1
|
Qu J, Fang Y, Tao R, Zhao J, Xu T, Chen R, Zhang J, Meng K, Yang Q, Zhang K, Yan X, Sun D, Chen X. Advancing thyroid disease research: The role and potential of zebrafish model. Life Sci 2024; 357:123099. [PMID: 39374770 DOI: 10.1016/j.lfs.2024.123099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Thyroid disorders significantly affect human metabolism, cardiovascular function, skeletal health, and reproductive systems, presenting a complex challenge due to their multifactorial nature. Understanding the underlying mechanisms and developing novel therapeutic approaches require appropriate models. Zebrafish, with their genetic tractability, short life cycle, and physiological relevance, have emerged as a valuable model for investigating thyroid diseases. This review provides a comprehensive analysis of the zebrafish thyroid gland's structure and function, explores its application in modeling thyroid pathologies such as hypothyroidism, hyperthyroidism, and thyroid cancer, and discusses current limitations and possible improvements. Furthermore, it outlines future directions for zebrafish-based research, focusing on enhancing the model's relevance to human thyroid disease and its potential to expedite the development of clinical therapies.
Collapse
Affiliation(s)
- Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical, City university of Hong Kong, Kowloon 999077, Hong Kong
| | - Junbei Zhang
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Kaikai Meng
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Agnès F, Torres-Paz J, Michel P, Rétaux S. A 3D molecular map of the cavefish neural plate illuminates eye-field organization and its borders in vertebrates. Development 2022; 149:274971. [DOI: 10.1242/dev.199966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
ABSTRACT
The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of ‘eye transcription factors’, whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species. Using a series of markers (rx3, pax6a, cxcr4b, zic1, lhx2, emx3 and nkx2.1a), we draw a comparative 3D expression map at the end of gastrulation/onset of neurulation, which highlights hyper-regionalization of the eye field into sub-territories of distinct sizes, shapes, cell identities and combinatorial gene expression levels along the three body axes. All these features show significant variations in the cavefish natural mutant. We also discover sub-domains within the prospective telencephalon and characterize cell identities at the frontiers of the eye field. We propose putative fates for some of the characterized eye-field subdivisions, and suggest the existence of a trade-off between some subdivisions in the two Astyanax morphs on a micro-evolutionary scale.
Collapse
Affiliation(s)
- François Agnès
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Jorge Torres-Paz
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Pauline Michel
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, CNRS UMR9197, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
4
|
Aguillon R, Batut J, Subramanian A, Madelaine R, Dufourcq P, Schilling TF, Blader P. Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. eLife 2018; 7. [PMID: 29292696 PMCID: PMC5749950 DOI: 10.7554/elife.32041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
The zebrafish olfactory epithelium comprises a variety of neuronal populations, which are thought to have distinct embryonic origins. For instance, while ciliated sensory neurons arise from preplacodal ectoderm (PPE), previous lineage tracing studies suggest that both Gonadotropin releasing hormone 3 (Gnrh3) and microvillous sensory neurons derive from cranial neural crest (CNC). We find that the expression of Islet1/2 is restricted to Gnrh3 neurons associated with the olfactory epithelium. Unexpectedly, however, we find no change in Islet1/2+ cell numbers in sox10 mutant embryos, calling into question their CNC origin. Lineage reconstruction based on backtracking in time-lapse confocal datasets, and confirmed by photoconversion experiments, reveals that Gnrh3 neurons derive from the anterior PPE. Similarly, all of the microvillous sensory neurons we have traced arise from preplacodal progenitors. Our results suggest that rather than originating from separate ectodermal populations, cell-type heterogeneity is generated from overlapping pools of progenitors within the preplacodal ectoderm.
