1
|
Yang F, Song H, Wu W, Guo J. Targets and promising adjuvants for improving breast tumor response to radiotherapy. Bioorg Chem 2025; 162:108582. [PMID: 40393355 DOI: 10.1016/j.bioorg.2025.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/22/2025]
Abstract
Breast cancer ranks among the most common cancers globally, with significant mortality rates in advanced stages. Despite progress in treatment, therapy resistance, particularly to radiotherapy, remains a major challenge. Radiosensitization offers a promising solution to enhance radiotherapy effectiveness. This approach specifically increases tumor cells' vulnerability to IR. Recent research has explored molecular targets and strategies to improve radiosensitivity in breast cancer. Examples include inhibiting DNA repair pathways, altering the TME, targeting signaling pathways, and using immunomodulators. These strategies not only amplify destructive effects of IR but may also reduce required radiation doses, thereby minimizing normal tissue injury. This review examines promising molecular targets and combination therapies to boost radiosensitivity in breast cancer. It also highlights recent advances in immune modulation, TME remodeling, targeted molecular therapy, and metabolic pathway targeting. These advancements offer insights into the future of radiosensitization research. By systematically analyzing these strategies, the article aims to provide a comprehensive understanding of radiosensitization's current state and future potential in breast cancer treatment.
Collapse
Affiliation(s)
- Fusen Yang
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Hui Song
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Weihong Wu
- Chinese Medicine Teaching and Research Group, Medical Advanced Vocational School of Shandong, Jinan, Shandong 250002, China
| | - Junmei Guo
- Department of Traditional Chinese Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China.
| |
Collapse
|
2
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
3
|
Minzanova ST, Chekunkov EV, Khabibullina AV, Mironova LG, Voloshina AD, Lyubina AP, Kholin KV, Nizameeva GR, Khamatgalimov AR, Milyukov VA. Cobalt polygalacturonates and the pharmacological composition based on them: Preparation, properties and cytotoxicity. Int J Biol Macromol 2025; 301:140377. [PMID: 39880266 DOI: 10.1016/j.ijbiomac.2025.140377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
The aim of the present study was to obtain new metal complexes of citrus pectin with cobalt ions based on potassium polygalacturonate and to prepare a new pharmacological composition (PC) PGKCo: PGNaCo (1:1) with antitumor activity based on potassium cobalt polygalacturonate (PGKCo) and sodium cobalt polygalacturonate (PGNaCo). The study of the effect of PGKCo, PGNaCo and PC on the cell viability of tumor cell lines of different genesis in vitro showed that the obtained compounds are soluble in water and exhibit selective cytotoxic activity against the tumor cell lines of human lung carcinoma A549, breast adenocarcinoma MCF-7 and cervical carcinoma M-HeLa, with no significant toxic effect on normal human cells. The possible mechanism of action of the investigated PC on M-HeLa cancer cells was investigated. The mechanism of action of PC was found to be associated with cell cycle arrest in the G0/G1 phase and the induction of apoptosis through the mitochondrial pathway. The results obtained indicate the potential for the non-toxic compounds (PGKCo, PGNaCo and PC) to be developed as drugs for the complex treatment of oncologic diseases.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia.
| | - Evgenii V Chekunkov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Kirill V Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Guliya R Nizameeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Airat R Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia
| |
Collapse
|
4
|
Feng K, Yi Z, Xu B. Artificial Intelligence and Breast Cancer Management: From Data to the Clinic. CANCER INNOVATION 2025; 4:e159. [PMID: 39981497 PMCID: PMC11840326 DOI: 10.1002/cai2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 02/22/2025]
Abstract
Breast cancer (BC) remains a significant threat to women's health worldwide. The oncology field had an exponential growth in the abundance of medical images, clinical information, and genomic data. With its continuous advancement and refinement, artificial intelligence (AI) has demonstrated exceptional capabilities in processing intricate multidimensional BC-related data. AI has proven advantageous in various facets of BC management, encompassing efficient screening and diagnosis, precise prognosis assessment, and personalized treatment planning. However, the implementation of AI into precision medicine and clinical practice presents ongoing challenges that necessitate enhanced regulation, transparency, fairness, and integration of multiple clinical pathways. In this review, we provide a comprehensive overview of the current research related to AI in BC, highlighting its extensive applications throughout the whole BC cycle management and its potential for innovative impact. Furthermore, this article emphasizes the significance of constructing patient-oriented AI algorithms. Additionally, we explore the opportunities and potential research directions within this burgeoning field.
Collapse
Affiliation(s)
- Kaixiang Feng
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Zongbi Yi
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study CenterZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Wang H, Cao Y, Zhang L, Zhao Q, Li S, Li D. RBM15 Drives Breast Cancer Cell Progression and Immune Escape via m6A-Dependent Stabilization of KPNA2 mRNA. Clin Breast Cancer 2025; 25:96-107. [PMID: 39488447 DOI: 10.1016/j.clbc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer among women worldwide with high morbidity and mortality. Previous studies have indicated that RNA-binding motif protein-15 (RBM15), an N6-methyladenosine (m6A) writer, is implicated in the growth of breast cancer cells. Herein, we aimed to explore the function and detailed mechanism of RBM15 in breast cancer. METHODS In this research, UALCAN databases were applied to analyze the expression of RBM15 or Karyopherin-2 alpha (KPNA2) in BRCA. RBM15 and KPNA2 mRNA levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) assay. RBM15, KPNA2, and Programmed cell death ligand 1 (PD-L1) protein levels were measured using western blot. Cell proliferation, migration, and invasion were assessed using 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. The biological role of RBM15 on breast cancer tumor growth was verified using the xenograft tumor model in vivo. Effects of breast cancer cells on the proliferation and apoptosis of CD8+ T cells were analyzed using flow cytometry. Interaction between RBM15 and KPNA2 was validated using methylated RNA immunoprecipitation (MeRIP) and dual-luciferase reporter assays. RESULTS RBM15 and KPNA2 were highly expressed in breast cancer tissues and cell lines. Furthermore, RBM15 silencing might suppress breast cancer cell proliferation, migration, invasion, and lymphocyte immunity in vitro, as well as block tumor growth in vivo. At the molecular level, RBM15 might improve the stability and expression of KPNA2 mRNA via m6A methylation. CONCLUSION RBM15 might contribute to the malignant progression and immune escape of breast cancer cells partly by modulating the stability of KPNA2 mRNA, providing a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hu Wang
- Two Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Yu Cao
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Li Zhang
- Department of Pharmacy, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Qian Zhao
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Shuangjian Li
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China
| | - Dan Li
- One Ward of Breast Surgery, Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi city, China.
| |
Collapse
|
6
|
Liao D, Liu W, Jiang Y, Zhao P, Yao Y. TNIP1 Impacts Prognosis by Modulating the Immune Microenvironment in BRCA. Biochem Genet 2025:10.1007/s10528-025-11034-1. [PMID: 39870936 DOI: 10.1007/s10528-025-11034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear. Analysis of data from the TCGA, GEO, Sangerbox, and Ualcan databases revealed that TNIP1 is underexpressed in BRCA tissues. This finding was corroborated by RT-PCR and immunohistochemistry. Furthermore, data from the TCGA and GEPIA2 databases, along with Sangerbox, identified TNIP1 as a marker of poor prognosis in BRCA patients. TNIP1 expression shows significant positive correlations with the BRCA Tumor Microenvironment (TME) StromalScore (R = 0.22), ImmuneScore (R = 0.25), and ESTIMATEScore (R = 0.27). Various algorithms have demonstrated a strong association between TNIP1 expression and BRCA tumor-infiltrating immune cells (TIICs). Further analysis using EPIC, TIMER, MCPCounter, QUANTISEQ, xCell, and other computational tools revealed that elevated TNIP1 expression is significantly associated with increased immune cell scores. TNIP1 expression in BRCA tumor tissues also shows a strong correlation with immune checkpoint markers. Data from the HAP database indicate that TNIP1 expression is predominantly involved in the normal skin microenvironment. Subsequent analysis using the TISCH platform with the BRCA single-cell dataset demonstrated that TNIP1 exhibits higher expression levels in immune cells compared to non-immune cells in BRCA patients. This expression is significantly positively correlated with inflammation (R = 0.25) and differentiation (R = 0.28) within the TME, while showing negative correlations with BRCA stemness (R = - 0.34) and invasion (R = - 0.22). Consequently, TNIP1 is proposed as a potential prognostic marker and therapeutic target for BRCA.
