1
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
2
|
Giudice V, Serio B, Bertolini A, Mettivier L, D'Alto F, Pezzullo L, D'Addona M, Fumo R, Zeppa P, Gorrese M, Selleri C. Implementation of International Prognostic Index with flow cytometry immunophenotyping for better risk stratification of chronic lymphocytic leukemia. Eur J Haematol 2022; 109:483-493. [PMID: 35871396 PMCID: PMC9804478 DOI: 10.1111/ejh.13833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Current chronic lymphocytic leukemia (CLL) International Prognostic Index (IPI) stratifies patients based on clinical, molecular, and biochemical features; however, B-cell markers also influence CLL outcomes. Here, prognostic roles of CD11c, CD38, and CD49d were first evaluated, and then an immunophenotypic score was combined with CLL-IPI for risk stratification of CLL patients. METHODS A total of 171 CLL subjects were included, and surface marker expression was assessed by flow cytometry. Levels ≥30% were chosen as cut-off of positivity to a marker; then values of 1 (for CD11c and CD38) or 3 (for CD49d) were assigned and scores determined for each patient's clone immunophenotype. RESULTS CD49d positivity was significantly associated with simultaneous expression of CD11c and/or CD38, unmutated IGHV status, and higher β2-microglobulin levels compared to those with CD49d negativity. Moreover, CD49d+ patients experienced a shorter progression-free survival and time to treatment. When the immunophenotypic score was combined with CLL-IPI, patients with high-risk immunophenotype had a significantly lower time-to-treatment regardless CLL-IPI. CONCLUSIONS Our results suggested clinical utility of an integrated prognostic score for better risk stratification of CLL patients. These results require further validation in prospective larger studies.
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly,Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Bianca Serio
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Angela Bertolini
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Laura Mettivier
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Francesca D'Alto
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Luca Pezzullo
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Matteo D'Addona
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Rosalba Fumo
- Anatomy Pathology UnitUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Pio Zeppa
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly,Anatomy Pathology UnitUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly
| | - Marisa Gorrese
- Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| | - Carmine Selleri
- Hematology and Transplant CenterUniversity Hospital “San Giovanni di Dio e Ruggi d'Aragona”SalernoItaly,Department of Medicine, Surgery, and DentistryUniversity of SalernoBaronissiItaly
| |
Collapse
|
3
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Liu X, Zou Y, Zhang L, Chen X, Yang W, Guo Y, Chen Y, Zhang Y, Zhu X. Early T-cell precursor acute lymphoblastic leukemia and other subtypes: a retrospective case report from a single pediatric center in China. J Cancer Res Clin Oncol 2021; 147:2775-2788. [PMID: 33651142 DOI: 10.1007/s00432-021-03551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is rare in China and case reports are varied. We conducted an in-depth analysis of newly diagnosed children with T-ALL from January 1999 to April 2015 in our center, to show the biological differences between Chinese ETP-ALL children and other immune types of T-ALL. METHODS The newly diagnosed children with T-ALL were divided into four groups according to their immunophenotype: ETP-ALL, early non-ETP-ALL, cortical T-ALL and medullary T-ALL. Disease-free survival (DFS), event-free survival (EFS), and overall survival (OS) rates were estimated by the Kaplan-Meier method. The Cox regression model was used for multivariate analysis. RESULTS A total of 117 newly diagnosed children with T-ALL were enrolled in this study. The 10-year EFS and OS rates for all patients were 59.0 ± 4.7% and 61.0 ± 4.7%, respectively, with a median follow-up of 64 (5-167) months. Univariate analysis showed that ETP-ALL patients had the lowest 10-year DFS rate of 32.1 ± 11.7%, while cortical T-ALL had the highest DFS rate of 81.3 ± 8.5% compared with early non-ETP-ALL (61.6 ± 7.0%) and medullary T-ALL (59.1 ± 10.6%). Multivariate analysis demonstrated that only ETP-ALL and involvement of the central nervous system were independent prognostic factors. CONCLUSION Compared with other subtypes, pediatric ETP-ALL had a poor treatment response and high recurrence rate while cortical T-ALL appeared to have much better outcome. Our observations highlight the need for an individualized treatment regime for ETP-ALL.