Collapse
Affiliation(s)
- Raphaël Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Pascale Dufourcq
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Sanchez-Arrones L, Sandonís Á, Cardozo MJ, Bovolenta P. Adenohypophysis placodal precursors exhibit distinctive features within the rostral preplacodal ectoderm. Development 2017; 144:3521-3532. [PMID: 28974641 DOI: 10.1242/dev.149724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Placodes are discrete thickenings of the vertebrate cranial ectoderm that generate morpho-functionally distinct structures, such as the adenohypophysis, olfactory epithelium and lens. All placodes arise from a horseshoe-shaped preplacodal ectoderm in which the precursors of individual placodes are intermingled. However, fate-map studies indicated that cells positioned at the preplacodal midline give rise to only the adenohypophyseal placode, suggesting a unique organization of these precursors within the preplacode. To test this possibility, we combined embryological and molecular approaches in chick embryos to show that, at gastrula stage, adenohypophyseal precursors are clustered in the median preplacodal ectoderm, largely segregated from those of the adjacent olfactory placode. Median precursors are elongated, densely packed and, at neurula stage, express a molecular signature that distinguishes them from the remaining preplacodal cells. Olfactory placode precursors and midline neural cells can replace ablated adenohypophyseal precursors up to head-fold stage, although with a more plastic organization. We thus propose that adenohypophyseal placode precursors are unique within the preplacodal ectoderm possibly because they originate the only single placode and the only one with an endocrine character.
Collapse
Affiliation(s)
- Luisa Sanchez-Arrones
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - África Sandonís
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Marcos Julián Cardozo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain .,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| |
Collapse
|
6
|
Nikaido M, Navajas Acedo J, Hatta K, Piotrowski T. Retinoic acid is required and Fgf, Wnt, and Bmp signaling inhibit posterior lateral line placode induction in zebrafish. Dev Biol 2017; 431:215-225. [PMID: 28923486 DOI: 10.1016/j.ydbio.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
The lateral line system is a mechanosensory systems present in aquatic animals. The anterior and posterior lateral lines develop from anterior and posterior lateral line placodes (aLLp and pLLp), respectively. Although signaling molecules required for the induction of other cranial placodes have been well studied, the molecular mechanisms underlying formation of the lateral line placodes are unknown. In this study we tested the requirement of multiple signaling pathways, such as Wnt, Bmp Fgf, and Retinoic Acid for aLLp and pLLp induction. We determined that aLLp specification requires Fgf signaling, whilst pLLp specification requires retinoic acid which inhibits Fgf signaling. pLLp induction is also independent of Wnt and Bmp activities, even though these pathways limit the boundaries of the pLLp. This is the first report that the aLLp and pLLp depend on different inductive mechanisms and that pLLp induction requires the inhibition of Fgf, Wnt and Bmp signaling.
Collapse
Affiliation(s)
- Masataka Nikaido
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | | - Kohei Hatta
- Graduate School of Life Sciences, University of Hyogo, Hyogo Pref. 678-1297, Japan
| | | |
Collapse
|
7
|
Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, Rétaux S. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 2017; 143:4521-4532. [PMID: 27899509 DOI: 10.1242/dev.141291] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Natural variations in sensory systems constitute adaptive responses to the environment. Here, we compared sensory placode development in the blind cave-adapted morph and the eyed river-dwelling morph of Astyanax mexicanus Focusing on the lens and olfactory placodes, we found a trade-off between these two sensory components in the two morphs: from neural plate stage onwards, cavefish have larger olfactory placodes and smaller lens placodes. In a search for developmental mechanisms underlying cavefish sensory evolution, we analyzed the roles of Shh, Fgf8 and Bmp4 signaling, which are known to be fundamental in patterning the vertebrate head and are subtly modulated in space and time during cavefish embryogenesis. Modulating these signaling systems at the end of gastrulation shifted the balance toward a larger olfactory derivative. Olfactory tests to assess potential behavioral outcomes of such developmental evolution revealed that Astyanax cavefish are able to respond to a 105-fold lower concentration of amino acids than their surface-dwelling counterparts. We suggest that similar evolutionary developmental mechanisms may be used throughout vertebrates to drive adaptive sensory specializations according to lifestyle and habitat.