Collapse
Affiliation(s)
- Dong Liao
- Department of Thyroid and Breast Surgery, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China
| | - Wu Liu
- Department of Thyroid and Breast Surgery, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, Jingmen, 448000, China
| | - Ping Zhao
- Department of Thyroid and Breast Surgery, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.
| | - Yun Yao
- Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.
| |
Collapse
|
7
|
Chen H, Wang Z, Shi J, Peng J. Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning. Sci Rep 2025; 15:3320. [PMID: 39865118 PMCID: PMC11770110 DOI: 10.1038/s41598-025-86970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to provide a foundation for future studies focused on breast cancer (BC) patients' stratification and personalized interventions. Firstly, Differences and correlations of mitochondrial and lysosome related genes were screened and validated by differential analysis, copy number variation (CNV), single nucleotide polymorphism (SNPs) and correlation analysis. WGCNA and univariate Cox regression were employed to identify prognostic mitochondrial and lysosomal co-regulators. ML was utilized to further selected these regulators and then the coxboost + Survivor-SVM model was identified as the most suitable model for predicting outcomes in BC patients. Subsequently, the association between the immune and mlMSGs score was investigated through scRNA-seq. We found that the overall immunoinfiltration of immune cells was decreased in the high-risk group, it was specifically noted that B cell mlMSGs activity remained diminished in high-risk patients. Finally, the expression and function of the key gene SHMT2 were confirmed through in vitro experiments. This study shows that the ML model demonstrated a strong association with patient outcomes. Analysis conducted through the model has identified decreased B-cell immune infiltration and increased mlMSGs activity as significant factors influencing patient prognosis. These results may offer novel approaches for early intervention and prognostic forecasting in BC.
Collapse
Affiliation(s)
- Huilin Chen
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zhenghui Wang
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jiale Shi
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Departments of Prenatal Diagnostic Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Jinghui Peng
- Departments of Breast Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Women and Children Central Laboratory, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Shewale H, Kanugo A. Recent Advances in Immunotherapy and Targeted Therapy of Triple Negative Breast Cancer. Curr Pharm Biotechnol 2025; 26:365-391. [PMID: 39092645 DOI: 10.2174/0113892010303244240718075729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024]
Abstract
The truancy of representation of the estrogen, progesterone, and human epidermal growth factor receptors occurs during TNBC. TNBC is recognized for the upper reappearance and has a poorer diagnosis compared with rest breast cancer (BC) types. Presently, as such, no targeted therapy is approved for TNBC and treatment options are subjected to chemotherapy and surgery, which have high mortality rates. Hence, the current article focuses on the scenario of TNBC vital pathways and discusses the latest advances in TNBC treatment, including immune checkpoint inhibitors (ICIs), PARP suppressors, and cancer vaccines. Immunotherapy and ICIs, like PD 1 and PD L1 suppressors, displayed potential in clinical trials (CTs). These suppressors obstruct the mechanisms which allow tumor cells to evade the system thereby boosting the body's defense against TNBC. Immunotherapy, either alone or combined with chemotherapy has demonstrated patient outcomes such as increased survival rates and reduced treatment-related side effects. Additionally, targeted therapy approaches include BRCA/2 mutation poly ribose polymerase inhibitors, Vascular Endothelial Growth Factor Receptor (VEGFR) inhibitors, Epidermal growth factor receptor inhibitors, Fibroblast growth factor inhibitors, Androgen Receptor inhibitors, PIK3/AKT/mTOR pathway inhibitors, Cyclin-dependent kinase (CDK) inhibitors, Notch signaling pathway inhibitors, Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors, Chimeric antigen receptor T (CAR-T) cell therapy, Transforming growth factor (TGF) -β inhibitors, Epigenetic modifications (EPM), Aurora Kinase inhibitors and antibody-drug conjugates. We also highlight ongoing clinical trials and potential future directions for TNBC therapy. Despite the challenges in treating TNBC, recent developments in understanding the molecular and immune characteristics of TNBC have opened up new opportunities for targeted therapies, which hold promise for improving outcomes in this aggressive disease.
Collapse
Affiliation(s)
- Harshada Shewale
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur Maharashtra, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur Maharashtra, 425405, India
- SVKM Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
9
|
Huang X, Pawge G, Snicer CE, Hsiao CHC, Wiemer AJ. PVR exposure influences the activation, adhesion, and protein expression of human CD8+ T cells, including the CD96-mediated transfer of PVR. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:55-71. [PMID: 40073261 DOI: 10.1093/jimmun/vkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/23/2024] [Indexed: 03/14/2025]
Abstract
Poliovirus receptor (PVR) ligands have gained attention as immunotherapy targets, yet their regulation remains unclear. Here, we examine the impact of PVR exposure on primary human CD8+ T cells. We used flow cytometry and Western blot analysis to quantify expression of PVR and its ligands in naïve and effector T cells and used adhesion assays and enzyme-linked immunosorbent assay (ELISA) to assess the impact of PVR on T cell adhesion and cytokine production. Stimulation with phytohemagglutinin P strongly increased DNAM-1 expression and caused a less robust and more variable increase in TIGIT expression. Exposure to PVR-Fc enhanced the CD8+ T cell adhesion to ICAM-1-coated plates in a dose-dependent manner, while exposure to PVR-expressing K32 cells mildly decreased CD8+ T cell interferon γ release. However, PVR exposure strongly decreased the expression of DNAM-1, TIGIT, and CD96. The reduction of DNAM-1, TIGIT, and CD96 induced by PVR was dominant to the increase caused by T cell receptor signaling. The impact of PVR on their expression was completely abolished by the Q63R and F128R point mutations of PVR, while DNAM-1 was partially rescued by inhibitors of Src and protein kinase C. Additionally, PVR exposure along with T cell receptor signaling promoted the transfer of surface proteins including PVR from K32 cells to CD8+ T cells. This PVR transfer was mediated by the IgV domain of PVR and CD96 on CD8+ T cells and required cellular contact. Our findings collectively demonstrate that PVR engagement has a mild antagonistic effect on interferon γ production but strongly impacts CD8+ T cell adhesion and protein expression.
Collapse
MESH Headings
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Adhesion/immunology
- Lymphocyte Activation/immunology
- Receptors, Virus/metabolism
- Receptors, Virus/immunology
- Receptors, Virus/genetics
- T Lineage-Specific Activation Antigen 1
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Interferon-gamma/metabolism
- Cells, Cultured
Collapse
Affiliation(s)
- Xueting Huang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Girija Pawge
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Christina E Snicer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | | | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
10
|
Chen P, Liang K, Mao X, Wu Q, Chen Z, Jin Y, Lin K, He T, Yang S, Huang H, Ye G, Gao J, Zhou D, Zeng Z. Single-cell transcriptomes of dissecting the intra-tumoral heterogeneity of breast cancer microenvironment. J Cancer Res Clin Oncol 2024; 151:17. [PMID: 39724260 PMCID: PMC11671554 DOI: 10.1007/s00432-024-06015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE To investigate the mechanism by which heterogeneity in breast cancer developed and acted in single-cell transcriptomes. METHODS The composition of breast cancer based on the single-cell transcriptomes of 54,055 high-quality cells from clinical specimens of 4 malignant and 4 non-malignant patients were investigated. RESULTS We identified six common expression programs and six subtype-specific expression programs form malignant epithelial cells. The expression program of malignant epithelial cells exhibited activated EMT (Epithelial Mesenchymal Transition) in TME, which might indicate EMT intervention have a general therapeutic effect on various subtypes. Gene set enrichment analysis (GSEA) based on the top 50 highly NMF (non-negative matrix factorization) score genes in each program depicted the distinct function of each program in breast cancer progression. Moreover, we revealed the profound cellular heterogeneity of myeloid cell lineages in breast cancer. In macrophages, two mainly tumor associated macrophages (TAMs), TAM1 and TAM2, were also detected and the highly variable genes in TAM2 were strongly enriched in IFN-α and IFN-γ. The changes of lipid metabolism pathways in macrophages are closely related to the microenvironment of breast cancer. CONCLUSION We constructed a comprehensive single-cell transcriptome atlas of 54,055 cells from 4 malignant and 4 nonmalignant patients, providing insights into the mechanisms underlying breast cancer progression and the development of potential therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Kaifeng Liang
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Qiuyuan Wu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhiyan Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Kairong Lin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, 528100, China
| | - Tiancheng He
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Shuqing Yang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Huiqi Huang
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Guolin Ye
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, 528100, Guangdong Province, China
- Guangdong Medical University, Zhanjiang, 524000, China
| | - Zhihao Zeng
- Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China.
| |
Collapse
|
11
|
Li S, He N, Wu X, Chen F, Xue Q, Li S, Zhao C. Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors. Int J Nanomedicine 2024; 19:12769-12791. [PMID: 39624116 PMCID: PMC11610387 DOI: 10.2147/ijn.s491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO3 (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation. With continuous progress in multidisciplinary fields of US research, scientists have developed various types of barium titanate nanoparticles (BTNPs) to further advance SDT research and applications in tumor therapy. In this review, we present recently proposed and representative BTNPs, including their pathways of action, such as the induction of tumor cell senescence, ferroptosis, and glutathione depletion to reshape the tumor microenvironment, as well as their surface modifications. Research indicates that the mechanisms of action of ultrasound-driven BTNPs in tumor therapy are multifaceted. These mechanisms, whether utilized individually or synergistically, offer a potent and targeted strategy for cancer treatment. Furthermore, we discuss the application of BTNPs in various tumor types. Finally, we summarize the current challenges and future prospects for the clinical translation of BTNPs.
