1
|
Kumar LA, Pattnaik G, Satapathy BS, Mohanty DL, Zafar A, Warsi MH, Khalid M, Mujtaba MA. Transferrin-modified Gemcitabine Encapsulated Polymeric Nanoparticles Persuaded Apoptosis in U87MG Cells and Improved Drug Availability in Rat Brain: An Active Targeting Strategy for Treatment of Glioma. J Oleo Sci 2025; 74:261-274. [PMID: 40024780 DOI: 10.5650/jos.ess24085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Among primary brain tumors, glioma has one of the highest fatality rates. Routine chemotherapy often faces off-target drug loss and sub-optimal drug availability at brain tissue. The present study aims at the development of transferrin-conjugated gemcitabine loaded poly (lactic co glycolic acid) nanoparticles (Tf-GB-PLGA-NPs) targeted strategy for brain cancer cell. GB-PLGA-NPs were prepared using solvent evaporation and nanoprecipitation method and then conjugated with Tf. The formulation was characterized for physicochemical parameters, in-vitro release, cytotoxicity, apoptosis (U87MG cell line), and in-vivo pharmacokinetic study. Tf-GB-PLGA-NPs showed 143±6.23 nm of particle size, 0.213 of PDI, -25 mV of zeta potential, and 77.53±1.43% of entrapment efficiency, respectively. Tf-GB-PLGA-NPs exhibited spherical morphology and sustained release of GB (76.54±4.08%) over 24 h. Tf-GB-PLGA-NPs exhibited significant (p < 0.05) cell inhibition against cell line (U87MG) than GB-PLGA-NPs and pure GB. The Tf-GB-PLGA-NPs exhibited higher U87MG apoptosis (61.25%) than GB-PLGA-NPs (31.61%). The Tf-GB-PLGA-NPs exhibited a significantly higher concentration in the brain than pure GB and GB-PLGA-NPs. Tf-GB-PLGA-NPs showed 11.16-fold higher AUC0-t (bioavailability) than pure GB solution and 2.23-fold higher bioavailability than GB-PLGA-NPs. The finding concludes that the Tf-GB-PLGA-NPs are an alternative potent carrier for GB to brain delivery for treating brain cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University
- Center for Health Research, Northern Border University
| |
Collapse
|
2
|
Wang J, Zhu X, Jiang H, Ji M, Wu Y, Chen J. Cancer cell-derived exosome based dual-targeted drug delivery system for non-small cell lung cancer therapy. Colloids Surf B Biointerfaces 2024; 244:114141. [PMID: 39216444 DOI: 10.1016/j.colsurfb.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is among most prevalent cancers in the world, in which non-small cell lung cancer (NSCLC) accounts for more than 85 % of all subtypes of lung cancers. NSCLC is often diagnosed at an advanced stage with a high mortality rate. Despite the demonstrated efficacy of chemotherapy in the treatment of NSCLC, the main drawback of current therapy is the lack of an effective drug-targeted delivery system, which may result in undesirable side effects during the clinical treatment. In this study, we construct a "dual-targeting" anti-cancer drug delivery platform by combining superparamagnetic iron oxide nanoparticles (SPIONs) with exosomes derived from NSCLC cells. We successfully promoted the targeted delivery of anti-drug doxorubicin (DOX) at the cellular levels by combining the homing targeted ability of exosomes with the magnetic targeted ability of SPIONs. Moreover, non-small cell lung cancer cell (NCI-h1299) tumor models were established. It was found that exosome-SPIONs (Exo-SPIONs) loaded with DOX exhibited optimal tumor tissue delivery and tumor suppression in the presence of an external magnetic field, and reduced the toxicity of the DOX to normal tissues. The constructed "dual-targeting" anti-cancer drug delivery platform holds promise for targeted chemotherapy for NSCLC.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Exosomes/chemistry
- Exosomes/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- Doxorubicin/administration & dosage
- Drug Delivery Systems
- Animals
- Cell Line, Tumor
- Mice
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/administration & dosage
- Cell Proliferation/drug effects
- Magnetic Iron Oxide Nanoparticles/chemistry
- Cell Survival/drug effects
- Mice, Nude
- Magnetite Nanoparticles/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Mice, Inbred BALB C