Collapse
Affiliation(s)
- Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Lucie Devos
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Maryline Blin
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Yannick Elipot
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Jonathan Bibliowicz
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Alexandre Alié
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
8
|
Cvekl A, Zhang X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet 2017; 33:677-702. [PMID: 28867048 DOI: 10.1016/j.tig.2017.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Ocular lens development represents an advantageous system in which to study regulatory mechanisms governing cell fate decisions, extracellular signaling, cell and tissue organization, and the underlying gene regulatory networks. Spatiotemporally regulated domains of BMP, FGF, and other signaling molecules in late gastrula-early neurula stage embryos generate the border region between the neural plate and non-neural ectoderm from which multiple cell types, including lens progenitor cells, emerge and undergo initial tissue formation. Extracellular signaling and DNA-binding transcription factors govern lens and optic cup morphogenesis. Pax6, c-Maf, Hsf4, Prox1, Sox1, and a few additional factors regulate the expression of the lens structural proteins, the crystallins. Extensive crosstalk between a diverse array of signaling pathways controls the complexity and order of lens morphogenetic processes and lens transparency.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
10
|
Singh S, Groves AK. The molecular basis of craniofacial placode development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:363-76. [PMID: 26952139 DOI: 10.1002/wdev.226] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/20/2022]
Abstract
The sensory organs of the vertebrate head originate from simple ectodermal structures known as cranial placodes. All cranial placodes derive from a common domain adjacent to the neural plate, the preplacodal region, which is induced at the border of neural and non-neural ectoderm during gastrulation. Induction and specification of the preplacodal region is regulated by the fibroblast growth factor, bone morphogenetic protein, WNT, and retinoic acid signaling pathways, and characterized by expression of the EYA and SIX family of transcriptional regulators. Once the preplacodal region is specified, different combinations of local signaling molecules and placode-specific transcription factors, including competence factors, promote the induction of individual cranial placodes along the neural axis of the head region. In this review, we summarize the steps of cranial placode development and discuss the roles of the main signaling molecules and transcription factors that regulate these steps during placode induction, specification, and development. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Adameyko I, Fried K. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Front Physiol 2016; 7:49. [PMID: 26924989 PMCID: PMC4759458 DOI: 10.3389/fphys.2016.00049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration.
Collapse
Affiliation(s)
- Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden; Department of Molecular Neurosciences, Center of Brain Research, Medical University of ViennaVienna, Austria
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
12
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
13
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
14
|
Graf M, Teo Qi-Wen ER, Sarusie MV, Rajaei F, Winkler C. Dmrt5 controls corticotrope and gonadotrope differentiation in the zebrafish pituitary. Mol Endocrinol 2014; 29:187-99. [PMID: 25489906 DOI: 10.1210/me.2014-1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dmrt transcription factors control sex determination or sex-specific differentiation across all invertebrate and vertebrate species, in which they have been studied so far. In addition to important functions in the reproductive system, also nongonadal roles have been assigned to several dmrt family members. One example is dmrt5, which was shown to guide neurogenesis in the forebrain of some vertebrates including fish. Here we show that in zebrafish, dmrt5 is also expressed adjacent to the pituitary anlage and later in the anterior pars distalis in which it organizes differentiation of endocrine cells. We find that pituitary induction, cell survival, proliferation, and early lineage specification in the pituitary is independent of dmrt5. Instead, dmrt5 is required for terminal differentiation of corticotropes and gonadotropes. Gene knockdown and mutant analysis revealed that dmrt5 promotes corticotrope differentiation via tbx19 expression, whereas it prevents gonadotrope differentiation in the anterior pars distalis. In dmrt5 morphants and mutants, reduced corticotrope numbers may result in irregular positioning and reduced maintenance of lactotropes. In conclusion, our study establishes a novel function for dmrt5 for cell differentiation in the anterior pituitary. Intriguingly, its effect on gonadotrope numbers defines a first nongonadal role for a dmrt family member that appears crucial for the activity of the reproductive system.