Collapse
Affiliation(s)
- Shuao Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangyong Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Lok V, Olson-McPeek S, Spiegelhoff G, Cortez J, Detz D, Czerniecki B. Immunotherapies in breast cancer: harnessing the cancer immunity cycle. Expert Opin Ther Targets 2024; 28:925-935. [PMID: 39523444 DOI: 10.1080/14728222.2024.2427038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Immunotherapies have found limited success in breast cancerdue to significant challenges within the tumor that block T-cell activity and function. AREAS COVERED The current review discusses clinically relevant immunotherapeutics and trials within the framework of the cancer-immunity cycle. EXPERT OPINION Current therapies such as antibody-drug conjugates and immune checkpoint blockade require proper biomarker selection, such as PD1 expression and the degree of tumor-infiltrating lymphocyte (TIL) infiltration to subset potential responders. HER2 and other tumor-associated antigens have served as valuable benchmarks for developing novel therapies, such as antibody engagers and CAR T-cells. However, further research is essential to identify and validate new target antigens that can enhance therapeutic efficacy and broaden the clinical applicability of these approaches.
Collapse
Affiliation(s)
- Vincent Lok
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Sy Olson-McPeek
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Grace Spiegelhoff
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Jaqueline Cortez
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - David Detz
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Brian Czerniecki
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
13
|
Yan X, Zhang N, Wang G, Wang J. Association of CTLA-4 polymorphisms with hematologic malignancy susceptibility: a meta-analysis. Front Oncol 2024; 14:1467740. [PMID: 39464701 PMCID: PMC11502471 DOI: 10.3389/fonc.2024.1467740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have reported an association between Cytotoxic T-lymphocyte antigen-4 (CTLA-4) polymorphisms and hematologic malignancy susceptibility, while the results remain inconsistent. Hence, we performed a meta-analysis to investigate the association between CTLA-4 polymorphisms with hematologic malignancy susceptibility. Methods A comprehensive and systematic search of Cochrane Library, PubMed, Embase databases was performed up to Sep. 20, 2024. The pooled odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of the association between CTLA-4 polymorphisms and hematologic malignancy susceptibility. Statistical analysis was performed in STATA 12.0. Results A total of 13 studies concerning the CTLA-4 49A/G, CTLA-4 60A/G, CTLA-4 318T/C, CTLA-4 1661A/G, and CTLA-4 319C/T polymorphisms were included in the meta-analysis. The pooled results suggested the CTLA-4 49A/G polymorphism was significantly associated with an increased hematologic malignancy risk (AA vs. GA+GG: OR = 1.77, 95% CI = 1.56-2.02), especially in NHL, multiple myeloma, and leukemia. Similarly, CTLA-4 319C/T polymorphism was found to be associated with decreased chronic lymphocytic leukemia risk. There was no significant association between the CTLA-4 60A/G, 318T/C, and 1661A/G polymorphism and hematologic malignancy risk. Conclusion CTLA-4 49A/G and 319C/T polymorphisms were associated with hematologic malignancy susceptibility.
Collapse
Affiliation(s)
| | | | | | - Jiaheng Wang
- Department of Hematology, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
14
|
Medina A, Carballo J, González‐Marcano E, Blanca I, Convit AF. Breast cancer immunotherapy: Realities and advances. CANCER INNOVATION 2024; 3:e140. [PMID: 39308754 PMCID: PMC11416644 DOI: 10.1002/cai2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024]
Abstract
Breast cancer (BC) is the most common malignant tumor and the main cause of death in women worldwide. With increased knowledge regarding tumor escape mechanisms and advances in immunology, many new antitumor strategies such as nonspecific immunotherapies, monoclonal antibodies, anticancer vaccines, and oncolytic viruses, among others, make immunotherapy a promising approach for the treatment of BC. However, these approaches still require meticulous assessment and readjustment as resistance and modest response rates remain important barriers. In this article, we aim to summarize the most recent data available in BC immunotherapy to include the results of ongoing clinical trials and approved therapies used as monotherapies or in combination with conventional treatments.
Collapse
Affiliation(s)
- Aixa Medina
- Jacinto Convit World Organization Inc.Pompano BeachFloridaUSA
- Facultad de MedicinaUniversidad Central de VenezuelaCaracasVenezuela
| | | | | | - Isaac Blanca
- Unidad Experimental de InmunoterapiaFundación Jacinto ConvitCaracasVenezuela
| | - Ana F. Convit
- Jacinto Convit World Organization Inc.Pompano BeachFloridaUSA
- Unidad Experimental de InmunoterapiaFundación Jacinto ConvitCaracasVenezuela
| |
Collapse
|
15
|
Ma H, Shi L, Zheng J, Zeng L, Chen Y, Zhang S, Tang S, Qu Z, Xiong X, Zheng X, Yin Q. Advanced machine learning unveils CD8 + T cell genetic markers enhancing prognosis and immunotherapy efficacy in breast cancer. BMC Cancer 2024; 24:1222. [PMID: 39354417 PMCID: PMC11446097 DOI: 10.1186/s12885-024-12952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women and poses a significant health burden, especially in China. Despite advances in diagnosis and treatment, patient variability and limited early detection contribute to poor outcomes. This study examines the role of CD8 + T cells in the tumor microenvironment to identify new biomarkers that improve prognosis and guide treatment strategies. METHODS CD8 + T-cell marker genes were identified using single-cell RNA sequencing (scRNA-seq), and a CD8 + T cell-related gene prognostic signature (CTRGPS) was developed using 10 machine-learning algorithms. The model was validated across seven independent public datasets from the GEO database. Clinical features and previously published signatures were also analyzed for comparison. The clinical applications of CTRGPS in biological function, immune microenvironment, and drug selection were explored, and the role of hub genes in BC progression was further investigated. RESULTS We identified 71 CD8 + T cell-related genes and developed the CTRGPS, which demonstrated significant prognostic value, with higher risk scores linked to poorer overall survival (OS). The model's accuracy and robustness were confirmed through Kaplan-Meier and ROC curve analyses across multiple datasets. CTRGPS outperformed existing prognostic signatures and served as an independent prognostic factor. The role of the hub gene TTK in promoting malignant proliferation and migration of BC cells was validated. CONCLUSION The CTRGPS enhances early diagnosis and treatment precision in BC, improving clinical outcomes. TTK, a key gene in the signature, shows promise as a therapeutic target, supporting the CTRGPS's potential clinical utility.
Collapse
Affiliation(s)
- Haodi Ma
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - LinLin Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Jiayu Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Youyou Chen
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Shunshun Zhang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Siya Tang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhifeng Qu
- Radiology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xin Xiong
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| | - Qinan Yin
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
16
|
Yang P, Shen G, Zhang H, Zhang C, Li J, Zhao F, Li Z, Liu Z, Wang M, Zhao J, Zhao Y. Incidence of thyroid dysfunction caused by immune checkpoint inhibitors combined with chemotherapy: A systematic review and meta-analysis. Int Immunopharmacol 2024; 133:111961. [PMID: 38608442 DOI: 10.1016/j.intimp.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The combination of immune checkpoint inhibitors (ICIs) and chemotherapy as a first-line treatment for triple-negative breast cancer (TNBC) has been associated with many adverse reactions. Thyroid dysfunction, the most common adverse reaction of the endocrine system, has also attracted significant attention. This study aimed to analyse the effect of ICIs combined with chemotherapy on thyroid function in patients with TNBC. METHODS As of November 4, 2023, we searched the PubMed, Web of Science, and Cochrane Library databases for clinical trials of ICIs combined with chemotherapy for the treatment of TNBC. The incidence of hypothyroidism and hyperthyroidism was calculated using a random-effects model. RESULTS In the final analysis, 3,226 patients from 19 studies were included. The total incidence of all-grade hypothyroidism induced by the combination of ICIs and chemotherapy in treating TNBC (12% (95% confidence intervals(CI): 0.10-0.15)) was higher than that of hyperthyroidism (5% (95% CI: 0.04-0.06)). Pembrolizumab combined with chemotherapy caused the highest incidence of all grades of hypothyroidism for 13% (95% CI: 0.05-0.06). Durvalumab combined with chemotherapy caused the highest incidence of all grades of hyperthyroidism, at 7% (95% CI: 0.03-0.11). ICIs combined with chemotherapy caused a higher incidence of all grades of hypothyroidism in advanced TNBC (15% (95% CI: 0.13-0.17)) than in early stage TNBC (10% (95% CI: 0.07-0.13)). CONCLUSION In TNBC, the incidence of hypothyroidism caused by the combination of ICIs and chemotherapy was significantly higher than that caused by hyperthyroidism. Pembrolizumab combined with chemotherapy resulted in the highest incidence of hypothyroidism. The incidence of hypothyroidism in patients with advanced TNBC was significantly higher than that in patients with early stage TNBC. In addition, ICIs combined with chemotherapy resulted in 16 out of 3,226 patients experiencing grade ≥ 3 thyroid dysfunction. Although the incidence of severe thyroid dysfunction is low, it requires attention. PROSPERO CRD42023477933.