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Jun Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jin Chen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Chen M, Yang Z, Hu Z, Hao Y, Lu J, Sun D. Aptamer-Based Electrochemical Biosensing Platform for Analysis of Cardiac Biomarkers. ACS Sens 2024; 9:5354-5362. [PMID: 39449604 DOI: 10.1021/acssensors.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Monitoring biomarkers secreted by cardiomyocytes is critical to evaluate anticancer drug-induced myocardial injury (MI). Cardiac troponin I (cTnI) is considered the gold standard biomarker for MI. Herein, an electrochemical aptasensor is engineered for cTnI detection based on lanthanide europium metal-organic frameworks (Eu-MOFs) and a hybridization chain reaction-directed DNAzyme strategy. Three types of Eu-MOF morphologies were easily synthesized by changing the solvent, and the Eu-MOF modulated by mixing the solvent of dimethylformamide and H2O (D-Eu-MOF) exhibited the best performance compared to other morphologies of the Eu-MOFs. Multifunctional nanoprobes were constructed from D-Eu-MOF@Pt loaded with natural horseradish peroxidase and combined with an aptamer-initiated nuclear acid hybridization chain reaction to form G-quadruplex/hemin DNAzymes for signal amplification. A novel capture probe is constructed on the basis of DNA nanotetrahedrons modified on screen-printed gold electrodes to enhance the capture of the target and multifunctional nanoprobes for signal amplification. It exhibits a detection limit of 0.17 pg mL-1 and a linear range from 0.5 pg mL-1 to 15 ng mL-1. The practicality of the platform is evaluated by measuring cTnI in real samples and secreted by cardiomyocytes after drug treatment, which provides great potential in drug-induced MI evaluation for clinical application.
Collapse
Affiliation(s)
- Mengjie Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zelin Yang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuoliang Hu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yudan Hao
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
6
|
Dulf PL, Coadă CA, Florea A, Moldovan R, Baldea I, Dulf DV, Blendea D, David L, Moldovan B, Morosan VI, Macavei S, Filip GA. Doxorubicin Incorporation into Gold Nanoparticles: An In Vivo Study of Its Effects on Cardiac Tissue in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1647. [PMID: 39452984 PMCID: PMC11510282 DOI: 10.3390/nano14201647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Gold nanoparticles (Au-NPs) have been explored as potential vectors for enhancing the antitumor efficacy of doxorubicin (DOX) while minimizing its cardiotoxic effects. However, the impacts of DOX Au-NPs on cardiac function and oxidative stress remain inadequately understood. This study aimed to explore the effects of DOX Au-NPs in comparison to free DOX, focusing on oxidative stress markers, inflammation, ultrastructural changes, and cardiac function. Male rats were divided into the following four groups: control, citrate Au-NPs, DOX, and DOX Au-NPs. Cardiac function was assessed using echocardiography, and oxidative stress was evaluated through Nrf2, malondialdehyde (MDA) and superoxide dismutase (SOD) levels, and the GSH/GSSG ratio. The ultrastructure of cardiac tissue was assessed by transmission electron microscopy (TEM). Rats treated with DOX Au-NPs exhibited significant cardiac dysfunction, as indicated by a reduction in fractional shortening and ejection fraction. Oxidative stress markers, including elevated MDA levels and a reduced GSH/GSSG ratio, were significantly worse in the DOX Au-NP group. SOD levels decreased, indicating compromised antioxidant defenses. Citrate Au-NPs also caused some alterations in cardiac function and ultrastructure but without other molecular alterations. DOX Au-NPs failed to mitigate cardiotoxicity, instead exacerbating oxidative stress and cardiac dysfunction. DOX Au-NPs possess cardiotoxic effects, necessitating further investigation into alternative nanoparticle formulations or therapeutic combinations to ensure both efficacy and safety in cancer treatment.