Collapse
Affiliation(s)
- Martin Graf
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | |
Collapse
|
15
|
Bhattacharyya S, Bronner ME. Clonal analyses in the anterior pre-placodal region: implications for the early lineage bias of placodal progenitors. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 57:753-7. [PMID: 24307294 DOI: 10.1387/ijdb.130155mb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cranial ectodermal placodes, a vertebrate innovation, contribute to the adenohypophysis and peripheral nervous system of the head, including the paired sense organs (eyes, nose, ears) and sensory ganglia of the Vth, VIIth, IXth and Xth cranial nerves. Fate-maps of groups of cells in amphibians, teleosts and amniotes have demonstrated that all placodes have a common origin in a horseshoe shaped territory, known as the preplacodal region (PPR), which surrounds the presumptive neural plate of the late gastrula/early neurula stage embryo. Given the extensive regional overlap of progenitors for different placodes in the chick embryo, it has been a matter of debate as to whether individual cells in the PPR are truly multipotent progenitors, with regard to placodal identity, or rather are lineage-biased or restricted to a specific placodal type prior to overt differentiation. Utilizing clonal analyses in vivo, we demonstrate here that the anterior PPR comprises some precursors that contribute either to the olfactory or lens placode well before they are spatially segregated or committed to either of these placodal fates. This suggests that lineage bias towards a specific placodal fate may coincide with induction of the PPR.
Collapse
|
16
|
Kuo MW, Lou SW, Chung BC. Hedgehog-PKA signaling and gnrh3 regulate the development of zebrafish gnrh3 neurons. PLoS One 2014; 9:e95545. [PMID: 24879419 PMCID: PMC4039432 DOI: 10.1371/journal.pone.0095545] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP) and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA), by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA*) and dominant negative regulatory subunit (PKI) into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Show-Wan Lou
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Bon-chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
18
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
19
|
Rétaux S, Casane D. Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo 2013; 4:26. [PMID: 24079393 PMCID: PMC3849642 DOI: 10.1186/2041-9139-4-26] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022] Open
Abstract
Animals inhabiting the darkness of caves are generally blind and de-pigmented, regardless of the phylum they belong to. Survival in this environment is an enormous challenge, the most obvious being to find food and mates without the help of vision, and the loss of eyes in cave animals is often accompanied by an enhancement of other sensory apparatuses. Here we review the recent literature describing developmental biology and molecular evolution studies in order to discuss the evolutionary mechanisms underlying adaptation to life in the dark. We conclude that both genetic drift (neutral hypothesis) and direct and indirect selection (selective hypothesis) occurred together during the loss of eyes in cave animals. We also identify some future directions of research to better understand adaptation to total darkness, for which integrative analyses relying on evo-devo approaches associated with thorough ecological and population genomic studies should shed some light.
Collapse
Affiliation(s)
- Sylvie Rétaux
- DECA group, Neurobiology & Development Laboratory, CNRS, Gif sur Yvette, France
| | - Didier Casane
- LEGS, CNRS, Gif sur Yvette and Université Paris Diderot, Sorbonne Paris Cité, France
| |
Collapse
|
20
|
Wolf L, Harrison W, Huang J, Xie Q, Xiao N, Sun J, Kong L, Lachke SA, Kuracha MR, Govindarajan V, Brindle PK, Ashery-Padan R, Beebe DC, Overbeek PA, Cvekl A. Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic Acids Res 2013; 41:10199-214. [PMID: 24038357 PMCID: PMC3905850 DOI: 10.1093/nar/gkt824] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300−/− ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens.
Collapse
Affiliation(s)
- Louise Wolf
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY10461, USA, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA, Departments of Ophthalmology and Visual Sciences, Washington University Saint Louis, Saint Louis, MO 63110, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA, Department of Surgery, Creighton University, Omaha, NE 68178, USA, Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel 69978
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wolf A, Ryu S. Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development 2013; 140:1762-73. [PMID: 23533176 DOI: 10.1242/dev.085357] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypothalamus is a key integrative center in the brain that consists of diverse cell types required for a variety of functions including homeostasis, reproduction, stress response, social and cognitive behavior. Despite our knowledge of several transcription factors crucial for hypothalamic development, it is not known how the wide diversity of neuron types in the hypothalamus is produced. In particular, almost nothing is known about the mechanisms that specify neurons in the posteriormost part of the hypothalamus, the mammillary area. Here, we investigated the specification of two distinct neuron types in the mammillary area that produce the hypothalamic hormones Vasoactive intestinal peptide (Vip) and Urotensin 1 (Uts1). We show that Vip- and Uts1-positive neurons develop in distinct domains in the mammillary area defined by the differential expression of the transcription factors Fezf2, Otp, Sim1a and Foxb1.2. Coordinated activities of these factors are crucial for the establishment of the mammillary area subdomains and the specification of Vip- and Uts1-positive neurons. In addition, Fezf2 is important for early development of the posterior hypothalamus. Thus, our study provides the first molecular anatomical map of the posterior hypothalamus in zebrafish and identifies, for the first time, molecular requirements underlying the specification of distinct posterior hypothalamic neuron types.
