1
|
Huang Y, Li H, Qi L, Wang Z, Liu Z, Wu R, Chen Q, Zhu C, Sun D, Liu L, Zhang L, Feng G. NanoCRISPR-assisted biomimetic tissue-equivalent patch regenerates the intervertebral disc by inhibiting endothelial-to-mesenchymal transition. Biomaterials 2025; 322:123404. [PMID: 40398216 DOI: 10.1016/j.biomaterials.2025.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
The integrity of the intervertebral disc (IVD), an immune-privileged organ protected by the blood-disc barrier, is compromised following annulus fibrosus (AF) injury. This breach facilitates angiogenesis, immune cell infiltration, and inflammation, accelerating intervertebral disc degeneration (IDD) and resulting in various clinical disorders. Current treatments fail to adequately address biological repair of AF defects and angiogenesis. Single-cell RNA sequencing analyses reveal that vascular endothelial growth factor (VEGF), secreted by IDD-associated fibrochondrocytes, is crucial in promoting angiogenesis by inducing endothelial-to-mesenchymal transition (EndoMT). This study proposes a nano-clustered regularly interspaced short palindromic repeats (CRISPR)-assisted AF patch with an aligned, polydopamine-modified nano-lamellae nanofibrous scaffold that replicates the hierarchical structure of natural AF, providing a conducive microenvironment for AF repair. A zeolitic imidazolate framework-8-based nanoCRISPR system encapsulates the CRISPR/CRISPR-associated protein 9 complex to target and eliminate VEGF-mediated angiogenic factors. In vitro studies demonstrate that the nanoCRISPR-assisted patch can enhance AF cell adhesion and migration, promote extracellular matrix deposition, knock out VEGF expression, and inhibit EndoMT. In vivo studies show its significant efficacy in promoting AF repair, inhibiting abnormal angiogenesis, and delaying IDD progression. This study presents a promising approach for structural and biological AF regeneration, addressing physical and angiogenic barriers in IVD regeneration.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhe Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Qian Chen
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queens University Belfast, Belfast, BT9 5AH, UK
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Jiao Q, Xu X, Xu L, Wang Y, Pang S, Hao J, Liu X, Zhao Y, Qi W, Qin L, Huang T, Li J, Wang T. Knockdown of eIF3a alleviates pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition via TGFβ1/SMAD pathway. J Transl Med 2025; 23:524. [PMID: 40346622 PMCID: PMC12065328 DOI: 10.1186/s12967-025-06505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by vascular remodeling and involves Endothelial-to-Mesenchymal transition (EndMT) in pulmonary artery endothelial cells (PAECs). EndMT is a complex cell differentiation process, mainly showing the detachment of endothelial cell migration and reducing endothelial cell characteristics to varying degrees, acquiring mesenchymal cell characteristics. In addition, numerous studies have reported that eIF3a over expression plays an important role in the occurrence and development of fibrotic diseases, cancer, and degenerative lesions, however, the mechanisms of eIF3a affecting the dysfunction of pulmonary arterial endothelial cells remains largely unknown. Therefore, we aimed to demonstrate the underlying mechanisms of eIF3a-knockdown inhibiting EndMT by regulating TGFβ1/SMAD signal pathway in PAH. METHODS In this study, we screened the potential target genes associated with idiopathic pulmonary arterial hypertension (IPAH) by WGCNA to provide a reference for the diagnosis and treatment of PAH. By constructing WGCNA, which indicated that the blue module (module-trait associations between modules and clinical feature information were calculated to selected the optimum module) is most closely associated with IPAH, we further screened out 10 up-regulated candidate biomarker genes. Male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), AAV1-shRNA-NC group and AAV1-shRNA-eIF3a group. The eIF3a-knockdown rat model was constructed by adeno-associated virus type-1 (AAV1) infection, PAH was evaluated according to hemodynamic alteration, right heart hypertrophy and histopathological changes in the lung tissue. Hematoxylin eosin (H&E) staining was used to assess the morphological changes of pulmonary arteries in rats of each treatment group. Co-localization of eIF3a with alpha-small muscle action (α-SMA) and co-localization of eIF3a with endothelial marker (CD31) were detected by double-label immunofluorescence. Immunohistochemistry (IHC) and Western blot (WB) experiments were performed to assess the expression of eIF3a, EndMT and TGFβ1/SMAD signal related proteins. In vitro, primary rat pulmonary artery endothelial cells (PAECs) were transfected with si-eIF3a to investigate the effects of eIF3a-knockdown on hypoxia-induced EndMT in PAECs and further elucidate its underlying molecular mechanisms. RESULTS By WGCNA analysis, we screened the up-regulated hub genes of TMF1, GOLGB1, ARMC8, PRPF40 A, EIF3 A, ROCK2, EIF5B, CCP110, and KRR1 associated with PAH, and in order to verify the potential role of eIF3a in the development of pulmonary arterial hypertension, MCT-induced PAH rat model was constructed successfully. The expression of eIF3a was increased in MCT-treated lungs. Knockdown of eIF3a significantly inhibited the pulmonary arterial hypertension and vascular remodeling in MCT-induced PAH rat model, ameliorated MCT-induced increases of right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) in rats. Double-labeled immunofluorescence showed eIF3a was mostly co-localized with CD31, this result indicated that the development of MCT-induced PAH was related to the regulation of PAECs function (most likely associated with the change of EndMT in endothelial cells). WB showed that the expressions of EndMT related proteins were significantly increased by regulating TGFβ1/SMAD signaling pathway in MCT-induced PAH rat lung tissues, however, knockdown of eIF3a markedly attenuated these changes. In addition, we observed the same results in rat PAECs with chronic hypoxia exposure. These results indicate that eIF3a-knockdown inhibited EndMT by regulating TGFβ1/SMAD signaling pathway in PAECs, thereby improving the development of MCT-induced PAH. CONCLUSIONS Knockdown of eIF3a inhibited EndMT in PAECs regulating TGFβ1/SMAD signaling pathway, significantly alleviated the changes of RVSP, RVH and vascular remodeling in MCT-induced PAH rats, eIF3a may be a promising and novel therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Qiuhong Jiao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiufeng Xu
- Department of Geriatrics, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Longwu Xu