Collapse
Affiliation(s)
- Ping Yang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Guoshuang Shen
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Hengheng Zhang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Chengrong Zhang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Jinming Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Fuxing Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Zitao Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Zhen Liu
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Miaozhou Wang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Jiuda Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| | - Yi Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, China.
| |
Collapse
|
17
|
Hu Q, Wang Y, Mao W. Knockdown of Glycolysis-Related LINC01070 Inhibits the Progression of Breast Cancer. Cureus 2024; 16:e60093. [PMID: 38860098 PMCID: PMC11163994 DOI: 10.7759/cureus.60093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/12/2024] Open
Abstract
Accumulative evidence confirms that glycolysis and long non-coding RNAs (lncRNAs) are closely associated with tumor development. The aim of this study was to construct a novel prognostic model based on glycolysis-related lncRNAs (GRLs) in breast cancer patients. By performing Pearson correlation analysis and Lasso regression analysis on differentially expressed genes and lncRNAs associated with glycolysis in the Cancer Genome Atlas (TCGA) and Gene Set Enrichment Analysis (GSEA) datasets, we identified nine GRLs and constructed associated prognostic risk signature. Kaplan-Meier survival analysis and univariate and multivariate Cox analysis showed that patients in the low-risk group had a better prognosis. The receiver operator characteristics (ROC) curves showed that the area under the curve (AUC) of the prognostic risk signature predicting patients' overall survival at 1-, 3- and 5- years was 0.78, 0.71, and 0.71, respectively. Moreover, the validation curves also showed that the signature had better diagnostic efficacy and clinical predictive power. Furthermore, clone formation assay, EdU assay, and Transwell assay showed that knockdown of LINC01070 inhibited breast cancer progression. We developed a prognostic risk-associated GRLs signature that can accurately predict the breast cancer patient's prognostic status, and LINC01070 can be used as a potential biomarker for the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Qiang Hu
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| | - Yiduo Wang
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| | - Weipu Mao
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| |
Collapse
|
18
|
Huang J, Chen X, Xie X, Song L, Chen L, Lan X, Bai X, Chen X, Du C. The efficiency and safety of low-dose apatinib combined with oral vinorelbine in pretreated HER2-negative metastatic breast cancer. Cancer Med 2024; 13:e7181. [PMID: 38659376 PMCID: PMC11043681 DOI: 10.1002/cam4.7181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Apatinib is an oral small-molecule tyrosine kinase inhibitor that blocks vascular endothelial growth factor receptor-2. Oral vinorelbine is a semisynthetic chemotherapeutic agent of vinorelbine alkaloids. Apatinib and oral vinorelbine have been proved to be effective in the treatment of metastatic breast cancer (mBC). At present, several small sample clinical trials have explored the efficacy of apatinib combined with oral vinorelbine in the treatment of mBC. METHODS This retrospective study included 100 human epidermal growth factor receptor-2 (HER2)-negative mBC patients who received low-dose apatinib (250 mg orally per day) plus oral vinorelbine until disease progression or intolerance during February 2017 and March 2023. The progression-free survival (PFS), overall survival (OS), objective response rate (ORR), clinical benefit rate (CBR), disease control rate (DCR), and safety were analyzed by SPSS 26.0 software and GraphPad Prism 8 software. Cox proportional hazards regression model for univariate and multivariate was used to identify factors significantly related to PFS and OS. RESULTS The median follow-up time for this study was 38.1 months. Among 100 patients with HER2-negative mBC, 66 were hormone receptor (HR)-positive/HER2-negative and 34 were triple-negative breast cancer (TNBC). The median PFS and OS were 6.0 months (95% CI, 5.2-6.8 months) and 23.0 months (95% CI, 19.9-26.1 months). There were no statistical differences in PFS (p = 0.239) and OS (p = 0.762) between the HR-positive /HER2-negative and TNBC subgroups. The ORR, CBR, and DCR were 21.0%, 58.0%, and 78.0%, respectively. Ninety-five patients (95.0%) experienced varying grades of adverse events (AEs) and 38.0% of patients for Grades 3-4. The most common Grades 3-4 AEs that we observed were neutropenia (30.0%) and leukopenia (25.0%). CONCLUSION Low-dose apatinib combined with oral vinorelbine demonstrates potential efficacy and well tolerated for pretreated HER2-negative mBC.
Collapse
Affiliation(s)
- Jia‐Yi Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xue‐Lian Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao‐Feng Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Lin Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Li‐Ping Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao‐Feng Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xue Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Xiao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| | - Cai‐Wen Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhen518116GuangdongChina
| |
Collapse
|
19
|
Ren X, Cui H, Dai L, Chang L, Liu D, Yan W, Zhao X, Kang H, Ma X. PIK3CA mutation-driven immune signature as a prognostic marker for evaluating the tumor immune microenvironment and therapeutic response in breast cancer. J Cancer Res Clin Oncol 2024; 150:119. [PMID: 38466449 PMCID: PMC10927816 DOI: 10.1007/s00432-024-05626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Gene mutations drive tumor immune microenvironment (TIME) heterogeneity, in turn affecting prognosis and immunotherapy efficacy. PIK3CA is the most frequently mutated gene in breast cancer (BC), yet its relevance to BC prognosis remains controversial. Herein, we sought to determine the impact of PIK3CA mutation-driven immune genes (PDIGs) on BC prognosis in relation to TIME heterogeneity. METHODS PIK3CA mutation characteristics were compared and verified between the TCGA-BRCA dataset and a patient cohort from our hospital. PIK3CA mutation-driven differentially expressed genes were identified for consensus clustering and weighted gene co-expression network analysis to select the modules most relevant to the immune subtype. Thereafter, the two were intersected to obtain PDIGs. Univariate Cox, LASSO, and multivariate Cox regression analyses were sequentially performed on PDIGs to obtain a PIK3CA mutation-driven immune signature (PDIS), which was then validated using the Gene Expression Omnibus (GEO) database. Differences in functional enrichment, mutation landscape, immune infiltration, checkpoint gene expression, and drug response were compared between different risk groups. RESULTS PIK3CA mutation frequencies in the TCGA and validation cohorts were 34.49% and 40.83%, respectively. PIK3CA mutants were significantly associated with ER, PR, and molecular BC subtypes in our hospital cohort. The PDIS allowed for effective risk stratification and exhibited prognostic power in TCGA and GEO sets. The low-risk patients exhibited greater immune infiltration, higher expression of common immune checkpoint factors, and lower scores for tumor immune dysfunction and exclusion. CONCLUSION The PDIS can be used as an effective prognostic model for predicting immunotherapy response to guide clinical decision-making.
Collapse
Affiliation(s)
- Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hanxiao Cui
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Luyao Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lidan Chang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dandan Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenyu Yan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuyan Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
21
|
Memari E, Khan D, Alkins R, Helfield B. Focused ultrasound-assisted delivery of immunomodulating agents in brain cancer. J Control Release 2024; 367:283-299. [PMID: 38266715 DOI: 10.1016/j.jconrel.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Focused ultrasound (FUS) combined with intravascularly circulating microbubbles can transiently increase the permeability of the blood-brain barrier (BBB) to enable targeted therapeutic delivery to the brain, the clinical testing of which is currently underway in both adult and pediatric patients. Aside from traditional cancer drugs, this technique is being extended to promote the delivery of immunomodulating therapeutics to the brain, including antibodies, immune cells, and cytokines. In this manner, FUS approaches are being explored as a tool to improve and amplify the effectiveness of immunotherapy for both primary and metastatic brain cancer, a particularly challenging solid tumor to treat. Here, we present an overview of the latest groundbreaking research in FUS-assisted delivery of immunomodulating agents to the brain in pre-clinical models of brain cancer, and place it within the context of the current immunotherapy approaches. We follow this up with a discussion on new developments and emerging strategies for this rapidly evolving approach.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada
| | - Dure Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal H4B 1R6, Canada; Department of Biology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
22
|
Bottosso M, Mosele F, Michiels S, Cournède PH, Dogan S, Labaki C, André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024; 9:102247. [PMID: 38401248 PMCID: PMC10982863 DOI: 10.1016/j.esmoop.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years, technological advances have widely improved the understanding of breast cancer biology and several trials have been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients' outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical implications are discussed, along with technological advancements that could broaden precision medicine applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast cancer precision oncology as well as to identify future research directions.
Collapse
Affiliation(s)
- M Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - F Mosele
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif
| | - S Michiels
- Gustave Roussy, Department of Biostatistics and Epidemiology, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, Ligue Contre le Cancer, Villejuif
| | - P-H Cournède
- Université Paris-Saclay, Centrale Supélec, Laboratory of Mathematics and Computer Science (MICS), Gif-Sur-Yvette, France
| | - S Dogan
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - C Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - F André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Gif Sur-Yvette, France.
| |
Collapse
|
23
|
Zhang YN, Wu Q, Deng YH. Phenotypic characterisation of regulatory T cells in patients with gestational diabetes mellitus. Sci Rep 2024; 14:4881. [PMID: 38418860 PMCID: PMC10902321 DOI: 10.1038/s41598-023-47638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication that occurs during pregnancy. Emerging evidence suggests that immune abnormalities play a pivotal role in the development of GDM. Specifically, regulatory T cells (Tregs) are considered a critical factor in controlling maternal-fetal immune tolerance. However, the specific characteristics and alterations of Tregs during the pathogenesis of GDM remain poorly elucidated. Therefore, this study aimed to investigate the changes in Tregs among pregnant women diagnosed with GDM compared to healthy pregnant women. A prospective study was conducted, enrolling 23 healthy pregnant women in the third trimester and 21 third-trimester women diagnosed with GDM. Participants were followed up until the postpartum period. The proportions of various Treg, including Tregs, mTregs, and nTregs, were detected in the peripheral blood of pregnant women from both groups. Additionally, the expression levels of PD-1, HLA-G, and HLA-DR on these Tregs were examined. The results revealed no significant differences in the proportions of Tregs, mTregs, and nTregs between the two groups during the third trimester and postpartum period. However, GDM patients exhibited significantly reduced levels of PD-1+ Tregs (P < 0.01) and HLA-G+ Tregs (P < 0.05) in the third trimester compared to healthy pregnant women in the third trimester. Furthermore, GDM patients demonstrated significantly lower levels of PD-1+ mTregs (P < 0.01) and HLA-G+ (P < 0.05) mTregs compared to healthy pregnant women in the third trimester. Overall, the proportion of Tregs did not exhibit significant changes during the third trimester in GDM patients compared to healthy pregnant women. Nevertheless, the observed dysregulation of immune regulation function in Tregs and mTregs may be associated with the development of GDM in pregnant women.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Qin Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China
| | - Yi-Hui Deng
- School of Chinese Medicine, Hunan University of Chinese Medicine, Hunan, 410208, China.