Collapse
Affiliation(s)
- Andrea Wolf
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | |
Collapse
|
22
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
23
|
Washausen S, Knabe W. Apoptosis contributes to placode morphogenesis in the posterior placodal area of mice. Brain Struct Funct 2012; 218:789-803. [PMID: 22644920 DOI: 10.1007/s00429-012-0429-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
In the embryonic head of vertebrates, neurogenic and non-neurogenic ectodermal placodes arise from the panplacodal primordium. Whether and how growth processes of the ectodermal layer, changes in the transcriptional precursor cell profile, or positional changes among precursor cells contribute to interplacodal boundary formation is subject to intense investigation. We demonstrate that large scale apoptosis in the multiplacodal posterior placodal area (PPA) of C57BL/6 mice assists in the segregation of otic and epibranchial placodes. Complex patterns of interplacodal apoptosis precede and parallel the structural individualization of high-grade thickened placodes, with the fundamental separation between otic and epibranchial precursor cells being seemingly prevalent. Interplacodal apoptosis between the emerging epibranchial placodes, which express Neurogenin2 prior to their complete structural individualization, comes out most strongly between the epibranchial placodes 1 and 2. Apoptosis then moves from interplacodal to intraplacodal positions in dorsal and, with a delay, ventral parts of the epibranchial placodes. Intraplacodal apoptosis appears to exert corrective actions among premigratory neuroblasts, and helps to eliminate the epibranchial placodes. The present findings confirm and extend earlier observations in Tupaia belangeri (Washausen et al. in Dev Biol 278:86-102, 2005), regarded as an intermediate between primates and other eutherian orders. Having now available maps of apoptosis in the PPA of embryonic mice, further investigations into the functions of inter- and intraplacodal apoptosis can be carried out in an experimentally and genetically more accessible mammalian model organism.
Collapse
Affiliation(s)
- Stefan Washausen
- Institute of Anatomy, Westfälische Wilhelms-University, Vesaliusweg 2-4, 48149 Münster, Germany
| | | |
Collapse
|
24
|
Wagner E, Levine M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 2012; 139:2351-9. [PMID: 22627287 DOI: 10.1242/dev.078485] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Ciona tadpole is constructed from simple, well-defined cell lineages governed by provisional gene networks that have been defined via extensive gene disruption assays. Here, we examine the patterning of the anterior neural plate, which produces placodal derivatives such as the adhesive palps and stomodeum, as well as the sensory vesicle (simple brain) of the Ciona tadpole. Evidence is presented that the doublesex-related gene DMRT is expressed throughout the anterior neural plate of neurulating embryos. It leads to the activation of FoxC and ZicL in the palp placode and anterior neural tube, respectively. This differential expression depends on FGF signaling, which inhibits FoxC expression in the anterior neural tube. Inhibition of FGF signaling leads to expanded expression of FoxC, the loss of ZicL, and truncation of the anterior neural tube.