Collapse
Affiliation(s)
- Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
5
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Shahrabi S, Ghanavat M, Behzad MM, Purrahman D, Saki N. CD markers polymorphisms as prognostic biomarkers in hematological malignancies. Oncol Rev 2020; 14:466. [PMID: 32782727 PMCID: PMC7385526 DOI: 10.4081/oncol.2020.466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
The clusters of differentiation (CD) are surface molecules used for immunophenotyping of cells. The expression of CD markers is widely used to classify hematological malignancies, including leukemia and lymphoma. Single nucleotide polymorphisms (SNPs) are crucial genetic changes that can be associated with abnormal expression and function of CD markers. In this paper, we assess the prognostic effect of CD markers’ SNPs in hematological malignancies. Materials and methods and relevant literature was identified by a PubMed search (2001-2019) of English language papers using the following terms: ‘polymorphism’, ‘CD marker’, ‘leukemia’, ‘lymphoma’, ‘prognosis’, ‘CD marker’, and ‘polymorphism’. Many studies have demonstrated the effects of CD markers’ polymorphisms on risk of hematological malignancies. Also, SNPs of CD markers can be related with clinicopathological features, invasiveness, and response to therapy of these disorders. Considering the importance of SNPs in the expressions of CD markers, these genetic changes could be used as potential prognostic biomarkers in hematological malignancies. It is hoped that the evaluation of SNPs in CD markers will enable early diagnosis, prognosis, and detection of response to treatment. However, better understanding of SNPs in CD markers that are involved in hematological malignancies requires further studies on different populations of the worldwide.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan
| | - Masumeh Maleki Behzad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Hamadan.,Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Redondo-Muñoz J, García-Pardo A, Teixidó J. Molecular Players in Hematologic Tumor Cell Trafficking. Front Immunol 2019; 10:156. [PMID: 30787933 PMCID: PMC6372527 DOI: 10.3389/fimmu.2019.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
The trafficking of neoplastic cells represents a key process that contributes to progression of hematologic malignancies. Diapedesis of neoplastic cells across endothelium and perivascular cells is facilitated by adhesion molecules and chemokines, which act in concert to tightly regulate directional motility. Intravital microscopy provides spatio-temporal views of neoplastic cell trafficking, and is crucial for testing and developing therapies against hematologic cancers. Multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL) are hematologic malignancies characterized by continuous neoplastic cell trafficking during disease progression. A common feature of these neoplasias is the homing and infiltration of blood cancer cells into the bone marrow (BM), which favors growth and survival of the malignant cells. MM cells traffic between different BM niches and egress from BM at late disease stages. Besides the BM, CLL cells commonly home to lymph nodes (LNs) and spleen. Likewise, ALL cells also infiltrate extramedullary organs, such as the central nervous system, spleen, liver, and testicles. The α4β1 integrin and the chemokine receptor CXCR4 are key molecules for MM, ALL, and CLL cell trafficking into and out of the BM. In addition, the chemokine receptor CCR7 controls CLL cell homing to LNs, and CXCR4, CCR7, and CXCR3 contribute to ALL cell migration across endothelia and the blood brain barrier. Some of these receptors are used as diagnostic markers for relapse and survival in ALL patients, and their level of expression allows clinicians to choose the appropriate treatments. In CLL, elevated α4β1 expression is an established adverse prognostic marker, reinforcing its role in the disease expansion. Combining current chemotherapies with inhibitors of malignant cell trafficking could represent a useful therapy against these neoplasias. Moreover, immunotherapy using humanized antibodies, CAR-T cells, or immune check-point inhibitors together with agents targeting the migration of tumor cells could also restrict their survival. In this review, we provide a view of the molecular players that regulate the trafficking of neoplastic cells during development and progression of MM, CLL, and ALL, together with current therapies that target the malignant cells.