| |
Collapse
|
24
|
Luo W, Zhou Y, Wang J, Wang K, Lin Q, Li Y, Xie Y, Li M, Wang J, Xiong L. YTHDF1's Regulatory Involvement in Breast Cancer Prognosis, Immunity, and the ceRNA Network. Int J Mol Sci 2024; 25:1879. [PMID: 38339157 PMCID: PMC10856278 DOI: 10.3390/ijms25031879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), an m6A reader, has a role in the development and progression of breast cancer as well as the immunological microenvironment. The networks of competing endogenous RNA in cancer have received much attention in research. In tumor gene therapy, the regulatory networks of m6A and competing endogenous RNA are increasingly emerging as a new route. We evaluated the relationship between the YTHDF1 expression, overall survival, and clinicopathology of breast cancer using TCGA, PrognoScan, and other datasets. We used Western blot to demonstrate that YTHDF1 is substantially expressed in breast cancer tissues. Furthermore, we explored YTHDF1's functions in the tumor mutational burden, microsatellite instability, and tumor microenvironment. Our findings indicate that YTHDF1 is a critical component of the m6A regulatory proteins in breast cancer and may have a particular function in the immunological microenvironment. Crucially, we investigated the relationship between YTHDF1 and the associated competitive endogenous RNA regulatory networks, innovatively creating three such networks (Dehydrogenase/Reductase 4-Antisense RNA 1-miR-378g-YTHDF1, HLA Complex Group 9-miR-378g-YTHDF1, Taurine Up-regulated 1-miR-378g-YTHDF1). Furthermore, we showed that miR-378g could inhibit the expression of YTHDF1, and that miR-378g/YTHDF1 could impact MDA-MB-231 proliferation. We speculate that YTHDF1 may serve as a biomarker for poor prognosis and differential diagnosis, impact the growth of breast cancer cells via the ceRNA network axis, and be a target for immunotherapy against breast cancer.
Collapse
Affiliation(s)
- Wenting Luo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Youjia Zhou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qing Lin
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen 361023, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen 361023, China
| |
Collapse
|
25
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Chen X, Meng C, Wang X, Wu Z, Sun X, Sun C, Zheng L, Li W, Jia W, Tang T. Exploring CCL11 in breast cancer: unraveling its anticancer potential and immune modulatory effects involving the Akt-S6 signaling. J Cancer Res Clin Oncol 2024; 150:69. [PMID: 38305920 PMCID: PMC10837270 DOI: 10.1007/s00432-023-05600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND CCL11, a chemokine known for recruiting immune cells to the tumor microenvironment (TME), has an unclear role in the context of its expression, patient prognosis, and the presence of tumor-infiltrating immune cells (TILs) in breast cancer. METHODS The expression of CCL11 in invasive breast cancer (BRCA) was analyzed using TCGA database. Survival curve and Cox regression analysis determined the potential of CCL11 as an independent prognostic indicator. GSEA performed functional analysis on genes related to CCL11. CIBERSORT algorithm quantified the infiltration level of immune cells with varying CCL11 expression. Lastly, the correlation between CCL11 expression and anticancer drug sensitivity was examined. Immunohistochemistry (IHC) and qRT-PCR confirmed CCL11 expression in clinical tissue samples. The anti-tumor efficacy of CCL11 was investigated using CCK-8, plate formation, transwell assay, and Western blot. RESULTS CCL11 expression was elevated in BRCA tumor tissues compared to adjacent normal tissues. Recurrence-free survival (RFS) was longer in patients with high expression of CCL11. Enrichment and co-expression analyses revealed CCL11's association with numerous immune-related signaling pathways and genes. Validation studies confirmed high CCL11 expression in breast cancer tissues. In vitro experiments substantiated CCL11's anticancer effects in BRCA. CONCLUSION CCL11 expression correlates with immune cell infiltration in breast cancer, indicating its potential as a prognostic biomarker for BRCA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenxu Meng
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Zanhui Wu
- Anhui Medical University, Hefei, China
| | - Xinyue Sun
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenyu Sun
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zheng
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wanwan Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - WenJun Jia
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Tong Tang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
27
|
Chen X, Tang P, Kong Y, Chen D, Tang K. Identification and validation of Golgi apparatus-related signature for predicting prognosis and immunotherapy response in breast cancer. J Cancer Res Clin Oncol 2024; 150:61. [PMID: 38300336 PMCID: PMC10834659 DOI: 10.1007/s00432-024-05612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The Golgi apparatus plays a pivotal role in various aspects of cancer. This study aims to investigate the predictive value of Golgi apparatus-related genes (GARGs) in breast cancer prognosis and immunotherapy response evaluation. METHODS Transcriptional and clinical data from the TCGA-BRCA cohort and GSE96058 cohort were utilized to construct and validate a prognostic model for breast cancer using Cox regression analysis. Differences in immune landscape, somatic mutations, gene expression, drug sensitivity, and immunotherapy response between different risk groups were assessed. A prognostic nomogram for breast cancer was further developed and evaluated. qPCR and single-cell sequencing analyses were performed to validate the expression of GARGs. RESULTS A total of 394 GARGs significantly associated with breast cancer prognosis were identified, leading to the construction of a prognostic risk feature comprising 10 GARGs. This feature effectively stratified breast cancer patients into high-risk and low-risk groups, with the high-risk group exhibiting significantly worse prognosis. Meanwhile, significant differences in clinicopathological features, immune infiltration, drug sensitivity, and immunotherapy response were observed between the high- and low-risk groups. The constructed nomogram incorporating these factors showed superior performance in prognostic assessment for breast cancer patients. Ultimately, the utilization of qPCR and single-cell sequencing techniques substantiated the disparate expression patterns of these prognostic genes in breast cancer. CONCLUSION Our findings demonstrate that a prognostic risk feature derived from GARGs holds promising application potential for predicting prognosis and evaluating immunotherapy response in breast cancer patients.
Collapse
Affiliation(s)
- Xin Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Pengting Tang
- Department of Surgery, Ninghai Maternal and Child Health Hospital, Ninghai, 315600, Zhejiang, China
| | - Ying Kong
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Deqin Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Kejun Tang
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
28
|
Nicolini A, Ferrari P. Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond. Cancers (Basel) 2024; 16:466. [PMID: 38275906 PMCID: PMC10814066 DOI: 10.3390/cancers16020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| |
Collapse
|
29
|
Jacobs C, Shah S, Lu WC, Ray H, Wang J, Hockaden N, Sandusky G, Nephew KP, Lu X, Cao S, Carpenter RL. HSF1 Inhibits Antitumor Immune Activity in Breast Cancer by Suppressing CCL5 to Block CD8+ T-cell Recruitment. Cancer Res 2024; 84:276-290. [PMID: 37890164 PMCID: PMC10790131 DOI: 10.1158/0008-5472.can-23-0902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Heat shock factor 1 (HSF1) is a stress-responsive transcription factor that promotes cancer cell malignancy. To provide a better understanding of the biological processes regulated by HSF1, here we developed an HSF1 activity signature (HAS) and found that it was negatively associated with antitumor immune cells in breast tumors. Knockdown of HSF1 decreased breast tumor size and caused an influx of several antitumor immune cells, most notably CD8+ T cells. Depletion of CD8+ T cells rescued the reduction in growth of HSF1-deficient tumors, suggesting HSF1 prevents CD8+ T-cell influx to avoid immune-mediated tumor killing. HSF1 suppressed expression of CCL5, a chemokine for CD8+ T cells, and upregulation of CCL5 upon HSF1 loss significantly contributed to the recruitment of CD8+ T cells. These findings indicate that HSF1 suppresses antitumor immune activity by reducing CCL5 to limit CD8+ T-cell homing to breast tumors and prevent immune-mediated destruction, which has implications for the lack of success of immune modulatory therapies in breast cancer. SIGNIFICANCE The stress-responsive transcription factor HSF1 reduces CD8+ T-cell infiltration in breast tumors to prevent immune-mediated killing, indicating that cellular stress responses affect tumor-immune interactions and that targeting HSF1 could improve immunotherapies.