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yuying Wang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Shulan Pang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jie Hao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaohong Liu
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yudan Zhao
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Wanpeng Qi
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Limin Qin
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Tao Huang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jingtian Li
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Tao Wang
- Department of Cardiology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Wang S, Xu D, Wang Y, Zhou Y, Xiao L, Li F, Tu J, Qin W, Tian S, Zheng B, Wang Y, Yuan XL, Liu Y, Liu B. A Bifunctional Antibody Targeting PD-1 and TGF-β Signaling Has Antitumor Activity in Combination with Radiotherapy and Attenuates Radiation-Induced Lung Injury. Cancer Immunol Res 2025; 13:767-784. [PMID: 39878763 PMCID: PMC12046334 DOI: 10.1158/2326-6066.cir-23-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/03/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumor effect of JS-201 combined with radiotherapy (RT) and the effect on radiation-induced lung injury (RILI). Different tumor models were established to detect the antitumor effects of the combination of JS-201 and RT, and RILI models were established to observe the effects of JS-201. Transcriptome sequencing showed that JS-201 optimized the tumor microenvironment by inhibiting extracellular matrix formation and angiogenesis. Combining JS-201 with RT further increased the inflammatory response and immune infiltration and showed great abscopal effects in Lewis lung cancer luciferase-positive models. Single-cell sequencing demonstrated that JS-201 reduced fibroblast proliferation by inhibiting the TGF-β/Smad pathway and the release of neutrophil extracellular traps mediated by ROS, thereby relieving radiation-induced pulmonary fibrosis. In conclusion, the JS-201 and RT combination enhances antitumor effects while mitigating acute and chronic RILI, and it may have potential for translational investigation as a cancer treatment strategy.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuehua Zhou
- Top Alliance Biosciences Inc., Suzhou, China
| | - Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Xiang-lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yu Z, Luo J, An W, Wei H, Li M, He L, Xiao F, Wei H. Migrasome Marker Epidermal Growth Factor Domain-Specific O-GlcNAc Transferase: Pan-Cancer Angiogenesis Biomarker and the Potential Role of circ_0058189/miR-130a-3p/EOGT Axis in Hepatocellular Carcinoma Progression and Sorafenib Resistance. Biomedicines 2025; 13:773. [PMID: 40299340 PMCID: PMC12024942 DOI: 10.3390/biomedicines13040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background: The EGF domain-specific O-GlcNAc transferase (EOGT), a migrasome marker, plays emerging roles in cancer biology through O-GlcNAcylation modifications, yet its pan-cancer functions and therapeutic implications remain underexplored. This study aimed to systematically characterize EOGT's oncogenic mechanisms across malignancies, with particular focus on hepatocellular carcinoma (HCC) progression and sorafenib resistance. Methods: Multi-omics analysis integrated TCGA/GTEx data from 33 cancer types with spatial/single-cell transcriptomics and 10 HCC cohorts. Functional validation employed Huh7 cell models with EOGT modulation, RNA sequencing, and ceRNA network construction. Drug sensitivity analysis leveraged GDSC/CTRP/PRISM databases, while immune microenvironment assessment utilized ESTIMATE/TIMER algorithms. Results: EOGT showed cancer-specific dysregulation, marked by significant upregulation in HCC correlating with advanced stages and poor survival. Pan-cancer analysis revealed EOGT's association with genomic instability, tumor stemness, and angiogenesis. Experimental validation demonstrated EOGT's promotion of HCC proliferation and migration. A novel exosomal circ_0058189/miR-130a-3p/EOGT axis was identified, showing that circ_0058189 was upregulated in HCC tissues, plasma samples and exosomes of sorafenib-resistant cells. Conclusion: This study establishes EOGT as a pan-cancer angiogenesis biomarker, while elucidating its role in therapeutic resistance via exosomal circRNA-mediated regulation, providing mechanistic insights for targeted intervention strategies.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, China; (Z.Y.); (J.L.)
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jing Luo
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, China; (Z.Y.); (J.L.)
| | - Wen An
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (W.A.); (H.W.); (M.L.); (L.H.)
| | - Herui Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (W.A.); (H.W.); (M.L.); (L.H.)
| | - Mengqi Li
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (W.A.); (H.W.); (M.L.); (L.H.)
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (W.A.); (H.W.); (M.L.); (L.H.)
| | - Fan Xiao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China;
| | - Hongshan Wei
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing 100015, China; (Z.Y.); (J.L.)
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; (W.A.); (H.W.); (M.L.); (L.H.)
| |
Collapse
|
5
|
Mei J, Yang K, Zhang X, Luo Z, Tian M, Fan H, Chu J, Zhang Y, Ding J, Xu J, Cai Y, Yin Y. Intratumoral Collagen Deposition Supports Angiogenesis Suggesting Anti-angiogenic Therapy in Armored and Cold Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409147. [PMID: 39823457 PMCID: PMC11904994 DOI: 10.1002/advs.202409147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/05/2025] [Indexed: 01/19/2025]
Abstract
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types. As a result, armored & cold tumors exhibit the highest angiogenic activity in lung adenocarcinoma (LUAD). Single-cell and spatial transcriptomics reveal close interactions and spatial co-localization of fibroblasts and endothelial cells. In vitro experiments demonstrate that collagen stimulates tumor cells to express vascular endothelial growth factor A (VEGFA) and directly enhances vessel formation and endothelial cell proliferation through sex determining region Y box 18 (SOX18) upregulation. Collagen inhibition via multiple approaches effectively suppresses tumor angiogenesis in vivo. In addition, armored & cold tumors display superior responsiveness to anti-angiogenic therapy in advanced LUAD cohorts. Post-immunotherapy resistance, the transformation into armored & cold tumors emerges as a potential biomarker for selecting anti-angiogenic therapy. In summary, collagen deposition is shown to drive angiogenesis across various cancers, providing a novel and actionable framework to refine therapeutic strategies combining chemotherapy with anti-angiogenic treatments.