Collapse
Affiliation(s)
- Patricia Lorena Dulf
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.L.D.); (D.V.D.)
| | - Camelia Alexandra Coadă
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.L.D.); (D.V.D.)
| | - Adrian Florea
- Department of Molecular Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Remus Moldovan
- Department of Functional Biosciences, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.M.); (G.A.F.)
| | - Ioana Baldea
- Department of Functional Biosciences, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.M.); (G.A.F.)
| | - Daniel Vasile Dulf
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (P.L.D.); (D.V.D.)
- Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
| | - Dan Blendea
- Internal Medicine Department, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Cardiology, Heart Institute, 400001 Cluj-Napoca, Romania
| | - Luminita David
- Research Centre for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania; (L.D.); (B.M.); (V.I.M.)
| | - Bianca Moldovan
- Research Centre for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania; (L.D.); (B.M.); (V.I.M.)
| | - Valentina Ioana Morosan
- Research Centre for Advanced Chemical Analysis, Instrumentation and Chemometrics, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania; (L.D.); (B.M.); (V.I.M.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania;
| | - Gabriela Adriana Filip
- Department of Functional Biosciences, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.M.); (G.A.F.)
| |
Collapse
|
7
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Perinbarajan GK, Sinclair BJ, Mossa AT, Ohja N, Jeelani PG. Silica/ Annona muricata nano-hybrid: Synthesis and anticancer activity against breast cancer. Heliyon 2024; 10:e25048. [PMID: 38322972 PMCID: PMC10844132 DOI: 10.1016/j.heliyon.2024.e25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Biogenically derived silica nanoparticles may serve as a well-defined target vehicle for drug delivery and have a wide range of applications in biomedicine. Silica nanoparticles are an excellent candidate as drug carriers due to their mesoporous structure, high drug loading capacity, low toxicity, environmental friendliness and low economic synthesis procedures. In this study, nano structured silica was extracted from sugarcane bagasse through an alkali leaching extraction and conjugated with A. muricata extract overcoming its poor solubility and improving its bioavailability within the host system. The Silica Nanoparticles (SNP) and Annona muricata conjugated Silica Nanoparticles (AM/SNP) were characterized using SEM, FTIR, TGA, EDAX, XRD and zeta potential. The AM/SNP was subjected to kinetic release studies and exhibited a sustained release of 64 % over the course of 12 h in contrast to extract, indicating the slow release of the drug under synthetic conditions. A. muricata pose a high affinity against tumor cells as an anti-cancer agent, and the potential of binding was testified using in-silico virtual screening against breast cancer receptors with lead acetogenins with Annomuricin (-7.4 kcal/mol) and Gigantecin (-7.4 kcal/mol) exhibiting a high binding affinity against ER and HER2+ receptors respectively. The AM/SNP conjugate exhibited high cytotoxicity against the MCF-7 breast cancer cell line with an IC50 value of 33.43 μg, indicating high potency of the conjugate at low concentrations, facilitating low systemic toxicity on administration.