Collapse
Affiliation(s)
- Eileen Wagner
- Center for Integrative Genomics, Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
25
|
Integrin-α5 coordinates assembly of posterior cranial placodes in zebrafish and enhances Fgf-dependent regulation of otic/epibranchial cells. PLoS One 2011; 6:e27778. [PMID: 22164214 PMCID: PMC3229493 DOI: 10.1371/journal.pone.0027778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/25/2011] [Indexed: 12/15/2022] Open
Abstract
Vertebrate sensory organs develop in part from cranial placodes, a series of ectodermal thickenings that coalesce from a common domain of preplacodal ectoderm. Mechanisms coordinating morphogenesis and differentiation of discrete placodes are still poorly understood. We have investigated whether placodal assembly in zebrafish requires Integrin- α5 (itga5), an extracellular matrix receptor initially expressed throughout the preplacodal ectoderm. Morpholino knockdown of itga5 had no detectable effect on anterior placodes (pituitary, nasal and lens), but posterior placodes developed abnormally, resulting in disorganization of trigeminal and epibranchial ganglia and reduction of the otic vesicle. Cell motion analysis in GFP-transgenic embryos showed that cell migration in itga5 morphants was highly erratic and unfocused, impairing convergence and blocking successive recruitment of new cells into these placodes. Further studies revealed genetic interactions between itga5 and Fgf signaling. First, itga5 morphants showed changes in gene expression mimicking modest reduction in Fgf signaling. Second, itga5 morphants showed elevated apoptosis in the otic/epibranchial domain, which was rescued by misexpression of Fgf8. Third, knockdown of the Fgf effector erm had no effect by itself but strongly enhanced defects in itga5 morphants. Finally, proper regulation of itga5 requires dlx3b/4b and pax8, which are themselves regulated by Fgf. These findings support a model in which itga5 coordinates cell migration into posterior placodes and augments Fgf signaling required for patterning of these tissues and cell survival in otic/epibranchial placodes.
Collapse
|
26
|
Pottin K, Hinaux H, Rétaux S. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 2011; 138:2467-76. [PMID: 21610028 DOI: 10.1242/dev.054106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cavefish morph of the Mexican tetra (Astyanax mexicanus) is blind at adult stage, although an eye that includes a retina and a lens develops during embryogenesis. There are, however, two major defects in cavefish eye development. One is lens apoptosis, a phenomenon that is indirectly linked to the expansion of ventral midline sonic hedgehog (Shh) expression during gastrulation and that induces eye degeneration. The other is the lack of the ventral quadrant of the retina. Here, we show that such ventralisation is not extended to the entire forebrain because fibroblast growth factor 8 (Fgf8), which is expressed in the forebrain rostral signalling centre, is activated 2 hours earlier in cavefish embryos than in their surface fish counterparts, in response to stronger Shh signalling in cavefish. We also show that neural plate patterning and morphogenesis are modified in cavefish, as assessed by Lhx2 and Lhx9 expression. Inhibition of Fgf receptor signalling in cavefish with SU5402 during gastrulation/early neurulation mimics the typical surface fish phenotype for both Shh and Lhx2/9 gene expression. Fate-mapping experiments show that posterior medial cells of the anterior neural plate, which lack Lhx2 expression in cavefish, contribute to the ventral quadrant of the retina in surface fish, whereas they contribute to the hypothalamus in cavefish. Furthermore, when Lhx2 expression is rescued in cavefish after SU5402 treatment, the ventral quadrant of the retina is also rescued. We propose that increased Shh signalling in cavefish causes earlier Fgf8 expression, a crucial heterochrony that is responsible for Lhx2 expression and retina morphogenesis defect.
Collapse
Affiliation(s)
- Karen Pottin
- Equipe Développement Evolution du Cerveau Antérieur, UPR3294 NeD, CNRS, Institut Alfred Fessard, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
27
|
Dutta S, Dawid IB. Kctd15 inhibits neural crest formation by attenuating Wnt/beta-catenin signaling output. Development 2010; 137:3013-8. [PMID: 20685732 DOI: 10.1242/dev.047548] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest (NC) precursors are stem cells that are capable of forming many cell types after migration to different locations in the embryo. NC and placodes form at the neural plate border (NPB). The Wnt pathway is essential for specifying NC versus placodal identity in this cell population. Here we describe the BTB domain-containing protein Potassium channel tetramerization domain containing 15 (Kctd15) as a factor expressed in the NPB that efficiently inhibits NC induction in zebrafish and frog embryos. Whereas overexpression of Kctd15 inhibited NC formation, knockdown of Kctd15 led to expansion of the NC domain. Likewise, NC induction by Wnt3a plus Chordin in Xenopus animal explants was suppressed by Kctd15, but constitutively active beta-catenin reversed Kctd15-mediated suppression of NC induction. Suppression of NC induction by inhibition of Wnt8.1 was rescued by reduction of Kctd15 expression, linking Kctd15 action to the Wnt pathway. We propose that Kctd15 inhibits NC formation by attenuating the output of the canonical Wnt pathway, thereby restricting expansion of the NC domain beyond its normal range.