Collapse
Affiliation(s)
- Javier Redondo-Muñoz
- Department of Immunology, Ophthalmology and ERL, Hospital 12 de Octubre Health Research Institute (imas12), School of Medicine, Complutense University, Madrid, Spain.,Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angeles García-Pardo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Abdelgader EA, Eltayeb NH, Eltahir TA, Altayeb OA, Fadul EA, Abdel Rahman EM, Merghani TH. Evaluation of CD38 expression in Sudanese patients with chronic lymphocytic leukemia. BMC Res Notes 2018; 11:815. [PMID: 30442182 PMCID: PMC6238334 DOI: 10.1186/s13104-018-3926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023] Open
Abstract
Objective The objective of this study was to evaluate the cluster of differentiation-38 (CD38) expression in Sudanese patients with chronic lymphocytic leukemia (CLL) and to determine its association with clinical and laboratory characteristics of the disease. Results We conducted a cross-sectional study on 99 patients diagnosed with CLL in Khartoum Oncology Hospital in Khartoum, Sudan. Immunophenotyping and CD38 expression levels were measured with four-color flowcytometry. The results of physical examination and blood analyses were used for assigning a modified Rai clinical staging system. The collected data were analyzed using the Statistical Package for the Social Science, version 22 (SPSS Inc., Chicago, IL, USA). According to our findings, the frequencies of 7%, 20%, and 30% cutoff levels of CD38 expressions were 68.7%, 41.4%, and 36.4% respectively. CD38 cutoff level of 7% showed a significant association with hemoglobin concentration (P = 0.04), whereas other cutoff levels showed insignificant results. All the three cutoff levels showed insignificant associations with the other clinical and laboratory variables. In conclusion, the CD38 expression at a cutoff level of 7% seems to be more valuable clinically than higher cutoff levels in Sudanese CLL patients.
Collapse
Affiliation(s)
| | - Nada Hassan Eltayeb
- Department of Physiology, Faculty of Medicine, Al Neelain University, Khartoum, Sudan
| | | | - Osama Ali Altayeb
- Flow Cytometry Laboratory for Leukemia & Lymphoma Diagnosis, Khartoum, Sudan
| | - Eman Abbass Fadul
- Flow Cytometry Laboratory for Leukemia & Lymphoma Diagnosis, Khartoum, Sudan
| | | | - Tarig H Merghani
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
9
|
Vaisitti T, Arruga F, Deaglio S. Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche? Int J Mol Sci 2018; 19:ijms19041167. [PMID: 29649100 PMCID: PMC5979564 DOI: 10.3390/ijms19041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Targeting adenosine triphosphate (ATP) metabolism and adenosinergic signaling in cancer is gaining momentum, as increasing evidence is showing their relevance in tumor immunology and biology. Chronic lymphocytic leukemia (CLL) results from the expansion of a population of mature B cells that progressively occupies the bone marrow (BM), the blood, and peripheral lymphoid organs. Notwithstanding significant progress in the treatment of these patients, the cure remains an unmet clinical need, suggesting that novel drugs or drug combinations are needed. A unique feature of CLL is its reliance on micro-environmental signals for proliferation and cell survival. We and others have shown that the lymphoid niche, an area of intense interactions between leukemic and bystander non-tumor cells, is a typically hypoxic environment. Here adenosine is generated by leukemic cells, as well as by cells of myeloid origin, acting through autocrine and paracrine mechanisms, ultimately affecting tumor growth, limiting drug responses, and skewing the immune cells towards a tolerant phenotype. Hence, understanding the mechanisms through which this complex network of enzymes, receptors, and metabolites functions in CLL, will pave the way to the use of pharmacological agents targeting the system, which, in combination with drugs targeting leukemic cells, may get us one step closer to curing these patients.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy/methods
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
10
|