Collapse
Affiliation(s)
- Gopi Krishna Perinbarajan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St ‘Ad Doqi, Dokki, Cairo Governorate, 12622, Egypt
| | - Nupur Ohja
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Peerzada Gh Jeelani
- Post Graduate and Research Department of Biotechnology & Microbiology National College (Autonomous), Tiruchirapalli, Tamilnadu, 620001, India
| |
Collapse
|
10
|
Adamus-Grabicka AA, Hikisz P, Sikora J. Nanotechnology as a Promising Method in the Treatment of Skin Cancer. Int J Mol Sci 2024; 25:2165. [PMID: 38396841 PMCID: PMC10889690 DOI: 10.3390/ijms25042165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of skin cancer continues to grow. There are an estimated 1.5 million new cases each year, of which nearly 350,000 are melanoma, which is often fatal. Treatment is challenging and often ineffective, with conventional chemotherapy playing a limited role in this context. These disadvantages can be overcome by the use of nanoparticles and may allow for the early detection and monitoring of neoplastic changes and determining the effectiveness of treatment. This article briefly reviews the present understanding of the characteristics of skin cancers, their epidemiology, and risk factors. It also outlines the possibilities of using nanotechnology, especially nanoparticles, for the transport of medicinal substances. Research over the previous decade on carriers of active substances indicates that drugs can be delivered more accurately to the tumor site, resulting in higher therapeutic efficacy. The article describes the application of liposomes, carbon nanotubes, metal nanoparticles, and polymer nanoparticles in existing therapies. It discusses the challenges encountered in nanoparticle therapy and the possibilities of improving their performance. Undoubtedly, the use of nanoparticles is a promising method that can help in the fight against skin cancer.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
11
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
12
|
Stavrou M, Phung N, Grimm J, Andreou C. Organ-on-chip systems as a model for nanomedicine. NANOSCALE 2023; 15:9927-9940. [PMID: 37254663 PMCID: PMC10619891 DOI: 10.1039/d3nr01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomedicine is giving rise to increasing numbers of successful drugs, including cancer treatments, molecular imaging agents, and novel vaccine formulations. However, traditionally available model systems offer limited clinical translation and, compared to the number of preclinical studies, the approval rate of nanoparticles (NPs) for clinical use remains disappointingly low. A new paradigm of modeling biological systems on microfluidic chips has emerged in the last decade and is being gradually adopted by the nanomedicine community. These systems mimic tissues, organs, and diseases like cancer, on devices with small physical footprints and complex geometries. In this review, we report studies that used organ-on-chip approaches to study the interactions of NPs with biological systems. We present examples of NP toxicity studies, studies using biological NPs such as viruses, as well as modeling biological barriers and cancer on chip. Organ-on-chip systems present an exciting opportunity and can provide a renewed direction for the nanomedicine community.
Collapse
Affiliation(s)
- Marios Stavrou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| | - Ngan Phung
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Jan Grimm
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Chrysafis Andreou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| |
Collapse
|
13
|
Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Triple targeting host-guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. MATERIALS HORIZONS 2023; 10:1689-1696. [PMID: 36825769 DOI: 10.1039/d3mh00018d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host-guest drug delivery systems (HGDDSs) have been studied in an effort to modify the characteristics of therapeutic agents through noncovalent interactions, reduce toxic side effects and improve therapeutic effects. However, it is still an important task to continuously improve the targeting ability of HGDDSs, which is conducive to the development of precision medicine. Herein, we utilize the lactose-modified azocalix[4]arene (LacAC4A) as a triple targeting drug carrier customized for antitumor purposes. LacAC4A integrates three targeting features, passive targeting through the enhancing permeability and retention effect, active targeting by the interactions of lactose and the asialoglycoprotein receptors on the surface of tumor cells, and stimuli-responsive targeting via the reduction of the azo group under a hypoxia microenvironment. After loading doxorubicin (DOX) in LacAC4A, the supramolecular nanoformulation DOX@LacAC4A clearly showed the effective suppression of tumor growth through in vivo experiments. LacAC4A can achieve effective targeting, rapid release, and improve drug bioavailability. This design principle will provide a new material for drug delivery systems.