Collapse
Affiliation(s)
- Sunit Dutta
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
Maier E, von Hofsten J, Nord H, Fernandes M, Paek H, Hébert JM, Gunhaga L. Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates. Development 2010; 137:1601-11. [PMID: 20392740 DOI: 10.1242/dev.051219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory sensory epithelium and the respiratory epithelium are derived from the olfactory placode. However, the molecular mechanisms regulating the differential specification of the sensory and the respiratory epithelium have remained undefined. To address this issue, we first identified Msx1/2 and Id3 as markers for respiratory epithelial cells by performing quail chick transplantation studies. Next, we established chick explant and intact chick embryo assays of sensory/respiratory epithelial cell differentiation and analyzed two mice mutants deleted of Bmpr1a;Bmpr1b or Fgfr1;Fgfr2 in the olfactory placode. In this study, we provide evidence that in both chick and mouse, Bmp signals promote respiratory epithelial character, whereas Fgf signals are required for the generation of sensory epithelial cells. Moreover, olfactory placodal cells can switch between sensory and respiratory epithelial cell fates in response to Fgf and Bmp activity, respectively. Our results provide evidence that Fgf activity suppresses and restricts the ability of Bmp signals to induce respiratory cell fate in the nasal epithelium. In addition, we show that in both chick and mouse the lack of Bmp or Fgf activity results in disturbed placodal invagination; however, the fate of cells in the remaining olfactory epithelium is independent of morphological movements related to invagination. In summary, we present a conserved mechanism in amniotes in which Bmp and Fgf signals act in an opposing manner to regulate the respiratory versus sensory epithelial cell fate decision.
Collapse
Affiliation(s)
- Esther Maier
- Umeå Center for Molecular Medicine, Building 6M, 4th Floor, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
30
|
Placinta M, Shen MC, Achermann M, Karlstrom RO. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2009; 9:73. [PMID: 20042114 PMCID: PMC2810295 DOI: 10.1186/1471-213x-9-73] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/30/2009] [Indexed: 01/02/2023]
Abstract
Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. Results We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 μm targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. Conclusion This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.
Collapse
Affiliation(s)
- Mike Placinta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
31
|
Henshall TL, Tucker B, Lumsden AL, Nornes S, Lardelli MT, Richards RI. Selective neuronal requirement for huntingtin in the developing zebrafish. Hum Mol Genet 2009; 18:4830-42. [PMID: 19797250 PMCID: PMC2778375 DOI: 10.1093/hmg/ddp455] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/03/2009] [Accepted: 09/23/2009] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease shares a common molecular basis with eight other neurodegenerative diseases, expansion of an existing polyglutamine tract. In each case, this repeat tract occurs within otherwise unrelated proteins. These proteins show widespread and overlapping patterns of expression in the brain and yet the diseases are distinguished by neurodegeneration in a specific subset of neurons that are most sensitive to the mutation. It has therefore been proposed that expansion of the polyglutamine region in these genes may result in perturbation of the normal function of the respective proteins, and that this perturbation in some way contributes to the neuronal specificity of these diseases. The normal functions of these proteins have therefore become a focus for investigation as potential pathogenic pathways. We have used synthetic antisense morpholinos to inhibit the translation of huntingtin mRNA during early zebrafish development and have previously reported the effects of huntingtin reduction on iron transport and homeostasis. Here we report an analysis of the effects of huntingtin loss-of-function on the developing nervous system, observing distinct defects in morphology of neuromasts, olfactory placode and branchial arches. The potential common origins of these defects were explored, revealing impaired formation of the anterior-most region of the neural plate as indicated by reduced pre-placodal and telencephalic gene expression with no effect on mid- or hindbrain formation. These investigations demonstrate a specific 'rate-limiting' role for huntingtin in formation of the telencephalon and the pre-placodal region, and differing levels of requirement for huntingtin function in specific nerve cell types.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert I. Richards