Collapse
Affiliation(s)
- Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Sakhi Shah
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - George Sandusky
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Xin Lu
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Medical Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
30
|
Yang R, Cheng S, Xiao J, Pei Y, Zhu Z, Zhang J, Feng J, Li J. GLS and GOT2 as prognostic biomarkers associated with dendritic cell and immunotherapy response in breast cancer. Heliyon 2024; 10:e24163. [PMID: 38234908 PMCID: PMC10792574 DOI: 10.1016/j.heliyon.2024.e24163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Breast cancer is the females' most common cancer. Targeting the immune microenvironment is a new and promising treatment method for breast cancer. Nevertheless, only a small section of patients can profit by immunotherapy, and improving the ability to accurately predict the potential for immunotherapy response is still awaiting further exploration. In this study, we found that the key factors of glutamine metabolism, glutaminase 1 (GLS) and mitochondrial aspartate transaminase (GOT2), showed opposite expression patterns in breast cancer samples. Based on the expression level of GLS and GOT2, we divided the breast cancer samples into two clusters: Cluster 2 showed GLS expressed higher and GOT2 expressed lower, whereas Cluster 1 showed GOT2 expressed higher and GLS expressed lower. GSEA showed that the clusters were related to pathways of immunity. Further analysis showed that Cluster 2 was positively associated with immunity infiltration. Through WGCNA, we identified a module strongly correlated with glutamine metabolism and immunity and identified 11 dendritic cell-associated genes involved in dendritic cell development, maturation, activation and other functions. In addition, Cluster 2 also showed higher immune checkpoint gene expression, which suggest the Cluster 2 had even better response to immunotherapy. The validation dataset could also be clustered into two groups. Cluster 2 (GLS expressed higher and GOT2 expressed lower) of the validation dataset was also positively associated with dendritic cells and a better immunotherapy response. Thus, these data indicate that GLS and GOT2 are prognostic biomarkers which closely related to dendritic cells and better reacted to immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Shuo Cheng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jie Xiao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yujie Pei
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Zhonglin Zhu
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jifa Zhang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Jing Feng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jing Li
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, 201499, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
31
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
32
|
Kejamurthy P, Devi KTR. Immune checkpoint inhibitors and cancer immunotherapy by aptamers: an overview. Med Oncol 2023; 41:40. [PMID: 38158454 DOI: 10.1007/s12032-023-02267-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Efforts in cancer immunotherapy aim to counteract evasion mechanisms and stimulate the immune system to recognise and attack cancer cells effectively. Combination therapies that target multiple aspects of immune evasion are being investigated to enhance the overall efficacy of cancer immunotherapy. PD-1 (Programmed Cell Death Protein 1), CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4), LAG-3 (Lymphocyte-Activation Gene 3), and TIM-3 (T Cell Immunoglobulin and Mucin Domain-Containing Protein3) are all immune checkpoint receptors that play crucial roles in regulating the immune response and maintaining self-tolerance often exploited by cancer cells to evade immune surveillance. Antibodies targeted against immune checkpoint inhibitors such as anti-PD-1 antibodies (e.g., pembrolizumab, nivolumab), anti-CTLA-4 antibodies (e.g., Ipilimumab), and experimental drugs targeting LAG-3 and TIM-3, aim to block these interactions and unleash the immune system's ability to recognise and destroy cancer cells. The US FDA has approved different categories of immune checkpoint inhibitors that have been utilised successfully in some patients with metastatic melanoma, renal cell carcinoma, head and neck cancers, and non-small lung cancer. Although several immune checkpoint inhibitor antibodies have been developed, they exhibited immune-related adverse effects, resulting in hypophysitis, diabetes, and neurological issues. These adverse effects of antibodies can be reduced by developing aptamer against the target. Aptamers offer several advantages over traditional antibodies, such as improved specificity, reduced immunogenicity, and flexible design for reduced adverse effects that specifically target and block protein-protein or receptor-ligand interactions involved in immune checkpoint pathways. The current study aims to review the function of particular immune checkpoint inhibitors along with developed aptamer-mediated antitumor cytotoxicity in cancer treatment.
Collapse
Affiliation(s)
- Priyatharcini Kejamurthy
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
33
|
Zheng P, He J, Yang Z, Fu Y, Yang Y, Li W, Ding Y, Yang X, Ma Y. Neoantigen-Based Nanovaccine In Combination with Immune Checkpoint Inhibitors Abolish Postsurgical Tumor Recurrence and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302922. [PMID: 37649222 DOI: 10.1002/smll.202302922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 09/01/2023]
Abstract
The notorious limitation of conventional surgical excision of primary tumor is the omission of residual and occult tumor cells, which often progress to recurrence and metastasis, leading to clinical treatment failure. The therapeutic vaccine is emerging as a promising candidate for dealing with the issue of postsurgical tumor residuals or nascent metastasis. Here, a flexible and modularized nanovaccine scaffold based on the SpyCatcher003-decorated shell (S) domain of norovirus (Nov) is employed to support the presentation of varied tumor neoantigens fused with SpyTag003. The prepared tumor neoantigen-based nanovaccines (Neo-NVs) are able to efficiently target to lymph nodes and engage with DCs in LNs, triggering strong antigen-specific T-cell immunity and significantly inhibiting the growth of established orthotopic 4T1 breast tumor in mice. Further, the combination of Neo-NVs and anti-PD-1 monoclonal antibody (mAb) produces significant inhibition on postsurgical tumor recurrence and metastasis and induces a long-lasting immune memory. In conclusion, the study provides a simple and reliable strategy for rapid preparing personalized neoantigens-based cancer vaccines and engaging checkpoint treatment to restore the capability of tumor immune surveillance and clearance in surgical patients.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Cuihu North Road, Kunming, 650091, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, China
| |
Collapse
|
34
|
Wang H, Wei L, Mao D, Che X, Ye X, Liu Y, Chen Y. Combination of oxymatrine (Om) and astragaloside IV (As) enhances the infiltration and function of TILs in triple-negative breast cancer (TNBC). Int Immunopharmacol 2023; 125:111026. [PMID: 37866315 DOI: 10.1016/j.intimp.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype and has a poor response to treatment due to an immunosuppressive microenvironment. Chinese Medicine effective constituents such as oxymatrine (Om) and astragaloside IV (As) have shown promise in cancer treatment by providing anti-fibrosis and immune-enhancing effects. However, the potential combined effect of Om and As on TNBC and its mechanism is still uncertain. This study focuses on exploring the impact of Om and As on enhancing the immunosuppressive microenvironment of TNBC and uncovering the potential mechanism behind it. In this study, a trans-Cancer associated fibroblasts (CAFs) infiltration system of T cells was utilized to investigate the potential benefits of Om, while the impact of As on the morphology and quantity of mitochondria in T cells was examined in a co-culture system with tumor cells. Further to investigate the combined effects of Om and As on tumor suppression and immunosuppressive microenvironment improvement, this study established an in situ TNBC mouse model with 4 T1-luc. In vitro, our findings indicate that Om can effectively suppress the activation of CAFs by downregulating the expression of FAP and α-SMA, and also promoting the infiltration of T cells trans CAFs. It was discovered that the mitochondrial activity of T cells could be improved by increasing the number of mitochondria and cristae. In vivo, the optimal ratio of Om and As (2:1) was found to increase the apoptosis rate of tumor cells in a co-culture system and enhance the infiltration of CD4+ and CD8+ T cells, as confirmed by Flow Cytometry results. Our study suggests that Om and As could enhance the immune system's ability to treat TNBC by improving the infiltration and increasing the anti-tumor function of TILs. This intervention may lead to a promising therapeutic direction for the treatment of TNBC.
Collapse
Affiliation(s)
- Hong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Liangyin Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xiaoyu Che
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
35
|
Domínguez-Cejudo MA, Gil-Torralvo A, Cejuela M, Molina-Pinelo S, Salvador Bofill J. Targeting the Tumor Microenvironment in Breast Cancer: Prognostic and Predictive Significance and Therapeutic Opportunities. Int J Mol Sci 2023; 24:16771. [PMID: 38069096 PMCID: PMC10706312 DOI: 10.3390/ijms242316771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer is one of the most prevalent tumors among women. Its prognosis and treatment outcomes depend on factors related to tumor cell biology. However, recent studies have revealed the critical role of the tumor microenvironment (TME) in the development, progression, and treatment response of breast cancer. In this review, we explore the different components of the TME and their relevance as prognostic and predictive biomarkers in breast cancer. In addition, techniques for assessing the tumor microenvironment, such as immunohistochemistry or gene expression profiling, and their clinical utility in therapeutic decision-making are examined. Finally, therapeutic strategies targeting the TME are reviewed, highlighting their potential clinical benefits. Overall, this review emphasizes the importance of the TME in breast cancer and its potential as a clinical tool for better patient stratification and the design of personalized therapies.
Collapse
Affiliation(s)
- María A. Domínguez-Cejudo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain (S.M.-P.)
- Andalusian—Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain
| | - Ana Gil-Torralvo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain (S.M.-P.)
- Andalusian—Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain
- Medical Oncology Department, Virgen del Rocio Hospital, 41013 Seville, Spain
| | - Mónica Cejuela
- Medical Oncology Department, Virgen del Rocio Hospital, 41013 Seville, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain (S.M.-P.)
- Andalusian—Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain
| | - Javier Salvador Bofill
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain (S.M.-P.)