Collapse
Affiliation(s)
- Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Rui-Xue Rong
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Yan Yang
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bing Hu
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Ying-Ying Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Al-hussaniy HA, Alburghaif AH, alkhafaje Z, AL-Zobaidy MAHJ, Alkuraishy HM, Mostafa-Hedeab G, Azam F, Al-Samydai AM, Al-tameemi ZS, Naji MA. Chemotherapy-induced cardiotoxicity: a new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs. J Med Life 2023; 16:491-500. [PMID: 37305823 PMCID: PMC10251384 DOI: 10.25122/jml-2022-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 06/13/2023] Open
Abstract
Cancer is a major public health problem, and chemotherapy plays a significant role in the management of neoplastic diseases. However, chemotherapy-induced cardiotoxicity is a serious side effect secondary to cardiac damage caused by antineoplastic's direct and indirect toxicity. Currently, there are no reliable and approved methods for preventing or treating chemotherapy-induced cardiotoxicity. Understanding the mechanisms of chemotherapy-induced cardiotoxicity may be vital to improving survival. The independent risk factors for developing cardiotoxicity must be considered to prevent myocardial damage without decreasing the therapeutic efficacy of cancer treatment. This systematic review aimed to identify and analyze the evidence on chemotherapy-induced cardiotoxicity, associated risk factors, and methods to decrease or prevent it. We conducted a comprehensive search on PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) using the following keywords: "doxorubicin cardiotoxicity", "anthracycline cardiotoxicity", "chemotherapy", "digoxin decrease cardiotoxicity", "ATG7 activators", retrieving 59 articles fulfilling the inclusion criteria. Therapeutic schemes can be changed by choosing prolonged infusion application over boluses. In addition, some agents like Dexrazoxane can reduce chemotherapy-induced cardiotoxicity in high-risk groups. Recent research found that Digoxin, ATG7 activators, Resveratrol, and other medical substances or herbal compounds have a comparable effect on Dexrazoxane in anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Hany Akeel Al-hussaniy
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | | | - Zahraa alkhafaje
- Department of Pharmacy, Alfarahidi University College, Baghdad, Iraq
| | | | - Hayder Mutair Alkuraishy
- Department of Clinical Pharmacology, College of Medicine, Almustansria University, Baghdad, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Saudi Arabia
| | - Ali Mahmoud Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zahraa Salam Al-tameemi
- Department of Pharmacy, Bilad Alrafidain University College, Diyala, Iraq
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| | - Meena Akeel Naji
- Dr. Hany Akeel Institute, Iraqi Medical Research Center, Baghdad, Iraq
| |
Collapse
|
15
|
Szota M, Jachimska B. Effect of Alkaline Conditions on Forming an Effective G4.0 PAMAM Complex with Doxorubicin. Pharmaceutics 2023; 15:pharmaceutics15030875. [PMID: 36986735 PMCID: PMC10057121 DOI: 10.3390/pharmaceutics15030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, special attention was paid to the correlation between the degree of ionization of the components and the effective formation of the complex under alkaline conditions. Using UV-Vis, 1H NMR, and CD, structural changes of the drug depending on the pH were monitored. In the pH range of 9.0 to 10.0, the G4.0 PAMAM dendrimer can bind 1 to 10 DOX molecules, while the efficiency increases with the concentration of the drug relative to the carrier. The binding efficiency was described by the parameters of loading content (LC = 4.80-39.20%) and encapsulation efficiency (EE = 17.21-40.16%), whose values increased twofold or even fourfold depending on the conditions. The highest efficiency was obtained for G4.0PAMAM-DOX at a molar ratio of 1:24. Nevertheless, regardless of the conditions, the DLS study indicates system aggregation. Changes in the zeta potential confirm the immobilization of an average of two drug molecules on the dendrimer's surface. Circular dichroism spectra analysis shows a stable dendrimer-drug complex for all the systems obtained. Since the doxorubicin molecule can simultaneously act as a therapeutic and an imaging agent, the theranostic properties of the PAMAM-DOX system have been demonstrated by the high fluorescence intensity observable on fluorescence microscopy.