Collapse
Affiliation(s)
- Jie Mei
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Kai Yang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Xinkang Zhang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Zhiwen Luo
- Department of Sports MedicineHuashan Hospital Affiliated to Fudan UniversityShanghai200040P. R. China
| | - Min Tian
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Hanfang Fan
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Jiahui Chu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Yan Zhang
- Departments of GynecologyThe Women's Hospital Affiliated to Jiangnan UniversityWuxi214023China
| | - Junli Ding
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Junying Xu
- Departments of OncologyWuxi People's HospitalThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023P. R. China
| | - Yun Cai
- Central LaboratoryChangzhou Jintan First People's HospitalThe Affiliated Jintan Hospital of Jiangsu UniversityChangzhouJiangsu213200P. R. China
| | - Yongmei Yin
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu211166P. R. China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
6
|
Ghamlouch H, Gagler DC, Blaney P, Boyle EM, Wang Y, Avigan J, Choi J, Landgren O, Tsirigos A, Maura F, Morgan GJ, Davies FE. A proinflammatory response and polarized differentiation of stromal elements characterizes the murine myeloma bone marrow niche. Exp Hematol Oncol 2025; 14:22. [PMID: 40011943 DOI: 10.1186/s40164-025-00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The bone marrow (BM) niche contains non-hematopoietic elements including mesenchymal stromal cells (MSC) and bone marrow endothelial cells (BMEC) which provide mechanical support, and control hematopoietic cell growth and differentiation. Although it is known that multiple myeloma (MM) cells interact closely with the BM microenvironment, little is known about the impact of MM on non-hematopoietic niche-forming cells. METHODS To address the role of the niche in MM pathogenesis, we utilized the 5TGM1 murine model. During the asymptomatic precursor stage of the model, we isolated the rare non-hematopoietic cells and performed single cell RNA sequencing. Using in-silico methods we characterized the individual cellular components of the niche, their relative abundance and differentiation state before and after exposure to MM cells as well as their intercellular interactions. RESULTS MM engraftment increased the abundance of MSC-lineage cells, BMECs and enhanced endothelial to mesenchymal transition. An inflammatory and oxidative stress signal was identified together with polarization of MSC differentiation away from osteocyte formation towards adipocytes which provide growth factors that are known to support MM expansion. BMEC differentiation was polarized towards sinusoidal endothelial cells with a pro-angiogenic/pro-inflammatory phenotype. CONCLUSIONS MM cells impact the BM niche by generating a pro-inflammatory microenvironment with MSC differentiation being changed to generate cell subsets that favor MM growth and survival. In order to induce remission and improve long-term outcome for MM patients these inflammatory and oxidative stress signals need to be reduced and normal niche differentiation trajectories restored.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA.
| | - Dylan C Gagler
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Patrick Blaney
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Eileen M Boyle
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Cancer Institute, University College London, London, UK
- Clinical Haematology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Yubao Wang
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Jason Avigan
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Francesco Maura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Gareth J Morgan
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Faith E Davies
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Katoh D, Senga Y, Mizutani K, Maruyama K, Yamakawa D, Yamamuro T, Hiroe M, Yamanaka K, Sudo A, Katayama N, Yoshida T, Imanaka-Yoshida K. Negative regulation of lymphangiogenesis by Tenascin-C delays the resolution of inflammation. iScience 2025; 28:111756. [PMID: 39925433 PMCID: PMC11803235 DOI: 10.1016/j.isci.2025.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Lymphatic vessels are required for the clearance of excess fluid and immune cells from inflamed tissue, making the regulation of lymphangiogenesis an important area of research. Although the positive regulatory mechanisms of lymphangiogenesis are well known, the negative regulatory mechanisms observed during inflammation remain unclear. Here, we identify tenascin-C (TNC) as a spatiotemporal negative regulator of lymphangiogenesis during inflammation. We found an inverse correlation between lymphangiogenesis and TNC expression in a mouse lymphedema model. Genetic deletion of Tnc promotes lymphangiogenesis and improves lymphatic drainage function, thereby accelerating the resolution of inflammation. Conversely, the exogenous addition of TNC suppresses lymphangiogenesis and prolongs inflammation. TNC inhibits the proliferation and promotes apoptosis of lymphatic endothelial cells. Mechanistically, TNC facilitates integrin αvβ1 heterodimer formation, leading to the activation of non-canonical (TAK1/p38MAPK/ATF-2) TGFβ signaling to suppress lymphangiogenesis. Our study highlights the importance of negative regulation of lymphangiogenesis in modulating immune responses.
Collapse
Affiliation(s)
- Daisuke Katoh
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yoshiyuki Senga
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kento Mizutani
- Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daishi Yamakawa
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Michiaki Hiroe
- Department of Cardiology, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
8
|
Dong J, Ding J, Luo S, Li R, Wang Y, Xiao B, Pei Y, Chen X, Sun W, Pei Z. Remodeling tumor microenvironment using prodrug nMOFs for synergistic cancer therapy. J Nanobiotechnology 2025; 23:123. [PMID: 39972341 PMCID: PMC11837371 DOI: 10.1186/s12951-025-03202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Metal-organic frameworks (MOFs) hold tremendous potential in cancer therapy due to their remarkable structural and functional adaptability, enabling them to serve as nanocarriers for biopharmaceuticals and nanoreactors for organizing cascade bioreactions. Nevertheless, MOFs are predominantly utilized as biologically inactive carriers in most cases. Developing nanoscale prodrug MOFs suitable for biomedical applications remains a huge challenge. In this study, we have designed a novel prodrug nano-MOFs (nMOFs, named DCCMH) using metformin (Met) and α-cyano-4-hydroxycinnamic acid (CHCA) as ligands for coordination self-assembly with CuCl2, followed by loading of doxorubicin (DOX) and surface modification with hyaluronic acid (HA). Upon internalization by cancer cells, DCCMH releases Cu2+/+, CHCA, Met, and DOX in response to high levels of glutathione (GSH) and hydrogen peroxide (H2O2) within the tumor microenvironment (TME); Cu+ catalyzes the conversion of H2O2 to ·OH via the Fenton reaction while it was oxidized to Cu2+, which was subsequently further de-consumed of GSH; CHCA induces a further decrease in intracellular pH and promotes Fenton reactions by inhibiting lactate efflux; Met up-regulates tyrosine kinase activity and enhances the chemotherapy of DOX. With the ability to synergistically combine chemo/chemodynamic therapy (CT/CDT) and remodel the TME, the DCCMH NPs inhibit murine hepatoma effectively. This study presents a feasible strategy for fabricating prodrug nMOFs which are capable of remodeling TME to improve efficacy through synergistic cancer therapy.
