythroid precursors of primary bone marrow del(5q) MDS specimens accompanied by reduced cellular MDM2. More importantly, we show that lenalidomide (Len) acts to stabilize MDM2, thereby accelerating p53 degradation. Biochemical and molecular analyses showed that Len inhibits the haplodeficient protein phosphatase 2A catalytic domain alpha (PP2Acα) phosphatase resulting in hyperphosphorylation of inhibitory serine-166 and serine-186 residues on MDM2, and displaces binding of RPS14 to suppress MDM2 autoubiquitination whereas PP2Acα overexpression promotes drug resistance. Bone marrow specimens from del(5q) MDS patients resistant to Len overexpressed PP2Acα accompanied by restored accumulation of p53 in erythroid precursors. Our findings indicate that Len restores MDM2 functionality in the 5q- syndrome to overcome p53 activation in response to nucleolar stress, and therefore may warrant investigation in other disorders of ribosomal biogenesis.
Collapse
Affiliation(s)
- S Wei
- H Lee Moffitt Cancer Center, Tampa, FL 33647, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sczaniecka M, Gladstone K, Pettersson S, McLaren L, Huart AS, Wallace M. MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism. J Biol Chem 2012; 287:14052-68. [PMID: 22337874 PMCID: PMC3340181 DOI: 10.1074/jbc.m111.303875] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/13/2012] [Indexed: 01/12/2023] Open
Abstract
The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the acidic domain of MDM2 also involved in forming the interaction with NUMB. Furthermore, the acidic domain interactions are crucial for MDM2-mediated ubiquitination of NUMB. Contrary to p53, where two separate domains form the interface with MDM2, only one region within the phosphotyrosine binding domain of NUMB (amino acids 113-148) mediates binding to both these regions of MDM2. By binding to both domains on MDM2, NUMB disrupts the MDM2-p53 complex and MDM2-catalyzed ubiquitination of p53. Therefore, we have identified the mechanism NUMB uses to regulate the steady-state levels of the p53 in cells. By targeting the acidic domain of MDM2 using acid domain-binding ligands we can overcome MDM2-mediated ubiquitination and degradation of NUMB impacting on the stabilization of p53 in cells. Furthermore, delivery of MDM2 acid domain-binding ligands to cancer cells promotes p53-dependent growth arrest and the induction of apoptosis. This highlights the dual-site mechanism of MDM2 on another physiological substrate and identifies the acid domain as well as N terminus as a potential target for small molecules that inhibit MDM2.
Collapse
Affiliation(s)
- Matylda Sczaniecka
- From The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush EH25 9RG and
| | - Karen Gladstone
- From The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush EH25 9RG and
| | - Susanne Pettersson
- From The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush EH25 9RG and
| | - Lorna McLaren
- From The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush EH25 9RG and
| | - Anne-Sophie Huart
- the Institute of Genetics and Molecular Medicine, Division of Cancer Biology, University of Edinburgh, CRUK p53 Signal Transduction Group, Crewe Rd. South, Edinburgh EH4 2XR, Scotland, United Kingdom
| | - Maura Wallace
- From The Roslin Institute and Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush EH25 9RG and
| |
Collapse
|
47
|
Jin W, Chang M, Sun SC. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 2012; 9:113-22. [PMID: 22307041 PMCID: PMC4002811 DOI: 10.1038/cmi.2011.60] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli.
Collapse
Affiliation(s)
- Wei Jin
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
48
|
Abstract
The aging process decreases tissue function and regenerative capacity, which has been associated with cellular senescence and a decline in adult or somatic stem cell numbers and self-renewal within multiple tissues. The potential therapeutic application of stem cells to reduce the burden of aging and stimulate tissue regeneration after trauma is very promising. Much research is currently ongoing to identify the factors and molecular mediators of stem cell self-renewal to reach these goals. Over the last two decades, fibroblast growth factors (FGFs) and their receptors (FGFRs) have stood up as major players in both embryonic development and tissue repair. Moreover, many studies point to somatic stem cells as major targets of FGF signaling in both tissue homeostasis and repair. FGFs appear to promote self-renewing proliferation and inhibit cellular senescence in nearly all tissues tested to date. Here we review the role of FGFs and FGFRs in stem cell self-renewal, cellular senescence, and aging.
Collapse
Affiliation(s)
- Daniel L Coutu
- Stem Cell Dynamics Research Unit, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|
49
|
Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol 2012; 303:C4-C13. [PMID: 22378745 DOI: 10.1152/ajpcell.00296.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) and the NAD(+)-dependent histone/protein deacetylase sirtuin 1 (SIRT1) are metabolic sensors that can increase each other's activity. They are also both activated by the antidiabetic drug metformin and downregulated in the liver under conditions of nutrient excess (e.g., hyperglycemia, high-fat diet, obesity). In these situations, the abundance of the tumor suppressor p53 is increased; however, the relevance of this to the changes in AMPK and SIRT1 is not known. In the present study we investigated this question in HepG2 cells under high glucose conditions. Metformin induced activation of AMPK and SIRT1 and decreased p53 protein abundance. It also decreased triglyceride accumulation and cytosolic oxidative stress (a trigger for p53 accumulation) and increased the deacetylation of p53 at a SIRT1-targeted site. The decrease in p53 abundance caused by metformin was abolished by inhibition of murine double minute 2 (MDM2), a ubiquitin ligase that mediates p53 degradation, as well as by overexpression of a dominant-negative AMPK or a shRNA-mediated knockdown of SIRT1. In addition, overexpression of p53 decreased SIRT1 gene expression and protein abundance, as well as AMPK activity in metformin-treated cells. It also diminished the triglyceride-lowering action of metformin, an effect that was rescued by incubation with the SIRT1 activator SRT2183. Collectively, these findings suggest the existence of a novel reciprocal interaction between AMPK/SIRT1 and p53 that may have implications for the pathogenesis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lauren E Nelson
- Endocrinology, Diabetes, and Nutrition Section, Department of Medicine, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
50
|
Antiproliferative factor signaling and interstitial cystitis/painful bladder syndrome. Int Neurourol J 2011; 15:184-91. [PMID: 22259731 PMCID: PMC3256302 DOI: 10.5213/inj.2011.15.4.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 11/22/2022] Open
Abstract
A unique glycopeptide, antiproliferative factor (APF), has been suggested as a urinary biomarker and potential mediator of long-term bladder disorder Interstitial Cystitis/Painful Bladder Syndrome. There is no known cause for this disease. Several mechanistic approaches have been employed to address the underlying mechanism whereby APF regulates cellular responses in the bladder epithelium. A summary of recent literature is provided, and is focused on signal transduction pathways and networks that are responsive to APF.
Collapse
|