Collapse
Affiliation(s)
- Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| |
Collapse
|
16
|
Yang F, Xue J, Wang G, Diao Q. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:999404. [PMID: 36172197 PMCID: PMC9512262 DOI: 10.3389/fphar.2022.999404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Despite recent advances in the management of cardiovascular diseases, pharmaceutical treatment remains suboptimal because of poor pharmacokinetics and high toxicity. However, since being harnessed in the cancer field for the delivery of safer and more effective chemotherapeutics, nanoparticle-based drug delivery systems have offered multiple significant therapeutic effects in treating cardiovascular diseases. Nanoparticle-based drug delivery systems alter the biodistribution of therapeutic agents through site-specific, target-oriented delivery and controlled drug release of precise medicines. Metal-, lipid-, and polymer-based nanoparticles represent ideal materials for use in cardiovascular therapeutics. New developments in the therapeutic potential of drug delivery using nanoparticles and the application of nanomedicine to cardiovascular diseases are described in this review. Furthermore, this review discusses our current understanding of the potential role of nanoparticles in metabolism and toxicity after therapeutic action, with a view to providing a safer and more effective strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Fangyu Yang
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- Department of Clinical Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Bio-Rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Qizhi Diao
- Department of Clinical Laboratory Medicine, Sanya Women and Children’s Hospital Managed by Shanghai Children’s Medical Center, Hainan, China
- *Correspondence: Qizhi Diao,
| |
Collapse
|
17
|
Andrade-Zavaleta K, Chacon-Laiza Y, Asmat-Campos D, Raquel-Checca N. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules 2022; 27:1367. [PMID: 35209154 PMCID: PMC8880537 DOI: 10.3390/molecules27041367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
The green synthesis of metal oxide nanoparticles is presented as an excellent sustainable alternative for achieving nanostructures, with potential applications. This research provides important information regarding the influence of the type of solvent used in extracting organic reducing agents from E. globulus on the FeO NPs green synthesis protocol. A broad approach to characterization is presented, where UV-vis spectrophotometry suggests the presence of this type of nanoparticulate material. Likewise, the reduction mechanism was evaluated by FT-IR and the magnetic properties were evaluated by PPSM. In addition, characterizations were linked via elemental analysis (EDX), crystallographic characterization (XRD), electron microscopy (SEM/STEM), and Z potential to evaluate colloidal stability. The results show the influence of the type of solvent used for the extraction of organic reducing agents from E. globulus, and the effect on the synthesis of FeO NPs. In addition, the nanostructure material obtained showed excellent efficiency in the remediation of agricultural soil, eliminating metals such as Cr-VI, Cd, and, to a lesser extent, Pb.
Collapse
Affiliation(s)
- Karin Andrade-Zavaleta
- Facultad de Ingeniería, Ingeniería Ambiental, Universidad Privada del Norte, Trujillo 13011, Peru; (K.A.-Z.); (Y.C.-L.)
| | - Yessica Chacon-Laiza
- Facultad de Ingeniería, Ingeniería Ambiental, Universidad Privada del Norte, Trujillo 13011, Peru; (K.A.-Z.); (Y.C.-L.)
| | - David Asmat-Campos
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Trujillo 13011, Peru
| | | |
Collapse
|
18
|
Tang Z, Wei X, Li T, Wang W, Wu H, Dong H, Liu Y, Wei F, Shi L, Li X, Guo Z, Xiao X. Sestrin2-Mediated Autophagy Contributes to Drug Resistance via Endoplasmic Reticulum Stress in Human Osteosarcoma. Front Cell Dev Biol 2021; 9:722960. [PMID: 34646824 PMCID: PMC8502982 DOI: 10.3389/fcell.2021.722960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
One contributor to the high mortality of osteosarcoma is its reduced sensitivity to chemotherapy, but the mechanism involved is unclear. Improving the sensitivity of osteosarcoma to chemotherapy is urgently needed to improve patient survival. We found that chemotherapy triggered apoptosis of human osteosarcoma cells in vitro and in vivo; this was accompanied by increased Sestrin2 expression. Importantly, autophagy was also enhanced with increased Sestrin2 expression. Based on this observation, we explored the potential role of Sestrin2 in autophagy of osteosarcoma. We found that Sestrin2 inhibited osteosarcoma cell apoptosis by promoting autophagy via inhibition of endoplasmic reticulum stress, and this process is closely related to the PERK-eIF2α-CHOP pathway. In addition, our study showed that low Sestrin2 expression can effectively reduce autophagy of human osteosarcoma cells after chemotherapy, increase p-mTOR expression, decrease Bcl-2 expression, promote osteosarcoma cell apoptosis, and slow down tumour progression in NU/NU mice. Sestrin2 activates autophagy by inhibiting mTOR via the PERK-eIF2α-CHOP pathway and inhibits apoptosis via Bcl-2. Therefore, our results explain one underlying mechanism of increasing the sensitivity of osteosarcoma to chemotherapy and suggest that Sestrin2 is a promising gene target.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinghui Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wei Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Hao Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yichao Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feilong Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|