Collapse
Affiliation(s)
- Junliang Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Jindong Ding
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shifan Luo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Ruoshui Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Bing Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
Zhang JN, Zhang Z, Huang ZL, Guo Q, Wu ZQ, Ke C, Lu B, Wang ZT, Ji LL. Isotoosendanin inhibits triple-negative breast cancer metastasis by reducing mitochondrial fission and lamellipodia formation regulated by the Smad2/3-GOT2-MYH9 signaling axis. Acta Pharmacol Sin 2024; 45:2672-2683. [PMID: 39009651 PMCID: PMC11579498 DOI: 10.1038/s41401-024-01335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Ze Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Lin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ze-Qi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chuang Ke
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zheng-Tao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Li Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
11
|
Zou Y, Shi H, Li Y, Li T, Liu N, Liu B. Heat shock protein 27 downregulation attenuates isoprenaline-induced myocardial fibrosis and diastolic dysfunction by modulating the endothelial-mesenchymal transition. Biochem Pharmacol 2024; 230:116612. [PMID: 39515591 DOI: 10.1016/j.bcp.2024.116612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Heart failure (HF), an end-stage clinical syndrome secondary to cardiac impairment, significantly affects patients' quality of life and long-term prognosis. Myocardial fibrosis leads to systolic and diastolic dysfunction, and promotes the progression of HF. Several studies involving the modulation of myocardial fibrosis have been conducted in an effort to improve cardiac function. Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in cellular stress states. HSP27 modulates epithelial-mesenchymal transition, playing a crucial role in the pathology of several fibrotic diseases. However, its association with myocardial fibrosis regulation is unknown. This study aimed to investigate the mechanisms by which HSP27 regulates myocardial fibrosis. We created cardiac-specific HSP25 (the murine ortholog of human HSP27) knockout mice and found that HSP25 knockdown inhibited endothelial-mesenchymal transition (EndMT), attenuated myocardial fibrosis, and ameliorated diastolic dysfunction in isoproterenol-induced HF mice via echocardiography, histology, and western bloting. In vitro, HSP27 knockdown attenuated transforming growth factor beta-induced EndMT, whereas HSP27 overexpression promoted EndMT. Furthermore, the SMAD3/SNAIL1 pathway was found to be crucial for HSP27-mediated EndMT regulation. As an essential molecule in EndMT regulation and myocardial fibrosis modulation, HSP27 may hold promise as a therapeutic target for patients with HF.
Collapse
Affiliation(s)
- Yifei Zou
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Henghe Shi
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Yinghao Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Tianyi Li
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China
| | - Ning Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 4026 Yatai Street, Changchun 130041, China.
| |
Collapse
|
12
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Zhang L, Ge T, Cui J. FLI-1-driven regulation of endothelial cells in human diseases. J Transl Med 2024; 22:740. [PMID: 39107790 PMCID: PMC11302838 DOI: 10.1186/s12967-024-05546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are widely distributed in the human body and play crucial roles in the circulatory and immune systems. ECs dysfunction contributes to the progression of various chronic cardiovascular, renal, and metabolic diseases. As a key transcription factor in ECs, FLI-1 is involved in the differentiation, migration, proliferation, angiogenesis and blood coagulation of ECs. Imbalanced FLI-1 expression in ECs can lead to various diseases. Low FLI-1 expression leads to systemic sclerosis by promoting fibrosis and vascular lesions, to pulmonary arterial hypertension by promoting a local inflammatory state and vascular lesions, and to tumour metastasis by promoting the EndMT process. High FLI-1 expression leads to lupus nephritis by promoting a local inflammatory state. Therefore, FLI-1 in ECs may be a good target for the treatment of the abovementioned diseases. This comprehensive review provides the first overview of FLI-1-mediated regulation of ECs processes, with a focus on its influence on the abovementioned diseases and existing FLI-1-targeted drugs. A better understanding of the role of FLI-1 in ECs may facilitate the design of more effective targeted therapies for clinical applications, particularly for tumour treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Tingwen Ge
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
14
|
Jiang Z, Fang Z, Hong D, Wang X. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems. Int J Nanomedicine 2024; 19:7383-7398. [PMID: 39050878 PMCID: PMC11268745 DOI: 10.2147/ijn.s467222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Tumor vessels characterized by abnormal functions and structures hinder the infiltration and immune antigen presentation of immune cells by inducing the formation of an immunosuppressive microenvironment ("cold" environment). Vascular-targeted therapy has been proven to enhance immune stimulation and the effectiveness of immunotherapy by modulating the "cold" microenvironment, such as hypoxia and an acidic microenvironment. Notably, a therapeutic strategy based on "vascular-immune" crosstalk can achieve dual regulation of tumor vessels and the immune system by reprogramming the tumor microenvironment (TME), thus forming a positive feedback loop between tumor vessels and the immune microenvironment. From this perspective, we discuss the factors of tumor angiogenesis and "cold" TME formation. Building on this foundation, some vascular-targeted therapeutic drugs will be elaborated upon in detail to achieve dual regulation of tumor vessels and immunity. More importantly, we focus on cutting-edge nanotechnology in view of "vascular-immune" crosstalk and discuss the rational fabrication of tailor-made nanosystems for efficiently enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhijie Jiang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
15
|
Ten Dijke P, Miyazono K, Heldin CH, Moustakas A. Special issue: TGF-β and epithelial-mesenchymal transition in cancer. Semin Cancer Biol 2024; 102-103:1-3. [PMID: 38944133 DOI: 10.1016/j.semcancer.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Affiliation(s)
- Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands.