- Andalusian—Roche Network Mixed Alliance in Precision Medical Oncology, 41092 Sevilla, Spain
- Medical Oncology Department, Virgen del Rocio Hospital, 41013 Seville, Spain
| |
Collapse
|
36
|
Goyal RK, Zhang J, Davis KL, Sluga-O’Callaghan M, Kaufman PA. Early Real-World Treatment Patterns and Clinical Outcomes in Patients with Metastatic Breast Cancer Treated with Eribulin After Prior Immuno-Oncology or Antibody-Drug Conjugate Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:855-865. [PMID: 38020049 PMCID: PMC10661956 DOI: 10.2147/bctt.s422025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Introduction Eribulin was approved by the FDA in 2010 for the treatment of metastatic breast cancer (MBC) in the United States (US). More recently, several immuno-oncology (IO) and antibody-drug conjugate (ADC) regimens have been approved for MBC. We assessed the treatment patterns and clinical outcomes in MBC patients treated with eribulin following treatment with an IO or ADC in US clinical practice. Materials and Methods In a retrospective patient medical chart review study, patients with MBC, aged ≥18 years, who initiated eribulin therapy between March 1, 2019, and September 30, 2020, treated with either prior IO or ADC in the metastatic setting were included. Patient demographics, treatment characteristics, and clinical outcomes were analyzed descriptively. Real-world progression-free survival (rwPFS) and overall survival (OS) were estimated using Kaplan-Meier analyses. Results In the study population (N=143), median age at eribulin initiation was 62 years; 64% were Caucasian, and 67% had triple-negative MBC (TNBC). Eribulin therapy was used in the second to fifth line of therapy in the metastatic setting; median treatment duration was 7.2 months. The overall response rate for eribulin was 59.4%. Median rwPFS and OS from eribulin initiation were 21.4 months (95% CI, 12.9-not estimable [NE]) and 24.2 months (95% CI, 17.5-NE), respectively. In patients with TNBC, median rwPFS and OS from eribulin initiation were 12.0 months (95% CI, 8.8-NE) and 18.3 months (95% CI, 14.9-NE), respectively. Conclusion These real-world data provide evidence for the clinical effectiveness outcomes of eribulin treatment among MBC patients previously treated with an IO or ADC.
Collapse
Affiliation(s)
- Ravi K Goyal
- Health Economics, RTI Health Solutions, Research Triangle Park, NC, USA
| | | | - Keith L Davis
- Health Economics, RTI Health Solutions, Research Triangle Park, NC, USA
| | | | - Peter A Kaufman
- Larner College of Medicine, Division of Hematology/Oncology, University of Vermont Cancer Center, Burlington, VT, USA
| |
Collapse
|
37
|
Zhang X, Cong P, Tian L, Zheng Y, Zhang H, Liu Q, Wu T, Zhang Q, Wu H, Huang X, Xiong L. Genomic gain/methylation modification/hsa-miR-132-3p increases RRS1 overexpression in liver hepatocellular carcinoma. Cancer Sci 2023; 114:4329-4342. [PMID: 37705317 PMCID: PMC10637089 DOI: 10.1111/cas.15933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
This study aimed to determine the upstream regulatory factors affecting ribosome biogenesis regulator 1 homolog (RRS1) expression and the development and prognosis of liver hepatocellular carcinoma (LIHC). The expression profiles of RRS1 were evaluated in pan-cancer tissues and liver tumor cell lines. The associations of RRS1 with pan-cancer survival, immune infiltrations, immune checkpoints, and drug sensitivity were identified. We explored the potential upstream regulatory mechanisms of RRS1 expression. Hsa-miR-132-3p knockdown, CCK-8 assays, transwell, and wound healing assays were performed to validate the regulatory effect of hsa-miR-132-3p on RRS1 expression and the development of LIHC. Our findings demonstrated that RRS1 was significantly elevated in 27 types of cancers. RRS1 predicts a poor outcome of LIHC, lung adenocarcinoma, head and neck cancer, and kidney papillary cell carcinoma. RRS1 expression showed a significant association with immune cell infiltrates and the expression of immune checkpoints-related genes in LIHC tissues. Increased RRS1 expression may have a negative effect on these anticancer drugs of LIHC. Low methylation of the RRS1 promoter and its genomic gain may elevate RRS1 expression and predict poor prognosis for LIHC. Increased hsa-miR-132-3p expression may elevate RRS1 expression and result in poor prognosis for LIHC. Hsa-miR-132-3p inhibition can decrease RRS1 expression and the development of liver tumor cell lines. Low methylation of the RRS1 promoter, RRS1 genomic gain, and hsa-miR-132-3p upregulation in LIHC may promote RRS1 upregulation and thus lead to the development and poor prognosis for LIHC. RRS1 is a promising therapeutic target for LIHC.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Hospital Infection Management, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Peilin Cong
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Li Tian
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yinggang Zheng
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hong Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qiong Liu
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Tingmei Wu
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Zhang
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Huanghui Wu
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinwei Huang
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Lize Xiong
- Clinical Research Center for Anesthesiology and Perioperative MedicineTongji UniversityShanghaiChina
- Shanghai Key Laboratory of Anesthesiology and Brain Functional ModulationShanghaiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
38
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
39
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
40
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
41
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
42
|
Lin X, Li F, Guan J, Wang X, Yao C, Zeng Y, Liu X. Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy. ACS NANO 2023; 17:14494-14507. [PMID: 37485850 DOI: 10.1021/acsnano.3c01019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An immunosuppressive tumor microenvironment (TME) with inadequate and exhausted tumor-infiltrating cytotoxic lymphocytes and abundant cellular immunosuppressors is the major obstacle responsible for the poor efficacy of PD-1/PD-L1 (programmed cell death 1 and its ligand 1) immune checkpoint blockade (ICB) therapy. Herein, a Janus silica nanoparticle (JSNP)-based immunomodulator is explored to reshape the TME for boosting the therapeutic outcomes of αPD-L1 therapy. The designed JSNP has two distinct domains, namely, an ultra pH-responsive side (UPS), which could encapsulate PI3Kγ inhibitor IPI549 in the pore structure, and a polycation-grafted intra-glutathione (GSH)-sensitive side (IGS), which could absorb CXCL9 cDNA on the surface. The final IPI549@UPS-IGS-PDMAEMA@CXCL9 cDNA (IUIPC) could release IPI549 in weak acid TME to target myeloid-derived suppressor cells (MDSCs) to reverse negative immunoregulation and then release CXCL9 cDNA in tumor cells with abundant GSH for sustained CXCL9 chemokine expression and secretion to improve cytotoxic lymphocyte recruitment signals, thereby jointly restoring tumor sensitivity to PD-1/PD-L1 ICB therapy. As expected, the IUIPC-mediated TME remodeling during αPD-L1 therapy significantly ameliorated TME immunosuppression, as well as induced potent systemic antitumor immune responses, which ultimately achieved a robustly boosted antitumor efficacy proven by remarkable suppression of primary tumor growth, obvious prevention of tumor recurrence, and significant regression of abscopal tumors. Hence, the IUIPC-mediated TME-regulating strategy provides an enormous perspective for the improvement of PD-1/PD-L1 ICB therapy.
Collapse
Affiliation(s)
- Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feida Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jianhua Guan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiaoyan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic Tumors, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
43
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Okobi TJ, Uhomoibhi TO, Akahara DE, Odoma VA, Sanusi IA, Okobi OE, Umana I, Okobi E, Okonkwo CC, Harry NM. Immune Checkpoint Inhibitors as a Treatment Option for Bladder Cancer: Current Evidence. Cureus 2023; 15:e40031. [PMID: 37425564 PMCID: PMC10323982 DOI: 10.7759/cureus.40031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Bladder cancer is a prevalent disease, and treatment options for advanced bladder cancer remain limited. However, immune checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) have shown promise in treating bladder cancer. These drugs work by blocking receptors and ligands, disrupting signaling, and allowing T cells to recognize and attack cancer cells. ICIs have been found to be effective in treating bladder cancer, especially in cases of metastatic urothelial carcinoma (UC) that have progressed after chemotherapy. Furthermore, combination therapy with ICIs and chemotherapy or radiation therapy has shown promise in treating bladder cancer. While there are challenges associated with ICIs, including adverse effects, immune-related adverse events, and lack of efficacy in some patients, they remain a promising option for bladder cancer treatment, especially in cases where other treatment options have failed. This review paper focuses on the current role, challenges, and future trends of immunotherapy in the management of bladder cancer.