Poret N, Fu Q, Guihard S, Cheok M, Miller K, Zeng G, Quesnel B, Troussard X, Galiègue-Zouitina S, Shelley CS. CD38 in Hairy Cell Leukemia Is a Marker of Poor Prognosis and a New Target for Therapy. Cancer Res 2016; 75:3902-11. [PMID: 26170397 DOI: 10.1158/0008-5472.can-15-0893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hairy cell leukemia (HCL) is characterized by underexpression of the intracellular signaling molecule RhoH. Reconstitution of RhoH expression limits HCL pathogenesis in a mouse model, indicating this could represent a new therapeutic strategy. However, while RhoH reconstitution is theoretically possible as a therapy, it is technically immensely challenging as an appropriately functional RhoH protein needs to be specifically targeted. Because of this problem, we sought to identify druggable proteins on the HCL surface that were dependent upon RhoH underexpression. One such protein was identified as CD38. Analysis of 51 HCL patients demonstrated that 18 were CD38-positive. Interrogation of the clinical record of 23 relapsed HCL patients demonstrated those that were CD38-positive had a mean time to salvage therapy 71 months shorter than patients who were CD38-negative. Knockout of the CD38 gene in HCL cells increased apoptosis, inhibited adherence to endothelial monolayers, and compromised ability to produce tumors in vivo. Furthermore, an anti-CD38 antibody proved effective against pre-existing HCL tumors. Taken together, our data indicate that CD38 expression in HCL drives poor prognosis by promoting survival and heterotypic adhesion. Our data also indicate that CD38-positive HCL patients might benefit from treatments based on CD38 targeting.
Collapse
Affiliation(s)
- Nicolas Poret
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Qiangwei Fu
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin
| | - Soizic Guihard
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Meyling Cheok
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Katie Miller
- Department of Biology, Saint Mary's University of Minnesota, Winona, Minnesota
| | - Gordon Zeng
- Department of Pathology, Gundersen Health System, La Crosse, Wisconsin
| | - Bruno Quesnel
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France. Service des Maladies du Sang, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Xavier Troussard
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Sylvie Galiègue-Zouitina
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France.
| | - Carl Simon Shelley
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin.
| |
Collapse
|
11
|
Bologna C, Buonincontri R, Serra S, Vaisitti T, Audrito V, Brusa D, Pagnani A, Coscia M, D'Arena G, Mereu E, Piva R, Furman RR, Rossi D, Gaidano G, Terhorst C, Deaglio S. SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response. J Clin Invest 2015; 126:181-94. [PMID: 26619119 DOI: 10.1172/jci83013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a variable disease; therefore, markers to identify aggressive forms are essential for patient management. Here, we have shown that expression of the costimulatory molecule and microbial sensor SLAMF1 (also known as CD150) is lost in a subset of patients with an aggressive CLL that associates with a shorter time to first treatment and reduced overall survival. SLAMF1 silencing in CLL-like Mec-1 cells, which constitutively express SLAMF1, modulated pathways related to cell migration, cytoskeletal organization, and intracellular vesicle formation and recirculation. SLAMF1 deficiency associated with increased expression of CXCR4, CD38, and CD44, thereby positively affecting chemotactic responses to CXCL12. SLAMF1 ligation with an agonistic monoclonal antibody increased ROS accumulation and induced phosphorylation of p38, JNK1/2, and BCL2, thereby promoting the autophagic flux. Beclin1 dissociated from BCL2 in response to SLAMF1 ligation, resulting in formation of the autophagy macrocomplex, which contains SLAMF1, beclin1, and the enzyme VPS34. Accordingly, SLAMF1-silenced cells or SLAMF1(lo) primary CLL cells were resistant to autophagy-activating therapeutic agents, such as fludarabine and the BCL2 homology domain 3 mimetic ABT-737. Together, these results indicate that loss of SLAMF1 expression in CLL modulates genetic pathways that regulate chemotaxis and autophagy and that potentially affect drug responses, and suggest that these effects underlie unfavorable clinical outcome experienced by SLAMF1(lo) patients.