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, and Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Hongo 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala SE-751 23, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, Uppsala SE-751 23, Sweden.
| |
Collapse
|
16
|
Ma MJ, Shi YH, Liu ZD, Zhu YQ, Zhao GY, Ye JY, Li FX, Huang XT, Wang XY, Wang JQ, Xu QC, Yin XY. N6-methyladenosine modified TGFB2 triggers lipid metabolism reprogramming to confer pancreatic ductal adenocarcinoma gemcitabine resistance. Oncogene 2024; 43:2405-2420. [PMID: 38914663 PMCID: PMC11281907 DOI: 10.1038/s41388-024-03092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Gemcitabine resistance is a major obstacle to the effectiveness of chemotherapy in pancreatic ductal adenocarcinoma (PDAC). Therefore, new strategies are needed to sensitize cancer cells to gemcitabine. Here, we constructed gemcitabine-resistant PDAC cells and analyzed them with RNA-sequence. Employing an integrated approach involving bioinformatic analyses from multiple databases, TGFB2 is identified as a crucial gene in gemcitabine-resistant PDAC and is significantly associated with poor gemcitabine therapeutic response. The patient-derived xenograft (PDX) model further substantiates the gradual upregulation of TGFB2 expression during gemcitabine-induced resistance. Silencing TGFB2 expression can enhance the chemosensitivity of gemcitabine against PDAC. Mechanistically, TGFB2, post-transcriptionally stabilized by METTL14-mediated m6A modification, can promote lipid accumulation and the enhanced triglyceride accumulation drives gemcitabine resistance by lipidomic profiling. TGFB2 upregulates the lipogenesis regulator sterol regulatory element binding factor 1 (SREBF1) and its downstream lipogenic enzymes via PI3K-AKT signaling. Moreover, SREBF1 is responsible for TGFB2-mediated lipogenesis to promote gemcitabine resistance in PDAC. Importantly, TGFB2 inhibitor imperatorin combined with gemcitabine shows synergistic effects in gemcitabine-resistant PDAC PDX model. This study sheds new light on an avenue to mitigate PDAC gemcitabine resistance by targeting TGFB2 and lipid metabolism and develops the potential of imperatorin as a promising chemosensitizer in clinical translation.
Collapse
Affiliation(s)
- Ming-Jian Ma
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Yuan Ye
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Xi Li
- Department of Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Liu P, Ding P, Yang J, Wu H, Wu J, Guo H, Yang P, Tian Y, Meng L, Zhao Q. MicroRNA-431-5p inhibits angiogenesis, lymphangiogenesis, and lymph node metastasis by affecting TGF-β1/SMAD2/3 signaling via ZEB1 in gastric cancer. Mol Carcinog 2024; 63:1378-1391. [PMID: 38656643 DOI: 10.1002/mc.23731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Accumulating evidence suggests that lymphangiogenesis plays a crucial role in lymphatic metastasis, leading to tumor immune tolerance. However, the specific mechanism remains unclear. In this study, miR-431-5p was markedly downregulated in both gastric cancer (GC) tissues and plasma exosomes, and its expression were correlated negatively with LN metastasis and poor prognosis. Mechanistically, miR-431-5p weakens the TGF-β1/SMAD2/3 signaling pathway by targeting ZEB1, thereby suppressing the secretion of VEGF-A and ANG2, which in turn hinders angiogenesis, lymphangiogenesis, and lymph node (LN) metastasis in GC. Experiments using a popliteal LN metastasis model in BALB/c nude mice demonstrated that miR-431-5p significantly reduced popliteal LN metastasis. Additionally, miR-431-5p enhances the efficacy of anti-PD1 treatment, particularly when combined with galunisertib, anti-PD1 treatment showing a synergistic effect in inhibiting GC progression in C57BL/6 mice. Collectively, these findings suggest that miR-431-5p may modulate the TGF-β1/SMAD2/3 pathways by targeting ZEB1 to impede GC progression, angiogenesis, and lymphangiogenesis, making it a promising therapeutic target for GC management.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxuan Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| |
Collapse
|
18
|
Ibi H, Takahashi K, Harada H, Watabe T, Podyma-Inoue KA. Transforming growth factor-β signals promote progression of squamous cell carcinoma by inducing epithelial-mesenchymal transition and angiogenesis. Biochem Biophys Res Commun 2024; 714:149965. [PMID: 38657447 DOI: 10.1016/j.bbrc.2024.149965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
At present, the molecular mechanisms driving the progression and metastasis of oral squamous cell carcinoma (OSCC) remain largely uncharacterized. The activation of transforming growth factor-β (TGF-β) signaling in the tumor microenvironment has been observed in various types of cancer and has been implicated their progression by enhancing the migration and invasion of epithelial cancer cells. However, its specific roles in the oral cancer progression remain unexplored. In this study, we examined the effects of TGF-β signaling on the murine squamous cell carcinoma, SCCVII cells in vitro and in vivo. The incubation of SCCVII cells with TGF-β induced the activation of TGF-β signals and epithelial-mesenchymal transition (EMT). Notably, the motility of SCCVII cells was increased upon the activation of the TGF-β signaling. RNA sequencing revealed upregulation of genes related to EMT and angiogenesis. Consistent with these in vitro results, the inhibition of TGF-β signals in SCCVII cell-derived primary tumors resulted in suppressed angiogenesis. Furthermore, we identified six candidate factors (ANKRD1, CCBE1, FSTL3, uPA, TSP-1 and integrin β3), whose expression was induced by TGF-β in SCCVII cells, and associated with poor prognosis for patients with head and neck squamous cell carcinoma. These results highlight the role of TGF-β signals in the progression of OSCC via multiple mechanisms, including EMT and angiogenesis, and suggest novel therapeutic targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Haruka Ibi
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan; Institute of Industrial Science, The University of Tokyo, Fw704, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
19
|
Choi SH, Jang J, Kim Y, Park CG, Lee SY, Kim H, Kim H. ID1 high/activin A high glioblastoma cells contribute to resistance to anti-angiogenesis therapy through malformed vasculature. Cell Death Dis 2024; 15:292. [PMID: 38658527 PMCID: PMC11043395 DOI: 10.1038/s41419-024-06678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonji Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Cheol Gyu Park
- MEDIFIC Inc, Hwaseong-si, Gyeonggi-do, 18469, Republic of Korea
| | - Seon Yong Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunggee Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
20
|