- ARC Special Research Centre for the Molecular Genetics of Development and Discipline of Genetics, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
32
|
Pogoda HM, Hammerschmidt M. How to make a teleost adenohypophysis: molecular pathways of pituitary development in zebrafish. Mol Cell Endocrinol 2009; 312:2-13. [PMID: 19728983 DOI: 10.1016/j.mce.2009.03.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/12/2009] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
The anterior pituitary gland, or adenohypophysis (AH), represents the key component of the vertebrate hypothalamo-hypophyseal axis, where it functions at the interphase of the nervous and endocrine system to regulate basic body functions like growth, metabolism and reproduction. For developmental biologists, the adenohypophysis serves as an excellent model system for the studies of organogenesis and differential cell fate specification. Previous research, mainly done in mouse, identified numerous extrinsic signaling cues and intrinsic transcription factors that orchestrate the gland's developmental progression. In the past years, the zebrafish has emerged as a powerful tool to elucidate the genetic networks controlling vertebrate development, behavior and disease. Based on mutants isolated in forward genetic screens and on gene knock-downs using morpholino oligonucleotide (oligo) antisense technology, our current understanding of the molecular machinery driving adenohypophyseal ontogeny could be considerably improved. In addition, comparative analyses have shed further light onto the evolution of this rather recently invented organ. The goal of this review is to summarize current knowledge of the genetic and molecular control of zebrafish pituitary development, with special focus on most recent findings, including some thus far unpublished data from our own laboratory on the transcription factor Six1. In addition, zebrafish data will be discussed in comparison with current understanding of adenohypophysis development in mouse.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute for Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50931 Cologne, Germany.
| | | |
Collapse
|
33
|
The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 2008; 9:868-82. [PMID: 18927580 DOI: 10.1038/nrg2416] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
Collapse
|
34
|
|
35
|
Guner B, Ozacar AT, Thomas JE, Karlstrom RO. Graded hedgehog and fibroblast growth factor signaling independently regulate pituitary cell fates and help establish the pars distalis and pars intermedia of the zebrafish adenohypophysis. Endocrinology 2008; 149:4435-51. [PMID: 18499750 PMCID: PMC2553376 DOI: 10.1210/en.2008-0315] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.
Collapse
Affiliation(s)
- Burcu Guner
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
36
|
Sjödal M, Gunhaga L. Expression patterns of Shh, Ptc2, Raldh3, Pitx2, Isl1, Lim3 and Pax6 in the developing chick hypophyseal placode and Rathke's pouch. Gene Expr Patterns 2008; 8:481-5. [PMID: 18647663 DOI: 10.1016/j.gep.2008.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
The adenohypophysis is derived from a structure called the Rathke's pouch, which is an invagination of the hypophyseal placode. Hedgehog (Hh) and retinoic acid (RA) signals as well as several transcription factors have been suggested to play a role in the development of the adenohypophysis. We have therefore examined the expression pattern of Sonic hedgehog (Shh), the hedgehog receptor Patched2 (Ptc2), the retinoic acid producing enzyme Retinaldehyde dehydrogenase3 (Raldh3) and four transcription factors, Pitx2, Isl1, Lim3 and Pax6 in chick embryos from head fold stage to embryonic day (E) 4.5. We show that already at the head fold stage, Ptc2 is expressed in prospective hypophyseal placodal cells and that Shh is expressed in the underlying mesoderm. Moreover, Shh continues to be expressed in tissues surrounding the prospective adenohypophysis, and Ptc2 is expressed in prospective hypophyseal cells. Lim3 and Pax6 are expressed from stage 10 in the prospective hypophyseal placode, whereas Pitx2 starts to be expressed before stage 10. Pitx2 is together with Pax6 expressed in the entire domain of the Rathke's pouch. Raldh3 is detected at the 20 somite stage and is together with Lim3 expressed in the anterior part of the Rathke's pouch. Isl1 is expressed in the most posterior part of the hypophyseal ectoderm in a complementary pattern to Raldh3 and Lim3.
Collapse
Affiliation(s)
- My Sjödal
- Umeå Center for Molecular Medicine, Building 6M, 4th Floor, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|