Collapse
MESH Headings
- Antigens, CD/physiology
- Autophagy
- Cell Movement
- Chemotaxis
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Kinase 4/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/physiology
- Signaling Lymphocytic Activation Molecule Family Member 1
Collapse
|
12
|
Zheng D, Liao S, Zhu G, Luo G, Xiao S, He J, Pei Z, Li G, Zhou Y. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol Carcinog 2015; 55:300-11. [PMID: 25630761 DOI: 10.1002/mc.22279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/21/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022]
Abstract
Cancer stem cells (CSCs) are thought to be responsible for cancer progression and therapeutic resistance but identification of this subpopulation requires selective markers. Fortunately, side population (SP) cells analysis brings a novel method to CSCs study. In this study, we identified SP cells, which are demonstrated rich in CSCs, in four nasopharyngeal carcinoma (NPC) cell lines. We investigated SP cells from HK-1 NPC cell line and showed CSCs characteristics in this subpopulation. SP cells displayed greater proliferation and invasion and expressed high levels of CSCs markers than NSP cells. Furthermore, our microRNA microarray analysis of SP versus NSP cells revealed that CD38-related miRNAs were down-regulated in SP cell, but the mRNA and protein level of CD38 were highly expressed in SP cells. We further searched for molecules interacting with CD38 and identified ZAP70, which was also well expressed in SP cells at both mRNA and protein levels. Our results uncover a CD38 pathway that may regulate the proliferation and migration of SP cells from HK-1 NPC cell line.
Collapse
Affiliation(s)
- Danwei Zheng
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Shan Liao
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guangchao Zhu
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Gengqiu Luo
- Department of Pathology, Basic School of Medicine, Central South University, Changsha, Hunan Province, P. R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Junyu He
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhen Pei
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Guiyuan Li
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Yanhong Zhou
- Human Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, P. R. China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
13
|
Gehrke I, Bouchard ED, Beiggi S, Poeppl AG, Johnston JB, Gibson SB, Banerji V. On-Target Effect of FK866, a Nicotinamide Phosphoribosyl Transferase Inhibitor, by Apoptosis-Mediated Death in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res 2014; 20:4861-72. [DOI: 10.1158/1078-0432.ccr-14-0624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia 2014; 29:356-68. [PMID: 24990614 DOI: 10.1038/leu.2014.207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/25/2022]
Abstract
The ecto-enzyme CD38 is gaining momentum as a novel therapeutic target for patients with hematological malignancies, with several anti-CD38 monoclonal antibodies in clinical trials with promising results. In chronic lymphocytic leukemia (CLL) CD38 is a marker of unfavorable prognosis and a central factor in the pathogenetic network underlying the disease: activation of CD38 regulates genetic pathways involved in proliferation and movement. Here we show that CD38 is enzymatically active in primary CLL cells and that its forced expression increases disease aggressiveness in a xenograft model. The effect is completely lost when using an enzyme-deficient version of CD38 with a single amino-acid mutation. Through the enzymatic conversion of NAD into ADPR (ADP-ribose) and cADPR (cyclic ADP-ribose), CD38 increases cytoplasmic Ca(2+) concentrations, positively influencing proliferation and signaling mediated via chemokine receptors or integrins. Consistently, inhibition of the enzymatic activities of CD38 using the flavonoid kuromanin blocks CLL chemotaxis, adhesion and in vivo homing. In a short-term xenograft model using primary cells, kuromanin treatment traps CLL cells in the blood, thereby increasing responses to chemotherapy. These results suggest that monoclonal antibodies that block the enzymatic activities of CD38 or enzyme inhibitors may prove therapeutically useful.