Kong D, Wu Y, Liu Q, Huang C, Wang T, Huang Z, Gao Y, Li Y, Guo H. Functional analysis and validation of oncodrive gene AP3S1 in ovarian cancer through filtering of mutation data from whole-exome sequencing. Eur J Med Res 2024; 29:231. [PMID: 38609993 PMCID: PMC11015698 DOI: 10.1186/s40001-024-01814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND High-grade serous ovarian carcinoma (HGSOC) is the most aggressive and prevalent subtype of ovarian cancer and accounts for a significant portion of ovarian cancer-related deaths worldwide. Despite advancements in cancer treatment, the overall survival rate for HGSOC patients remains low, thus highlighting the urgent need for a deeper understanding of the molecular mechanisms driving tumorigenesis and for identifying potential therapeutic targets. Whole-exome sequencing (WES) has emerged as a powerful tool for identifying somatic mutations and alterations across the entire exome, thus providing valuable insights into the genetic drivers and molecular pathways underlying cancer development and progression. METHODS Via the analysis of whole-exome sequencing results of tumor samples from 90 ovarian cancer patients, we compared the mutational landscape of ovarian cancer patients with that of TCGA patients to identify similarities and differences. The sequencing data were subjected to bioinformatics analysis to explore tumor driver genes and their functional roles. Furthermore, we conducted basic medical experiments to validate the results obtained from the bioinformatics analysis. RESULTS Whole-exome sequencing revealed the mutational profile of HGSOC, including BRCA1, BRCA2 and TP53 mutations. AP3S1 emerged as the most weighted tumor driver gene. Further analysis of AP3S1 mutations and expression demonstrated their associations with patient survival and the tumor immune response. AP3S1 knockdown experiments in ovarian cancer cells demonstrated its regulatory role in tumor cell migration and invasion through the TGF-β/SMAD pathway. CONCLUSION This comprehensive analysis of somatic mutations in HGSOC provides insight into potential therapeutic targets and molecular pathways for targeted interventions. AP3S1 was identified as being a key player in tumor immunity and prognosis, thus providing new perspectives for personalized treatment strategies. The findings of this study contribute to the understanding of HGSOC pathogenesis and provide a foundation for improved outcomes in patients with this aggressive disease.
Collapse
Affiliation(s)
- Deshui Kong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Qiyu Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Cuiyu Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Tongxia Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Zongyao Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 Huayuanbei Rd., Haidian District, Beijing, 100191, People's Republic of China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, China.
| |
Collapse
|
21
|
Zhang Y, Li Q, Shi Z, Li Q, Dai X, Pan C, Ma Y, Yan R, Fei D, Xie J. A novel growth-friendly system alleviates pulmonary dysplasia in early-onset scoliosis combined with thoracic insufficiency syndrome: Radiological, pathological, and transcriptomic assessments. Heliyon 2024; 10:e27887. [PMID: 38509966 PMCID: PMC10951595 DOI: 10.1016/j.heliyon.2024.e27887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Background The posterior procedure utilizing growth-friendly techniques is the golden standard for patients with early-onset scoliosis combined with thoracic insufficiency syndrome (EOS + TIS). Pulmonary hypoplasia is the main cause of dying prematurely in the EOS + TIS. This study assessed the therapeutic impact of a novel growth-friendly system on the pulmonary development of piglet's EOS + TIS model. Methods The animal procedure period lasts 12 weeks, of which the construction of the EOS + TIS was performed at 0-8 weeks, and implantation of a novel growth-friendly system was applied at 8-12 weeks. During the animal procedure, X-rays and CT were performed to observe scoliosis, thorax, and lungs. After 12 weeks, pathological changes in lung tissue were assessed using HE and IHC staining. RNA-seq characterized novel growth-friendly system-associated differentially expressed genes (DEGs) and validated using RT-qPCR, western blotting, and IHC. Results Implantation of the novel growth-friendly system increased body weight, body length, and total lung volume, as well as decreased the coronal and sagittal Cobb angles for the EOS + TIS model. It also ameliorated EOS + TIS-induced thickening of the alveolar wall, increased alveolar spaces, and decreased alveolar number and diameter. In lung tissue, a total of 790 novel growth-friendly system-associated DEGs were identified, and they were mainly involved in the regulation of immune, inflammatory, calcium transport, and vascular development. Among these DEGs, BDKRB1, THBS1, DUSP1, IDO1, and SPINK5 were hub genes, and their differential expression was consistent with RNA-seq results in lung tissues. Conclusion The novel growth-friendly system has mitigated scoliosis and pulmonary hypoplasia in the EOS + TIS model. We further elucidate the molecular mechanisms underlying the amelioration of pulmonary hypoplasia.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Quan Li
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Zhiyue Shi
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Qitang Li
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Xinfei Dai
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Cheng Pan
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Yujian Ma
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Rongshuang Yan
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Derui Fei
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| | - Jingming Xie
- Department of Orthopaedics, the Second Affiliated Hospital of Kunming Medical University, China
| |
Collapse
|
22
|
Liu Y, Wu H, Sang Y, Chong W, Shang L, Li L. Research progress of exosomes in the angiogenesis of digestive system tumour. Discov Oncol 2024; 15:33. [PMID: 38341827 PMCID: PMC10859358 DOI: 10.1007/s12672-024-00879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
Malignant tumours of the digestive system cover a wide range of diseases that affect the health of people to a large extent. Angiogenesis is indispensable in the development, and metastasis of tumours, mainly in two ways: occupation or formation. Vessels can provide nutrients, oxygen, and growth factors for tumours to encourage growth and metastasis, so cancer progression depends on simultaneous angiogenesis. Recently, exosomes have been proven to participate in the angiogenesis of tumours. They influence angiogenesis by binding to tyrosine kinase receptors (VEGFR)-1, VEGFR-2, and VEGFR-3 with different affinities, regulating Yap-VEGF pathway, Akt pathway or other signaling pathway. Additionally, exosomes are potential therapeutic vectors that can deliver many types of cargoes to different cells. In this review, we summarize the roles of exosomes in the angiogenesis of digestive system tumours and highlight the clinical application prospects, directly used as targers or delivery vehicles, in antiangiogenic therapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Hao Wu
- Department of General Surgery, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yaodong Sang
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Wei Chong
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan, 250021, China.