Collapse
Affiliation(s)
| | - Trinitas Oserefuamen Uhomoibhi
- Internal Medicine, Georgetown University, Washington, D.C., USA
- Internal Medicine, University of the District of Columbia, Washington, D.C., USA
| | | | | | | | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | - Ifiok Umana
- Urology, Jos University Teaching Hospital, Jos, NGA
| | - Emeka Okobi
- Dentistry, Ahmadu Bello University Teaching Hospital Zaria, Abuja, NGA
| | - Chinwe C Okonkwo
- Family Medicine, Caribbean Medical University School of Medicine, Willemstad, CUW
| | | |
Collapse
|
45
|
Zhang R, Clark SD, Guo B, Zhang T, Jeansonne D, Jeyaseelan SJ, Francis J, Huang W. Challenges in the combination of radiotherapy and immunotherapy for breast cancer. Expert Rev Anticancer Ther 2023; 23:375-383. [PMID: 37039098 PMCID: PMC10929662 DOI: 10.1080/14737140.2023.2188196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Immunotherapy (IT) is showing promise in the treatment of breast cancer, but IT alone only benefits a minority of patients. Radiotherapy (RT) is usually included in the standard of care for breast cancer patients and is traditionally considered as a local form of treatment. The emerging knowledge of RT-induced systemic immune response, and the observation that the rare abscopal effect of RT on distant cancer metastases can be augmented by IT, have increased the enthusiasm for combinatorial immunoradiotherapy (IRT) for breast cancer patients. However, IRT largely follows the traditional sole RT and IT protocols and does not consider patient specificity, although patients' responses to treatment remain heterogeneous. AREAS COVERED This review discusses the rationale of IRT for breast cancer, the current knowledge, challenges, and future directions. EXPERT OPINION The synergy between RT and the immune system has been observed but not well understood at the basic level. The optimal dosages, timing, target, and impact of biomarkers are largely unknown. There is an urgent need to design efficacious pre-clinical and clinical trials to optimize IRT for cancer patients, maximize the synergy of radiation and immune response, and explore the abscopal effect in depth, taking into account patients' personal features.
Collapse
Affiliation(s)
- Rui Zhang
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
- Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, USA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Duane Jeansonne
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Samithamby J Jeyaseelan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
46
|
Gunnarsdottir FB, Bendahl PO, Johansson A, Benfeitas R, Rydén L, Bergenfelz C, Larsson AM. Serum immuno-oncology markers carry independent prognostic information in patients with newly diagnosed metastatic breast cancer, from a prospective observational study. Breast Cancer Res 2023; 25:29. [PMID: 36945037 PMCID: PMC10031935 DOI: 10.1186/s13058-023-01631-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metastatic breast cancer (MBC) is a challenging disease, and despite new therapies, prognosis is still poor for a majority of patients. There is a clinical need for improved prognostication where immuno-oncology markers can provide important information. The aim of this study was to evaluate serum immuno-oncology markers in MBC patients and their respective relevance for prediction of survival. PATIENTS AND METHODS We investigated a broad panel of 92 immuno-oncology proteins in serum from 136 MBC patients included in a prospective observational study (NCT01322893) with long-term follow-up. Serum samples were collected before start of systemic therapy and analyzed using multiplex proximity extension assay (Olink Target 96 Immuno-Oncology panel). Multiple machine learning techniques were used to identify serum markers with highest importance for prediction of overall and progression-free survival (OS and PFS), and associations to survival were further evaluated using Cox regression analyses. False discovery rate was then used to adjust for multiple comparisons. RESULTS Using random forest and random survival forest analyses, we identified the top nine and ten variables of highest predictive importance for OS and PFS, respectively. Cox regression analyses revealed significant associations (P < 0.005) of higher serum levels of IL-8, IL-10 and CAIX with worse OS in multivariable analyses, adjusted for established clinical prognostic factors including circulating tumor cells (CTCs). Similarly, high serum levels of IL-8, IL-10, ADA and CASP8 significantly associated with worse PFS. Interestingly, high serum levels of FasL significantly associated with improved OS and PFS. In addition, CSF-1, IL-6, MUC16, TFNSFR4 and CD244 showed suggestive evidence (P < 0.05) for an association to survival in multivariable analyses. After correction for multiple comparisons, IL-8 still showed strong evidence for correlation to survival. CONCLUSION To conclude, we found six serum immuno-oncology markers that were significantly associated with OS and/or PFS in MBC patients, independently of other established prognostic factors including CTCs. Furthermore, an additional five serum immuno-oncology markers provided suggestive evidence for an independent association to survival. These findings highlight the relevance of immuno-oncology serum markers in MBC patients and support their usefulness for improved prognostication. Trial registration Clinical Trials (NCT01322893), registered March 25, 2011.
Collapse
Affiliation(s)
- Frida Björk Gunnarsdottir
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-214 28, Malmö, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, SE-223 81, Lund, Sweden
| | - Alexandra Johansson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, SE-223 81, Lund, Sweden
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Lisa Rydén
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, SE-223 81, Lund, Sweden
- Department of Surgery and Gastroenterology, Skåne University Hospital, SE-214 28, Malmö, Sweden
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, SE-214 28, Malmö, Sweden
| | - Anna-Maria Larsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, SE-223 81, Lund, Sweden.
| |
Collapse
|
47
|
Syed M, Cagely M, Dogra P, Hollmer L, Butner JD, Cristini V, Koay EJ. Immune-checkpoint inhibitor therapy response evaluation using oncophysics-based mathematical models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1855. [PMID: 36148978 PMCID: PMC11824897 DOI: 10.1002/wnan.1855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
The field of oncology has transformed with the advent of immunotherapies. The standard of care for multiple cancers now includes novel drugs that target key checkpoints that function to modulate immune responses, enabling the patient's immune system to elicit an effective anti-tumor response. While these immune-based approaches can have dramatic effects in terms of significantly reducing tumor burden and prolonging survival for patients, the therapeutic approach remains active only in a minority of patients and is often not durable. Multiple biological investigations have identified key markers that predict response to the most common form of immunotherapy-immune checkpoint inhibitors (ICI). These biomarkers help enrich patients for ICI but are not 100% predictive. Understanding the complex interactions of these biomarkers with other pathways and factors that lead to ICI resistance remains a major goal. Principles of oncophysics-the idea that cancer can be described as a multiscale physical aberration-have shown promise in recent years in terms of capturing the essence of the complexities of ICI interactions. Here, we review the biological knowledge of mechanisms of ICI action and how these are incorporated into modern oncophysics-based mathematical models. Building on the success of oncophysics-based mathematical models may help to discover new, rational methods to engineer immunotherapy for patients in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mustafa Syed
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew Cagely
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Lauren Hollmer
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
48
|
Chen Z, Huang J, Kwak-Kim J, Wang W. Immune checkpoint inhibitors and reproductive failures. J Reprod Immunol 2023; 156:103799. [PMID: 36724630 DOI: 10.1016/j.jri.2023.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
The human conceptus is a semi-allograft, which is antigenically foreign to the mother. Hence, the implantation process needs mechanisms to prevent allograft rejection during successful pregnancy. Immune checkpoints are a group of inhibitory pathways expressed on the surface of various immune cells in the form of ligand receptors. Immune cells possess these pathways to regulate the magnitude of immune responses and induce maternal-fetal tolerance. Briefly, 1) CTLA-4 can weaken T cell receptor (TCR) signals and inhibit T cell response; 2) The PD-1/PD-L1 pathway can reduce T cell proliferation, enhance T cell anergy and fatigue, reduce cytokine production, and increase T regulatory cell activity to complete the immunosuppression; 3) TIM3 interacts with T cells by binding Gal-9, weakening Th1 cell-mediated immunity and T cell apoptosis; 4) The LAG-3 binding to MHC II can inhibit T cell activation by interfering with the binding of CD4 to MHC II, and; 5) TIGIT can release inhibitory signals to NK and T cells through the ITIM structure of its cytoplasmic tail. Therefore, dysregulated immune checkpoints or the application of immune checkpoint inhibitors may impair human reproduction. This review intends to deliver a comprehensive overview of immune checkpoints in pregnancy, including CTLA-4, PD-1/PD-L1, TIM-3, LAG-3, TIGIT, and their inhibitors, reviewing their roles in normal and pathological human pregnancies.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266000, PR China; Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Jinxia Huang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Department of Gynecology, Weihai Central Hospital Affiliated to Qingdao University, 3 Mishan East Road, Weihai 264400, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
49
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
50
|
Injectable Polypeptide Hydrogel Depots Containing Dual Immune Checkpoint Inhibitors and Doxorubicin for Improved Tumor Immunotherapy and Post-Surgical Tumor Treatment. Pharmaceutics 2023; 15:pharmaceutics15020428. [PMID: 36839750 PMCID: PMC9965187 DOI: 10.3390/pharmaceutics15020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
In this work, we developed a strategy for local chemo-immunotherapy through simultaneous incorporation of dual immune checkpoint blockade (ICB) antibodies, anti-cytotoxic T-lymphocyte-associated protein 4 (aCTLA-4) and anti-programmed cell death protein 1 (aPD-1), and a chemotherapy drug, doxorubicin (Dox), into a thermo-gelling polypeptide hydrogel. The hydrogel encapsulating Dox or IgG model antibody showed sustained release profiles for more than 12 days in vitro, and the drug release and hydrogel degradation were accelerated in the presence of enzymes. In comparison to free drug solutions or hydrogels containing Dox or antibodies only, the Dox/aCTLA-4/aPD-1 co-loaded hydrogel achieved improved tumor suppression efficiency, strengthened antitumor immune response, and prolonged animal survival time after peritumoral injection into mice bearing B16F10 melanoma. Additionally, after injection of Dox/aCTLA-4/aPD-1 co-loaded hydrogel into the surgical site following tumor resection, a significantly enhanced inhibition on tumor reoccurrence was demonstrated. Thus, the polypeptide hydrogel-based chemo-immunotherapy strategy has potential in anti-tumor therapy and the prevention of tumor reoccurrence.
Collapse
|