Collapse
|
15
|
Packham G, Krysov S, Allen A, Savelyeva N, Steele AJ, Forconi F, Stevenson FK. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica 2014; 99:1138-48. [PMID: 24986876 PMCID: PMC4077074 DOI: 10.3324/haematol.2013.098384] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
Abstract
Biologists and clinicians agree that the B-cell receptor influences the behavior of chronic lymphocytic leukemia, and promising new drugs are aimed at receptor-associated kinases. Engagement of surface immunoglobulin by antigen is a key driver of malignant cells with outcome influenced by the nature of the cell, the level of stimulation and the microenvironment. Analysis of surface immunoglobulin-mediated signaling in the two major disease subsets defined by IGHV mutational status reveals bifurcation of responses toward proliferation or anergy. Mutated chronic lymphocytic leukemia, generally of relatively good prognosis, is mainly, but not exclusively, driven towards anergy in vivo. In contrast, unmutated chronic lymphocytic leukemia shows less evidence for anergy in vivo retaining more responsiveness to surface immunoglobulin M-mediated signaling, possibly explaining increased tumor progression. Expression and function of surface immunoglobulin M in unmutated chronic lymphocytic leukemia appear rather homogeneous, but mutated chronic lymphocytic leukemia exhibits a highly heterogeneous profile that may relate to further variable clinical behavior within this subset. Anergy should increase susceptibility to apoptosis but, in leukemic cells, this may be countered by overexpression of the B-cell lymphoma-2 survival protein. Maintained anergy spreads to chemokines and adhesion molecules, restraining homing and migration. However, anergy is not necessarily completely benign, being able to reverse and regenerate surface immunoglobulin M-mediated responses. A two-pronged attack on proliferative and anti-apoptotic pathways may succeed. Increased understanding of how chronic lymphocytic leukemia cells are driven to anergy or proliferation should reveal predictive biomarkers of progression and of likely response to kinase inhibitors, which could assist therapeutic decisions.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Proliferation
- Clonal Anergy/immunology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Serge Krysov
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Alex Allen
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Natalia Savelyeva
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Andrew J Steele
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| | - Freda K Stevenson
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
16
|
D'Arena G, Calapai G, Deaglio S. Anti-CD44 mAb for the treatment of B-cell chronic lymphocytic leukemia and other hematological malignancies: evaluation of WO2013063498. Expert Opin Ther Pat 2014; 24:821-8. [DOI: 10.1517/13543776.2014.915942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 2013; 122:2412-24. [PMID: 23940282 DOI: 10.1182/blood-2013-02-482125] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19(+)CD5(+) cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738.
Collapse
|
18
|
Abstract
Abstract
Several prognostic markers based on genetic, phenotypic, and molecular characteristics of chronic lymphocytic leukemia (CLL) B cells have emerged in the past decade. The clinical utility of these newer prognostic indicators, alone or in combination with each other and other clinical predictive systems, is still being determined. This chapter attempts to define biologic and molecular underpinnings of 3 sets of prognostic indicators in CLL: genetic abnormalities quantified by FISH and/or defined by exploratory sensitive molecular techniques, expression of specific proteins in or on CLL cells (ie, CD38, CD49d, and ZAP-70), and the IGHV mutation status of a CLL clone. Although not demonstrated conclusively, each probably reflects the biologic properties of the leukemic cells of individual CLL patients. This reflection may be direct, indicating a specific property of the CLL cell itself, or indirect, representing how the CLL cell interacts with the host's microenvironment. The new tyrosine kinase inhibitors that are currently in clinical trials support this interpretation. These and other biology-based indicators of patient clinical course and outcome can be used as starting points from which to understand and treat CLL.