- Department of Gastrointestinal Surgery, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
23
|
Takahashi K, Kobayashi M, Katsumata H, Tokizaki S, Anzai T, Ikeda Y, Alcaide DM, Maeda K, Ishihara M, Tahara K, Kubota Y, Itoh F, Park J, Takahashi K, Matsunaga YT, Yoshimatsu Y, Podyma‐Inoue KA, Watabe T. CD40 is expressed in the subsets of endothelial cells undergoing partial endothelial-mesenchymal transition in tumor microenvironment. Cancer Sci 2024; 115:490-506. [PMID: 38111334 PMCID: PMC10859613 DOI: 10.1111/cas.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Tumor progression and metastasis are regulated by endothelial cells undergoing endothelial-mesenchymal transition (EndoMT), a cellular differentiation process in which endothelial cells lose their properties and differentiate into mesenchymal cells. The cells undergoing EndoMT differentiate through a spectrum of intermediate phases, suggesting that some cells remain in a partial EndoMT state and exhibit an endothelial/mesenchymal phenotype. However, detailed analysis of partial EndoMT has been hampered by the lack of specific markers. Transforming growth factor-β (TGF-β) plays a central role in the induction of EndoMT. Here, we showed that inhibition of TGF-β signaling suppressed EndoMT in a human oral cancer cell xenograft mouse model. By using genetic labeling of endothelial cell lineage, we also established a novel EndoMT reporter cell system, the EndoMT reporter endothelial cells (EMRECs), which allow visualization of sequential changes during TGF-β-induced EndoMT. Using EMRECs, we characterized the gene profiles of multiple EndoMT stages and identified CD40 as a novel partial EndoMT-specific marker. CD40 expression was upregulated in the cells undergoing partial EndoMT, but decreased in the full EndoMT cells. Furthermore, single-cell RNA sequencing analysis of human tumors revealed that CD40 expression was enriched in the population of cells expressing both endothelial and mesenchymal cell markers. Moreover, decreased expression of CD40 in EMRECs enhanced TGF-β-induced EndoMT, suggesting that CD40 expressed during partial EndoMT inhibits transition to full EndoMT. The present findings provide a better understanding of the mechanisms underlying TGF-β-induced EndoMT and will facilitate the development of novel therapeutic strategies targeting EndoMT-driven cancer progression and metastasis.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hisae Katsumata
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Shiori Tokizaki
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tatsuhiko Anzai
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Yukinori Ikeda
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | | | - Kentaro Maeda
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Makoto Ishihara
- Scientific Affairs Section, Life Science Sales Department, Life Science Business Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Katsutoshi Tahara
- Section 1, Product Design Department 2, Medical Product Design Division, Medical Business GroupSony CorporationKanagawaJapan
| | - Yoshiaki Kubota
- Department of AnatomyKeio University School of MedicineTokyoJapan
| | - Fumiko Itoh
- Laboratory of Stem Cells RegulationsTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Jihwan Park
- School of Life SciencesGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | | | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
- Division of Pharmacology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
- Laboratory of Oncology, School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
24
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Xie X, Sun Y, Peng J, Zhang Z, Wang M, Wang Z, Lei C, Huang Y, Nie Z. Collagen Anchoring Protein-Nucleic Acid Chimeric Probe for In Situ In Vivo Mapping of a Tumor-Specific Protease. Anal Chem 2023; 95:18487-18496. [PMID: 38057291 DOI: 10.1021/acs.analchem.3c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
In situ analysis of biomarkers in the tumor microenvironment (TME) is important to reveal their potential roles in tumor progression and early diagnosis of tumors but remains a challenge. In this work, a bottom-up modular assembly strategy was proposed for a multifunctional protein-nucleic chimeric probe (PNCP) for in situ mapping of cancer-specific proteases. PNCP, containing a collagen anchoring module and a target proteolysis-responsive isothermal amplification sensor module, can be anchored in the collagen-rich TME and respond to the target protease in situ and generate amplified signals through rolling cycle amplification of tandem fluorescent RNAs. Taking matrix metalloproteinase 2 (MMP-2), a tumor-associated protease, as the model, the feasibility of PNCP was demonstrated for the in situ detection of MMP-2 activity in 3D tumor spheroids. Moreover, in situ in vivo mapping of MMP-2 activity was also achieved in a metastatic solid tumor model with high sensitivity, providing a useful tool for evaluating tumor metastasis and distinguishing highly aggressive forms of tumors.