Collapse
|
19
|
Abramenko IV, Bilous NI, Pleskach GV, Chumak AA, Kryachok IA, Martina ZV, Dyagil IS. CD38 gene polymorphism and risk of chronic lymphocytic leukemia. Leuk Res 2012; 36:1237-40. [DOI: 10.1016/j.leukres.2012.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/23/2012] [Accepted: 05/25/2012] [Indexed: 12/15/2022]
|
20
|
Vaisitti T, Serra S, Pepper C, Rossi D, Laurenti L, Gaidano G, Malavasi F, Deaglio S. CD38 signals upregulate expression and functions of matrix metalloproteinase-9 in chronic lymphocytic leukemia cells. Leukemia 2012; 27:1177-81. [PMID: 22955446 DOI: 10.1038/leu.2012.260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012; 26:1301-12. [PMID: 22289918 DOI: 10.1038/leu.2011.369] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD49d and CD38 are independent negative prognostic markers in chronic lymphocytic leukemia (CLL). Their associated expression marks a disease subset with a highly aggressive clinical course. Here, we demonstrate a constitutive physical association between the CD49d/CD29 integrin complex and CD38 in primary CLL cells and B-cell lines by (i) cocapping, (ii) coimmunoprecipitation and (iii) cell adhesion experiments using CD49d-specific substrates (vascular-cell adhesion molecule-1 or CS-1/H89 fibronectin fragments). The role of CD38 in CD49d-mediated cell adhesion was studied in CD49d(+)CD38(+) and CD49d(+)CD38(-) primary CLL cells, and confirmed using CD38 transfectants of the originally CD49d(+)CD38(-) CLL-derived cell line Mec-1. Results indicate that CD49d(+)CD38(+) cells adhered more efficiently onto CD49d-specific substrates than CD49d(+)CD38(-) cells (P < 0.001). Upon adhesion, CD49d(+)CD38(+) cells underwent distinctive changes in cell shape and morphology, with higher levels of phosphorylated Vav-1 than CD49d(+)CD38(-) cells (P = 0.0006) and a more complex distribution of F-actin to the adhesion sites. Lastly, adherent CD49d(+)CD38(+) cells were more resistant to serum-deprivation-induced (P < 0.001) and spontaneous (P = 0.03) apoptosis than the CD49d(+)CD38(-) counterpart. Altogether, our results point to a direct role for CD38 in enhancing CD49d-mediated adhesion processes in CLL, thus providing an explanation for the negative clinical impact exerted by these molecules when coexpressed in neoplastic cells.
Collapse
|
22
|
Sagatys EM, Zhang L. Clinical and Laboratory Prognostic Indicators in Chronic Lymphocytic Leukemia. Cancer Control 2012; 19:18-25. [DOI: 10.1177/107327481201900103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The clinical course of patients with chronic lymphocytic leukemia (CLL) is heterogeneous, with some patients experiencing rapid disease progression and others living for decades without requiring treatment. The Rai and Binet clinical staging systems are used to define disease extent and predict survival. The pathology laboratory also provides important prognostic information. Methods A review of the literature was performed on the subject of staging in CLL from clinical and pathologic standpoints. This article also reviews currently available diagnostic approaches related to disease prognosis and to timing of treatment and follow-up in patients with CLL. Results Novel biological and cytogenetic features such as immunoglobulin heavy-chain variable gene segment [IgVH], genomic aberrations including del(17p13), del(11q23), del(13q14), and trisomy 12, serum markers (thymidine kinase and beta-2 microglobulin), and cellular markers (CD38 and ZAP70) have become increasingly important in predicting prognosis at the time of diagnosis. Conclusions Current prognostic factors directly or indirectly influence the management of patients with CLL and help to predict treatment-free and overall survival.
Collapse
Affiliation(s)
- Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
23
|
|
24
|
Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118:3470-8. [PMID: 21765022 PMCID: PMC3574275 DOI: 10.1182/blood-2011-06-275610] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the host's microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/physiology
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Models, Biological
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Research/trends
- Time Factors
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Fabio Malavasi
- Department of Genetics, Biology and Biochemistry, University of Torino School of Medicine, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:301-32. [PMID: 21586363 PMCID: PMC5879773 DOI: 10.1016/b978-0-12-385526-8.00010-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.
Collapse
Affiliation(s)
- Silvia Deaglio
- Department of Genetics, Biology, and Biochemistry, University of Turin & Human Genetics Foundation, Italy
| | | |
Collapse
|