Collapse
Affiliation(s)
- Xuan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Jialong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhenhua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Meixia Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Zeyuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
26
|
Cheng K, Li W, Wu H, Li C. Mapping knowledge structure and themes trends of cancer-associated fibroblasts: a text-mining study. Front Mol Biosci 2023; 10:1302016. [PMID: 38111465 PMCID: PMC10725992 DOI: 10.3389/fmolb.2023.1302016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: Cancer-associated fibroblasts (CAFs) constitute an important component of the tumor microenvironment, participating in various facets of cancer advancement and being recognized as contributors to tumor immune evasion. The role of CAFs in various tumor types has attracted increasing attention recently. In this work, we conducted a comprehensive bibliometric analysis to uncover research trajectories and highlight emerging areas in the field of CAFs. Methods: A systematic search was performed within the Web of Science Core Collection to identify articles/reviews on CAFs published between 2000 and 2023. Leveraging advanced bibliometric tools such as VOSviewer, CiteSpace, and online website, we examined and visualized publication trends, geographic contributions, institutional affiliations, journal prominence, author collaborations, and noteworthy references, keywords, and genes. Results: Our analysis included 5,190 publications, indicating a rapid growth trend in both annual publications and citations related to CAFs. China and the United States emerged as the foremost contributors in terms of publications, funding agencies, and international collaborations. Breast cancer was the most studied tumor, followed by colorectal cancer, pancreatic cancer, prostate cancer, and gastric cancer. Based on co-occurrence and bursting keywords, we identified the following research topics including immune cells (T cells, B-cells, tumor-associated macrophages), tumor immune microenvironment (antitumor immunity, immune infiltration, immunosuppression), immunotherapy (PD-L1), microRNAs (miRNA), extracellular vesicles (exosome), multiple tumors (pancreatic ductal adenocarcinoma, bladder cancer, head and neck squamous cell carcinoma), antitumor agents (gemcitabine, cisplatin resistance), bioinformatics (pan-cancer), epithelial-mesenchymal transition (stemness), FAPI PET/CT, DNA methylation, etc., may receive sustained attention in the future. Furthermore, TGFB1, IL-6, TNF, TP53, and VEGFA emerged as the top 5 genes that have garnered the greatest research attention in the field of CAFs. The KEGG enrichment analysis highlighted that the top 20 most studied genes were mainly associated with HIF-1 and Toll-like receptor signaling pathways. Discussion: In sum, our bibliometric analysis offers a comprehensive overview of the research landscape in the field of CAFs. It encompasses the current state, evolving patterns, and prospective avenues of exploration, with special attention to the potential advancements in tumor immune microenvironment.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanqing Li
- Department of Operating Room, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haiyang Wu
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Cheng Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
27
|
Miao R, Yao Z, Hu B, Jin T, Zhu D, Shi Y, Gong Y, Shao S, Shao C. A novel long non-coding RNA XLOC_004787, is associated with migration and promotes cancer cell proliferation by downregulating mir-203a-3p in gastric cancer. BMC Gastroenterol 2023; 23:280. [PMID: 37573302 PMCID: PMC10422700 DOI: 10.1186/s12876-023-02912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been identified as important regulatory factors implicated in a wide array of diseases, including various forms of cancer. However, the roles of most lncRNAs in the progression of gastric cancer (GC) remain largely unexplored. This study investigates the biological function and underlying mechanism of a novel lncRNA, XLOC_004787 in GC. METHODS The location of XLOC_004787 in GES-1 cells and HGC-27 cells were detected by fluorescence in situ hybridization (FISH) assay. The expression levels of XLOC_004787 were assessed using quantitative real-time fluorescence PCR (qRT-PCR) in various cell lines, including GES-1, MGC-803, MKN-45, BGC-823, SGC-7901, and HGC-27 cells. Functional assays such as Transwell migration, cell counting kit-8 (CCK-8), and colony formation experiments were employed to analyze the effects of XLOC_004787 and miR-203a-3p on cell migration and proliferation. Protein levels associated with GC in these cell lines were examined by Western blotting. The intracellular localization of β-catenin and P-Smad2/3 was assessed using immunofluorescence (IF) assay. Additionally, the interaction between XLOC_004787 and miR-203a-3p was investigated using a dual luciferase assay. RESULTS XLOC_004787 was localized at both the cytoplasm and nucleus of GES-1 cells and HGC-27 cells. Compared to normal tissues and GES-1 cells, XLOC_004787 expression was significantly upregulated in GC tissues and cells, with the highest and lowest expression observed in SGC-7901 and HGC-27 cells, respectively. Furthermore, a reduced expression of XLOC_004787 was seen to inhibit migration and proliferation in SGC-7901 cells. Western blotting analysis revealed that a decrease in XLOC_004787 expression correspondingly decreased the expression of N-cadherin, mmp2, mmp9, Snail, Vimentin, β-catenin, C-myc, Cyclin D1, and TGF-β, while concurrently increasing E-cadherin expression. This was also associated with diminished expression of P-Smad2/3 in relation to Smad2/3, and reduced P-Gsk3β expression in comparison to Gsk3β. Additionally, the nuclear entry of P-Smad2/3 and β-catenin was reduced by lower XLOC_004787 expression. Amplifying XLOC_004787 expression via pcDNA_XLOC_004787 suggested a potential for cancer promotion. Notably, XLOC_004787 was found to negatively regulate mir-203a-3p expression, with potential binding sites identified between the two. Higher mir-203a-3p expression was observed to decrease migration and proliferation, and enhance E-cadherin expression. Conversely, suppression of mir-203a-3p expression suggested a potential promotion of proliferation and migration in GC cells. CONCLUSIONS These results suggest that XLOC_004787, found to be upregulated in GC tissues, potentially promotes proliferation and migration in GC cells. This occurs through the activation of TGF-β and Wnt/β-catenin signaling pathways and the expression of EMT-related proteins. Additionally, XLOC_004787 may influence cell migration and proliferation by modulating the signaling pathway via the adsorption and inhibition of mir-203a-3p.
Collapse
Affiliation(s)
- Renjie Miao
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Zhendong Yao
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Bingheng Hu
- The Affiliated Hospital of Jiangsu University, Yizheng Road, Zhenjiang, 212013, Jiangsu, China
| | - Tao Jin
- Department of Gastroenterology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Donglai Zhu
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yun Shi
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Yuhua Gong
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Shihe Shao
- Department of Clinical Laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Chen Shao
- The Affiliated Hospital of Jiangsu University, Yizheng Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Blasiak J, Chojnacki J, Szczepanska J, Fila M, Chojnacki C, Kaarniranta K, Pawlowska E. Epigallocatechin-3-Gallate, an Active Green Tea Component to Support Anti-VEGFA Therapy in Wet Age-Related Macular Degeneration. Nutrients 2023; 15:3358. [PMID: 37571296 PMCID: PMC10421466 DOI: 10.3390/nu15153358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry AMD. Meanwhile, repeated intravitreal injections with antibodies effective against vascular endothelial growth factor A (VEGFA) slow down wet AMD progression but are not free from complications. (-)-Epigallocatechin-3-gallate (EGCG) is an active compound of green tea, which exerts many beneficial effects in the retinal pigment epithelium and the neural retina. It has been reported to downregulate the VEGFA gene by suppressing its activators. The inhibition of mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3) may lie behind the antiangiogenic action of EGCG mediated by VEGFA. EGCG exerts protective effects against UV-induced damage to retinal cells and improves dysfunctional autophagy. EGCG may also interact with the mechanistic target rapamycin (MTOR) and unc-51-like autophagy activating kinase (ULK1) to modulate the interplay between autophagy and apoptosis. Several other studies report beneficial effects of EGCG on the retina that may be related to wet AMD. Therefore, controlled clinical trials are needed to verify whether diet supplementation with EGCG or green tea consumption may improve the results of anti-VEGFA therapy in wet AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| |
Collapse
|