1
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
2
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
3
|
van der Werf I, Sneifer J, Jamieson C. RNA Modifications Shape Hematopoietic Stem Cell Aging: Beyond the Code. FEBS Lett 2024; 598:2774-2775. [PMID: 39252150 PMCID: PMC11586592 DOI: 10.1002/1873-3468.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 09/11/2024]
Abstract
Hematopoietic system aging is characterized by both hematopoietic stem cell (HSC) and niche degeneration resulting in myeloid lineage-biased differentiation, reduced B cell and T cell lymphopoiesis, increased HSC mobilization, and fat deposition in the bone marrow. Both alterations in RNA splicing and editing during HSC aging contribute to increased myeloid lineage skewing and inflammation-responsive transcription factors, underscoring the importance of epitranscriptomic mechanisms in the acquisition of an age-related phenotype.
Collapse
Affiliation(s)
- Inge van der Werf
- Sanford Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California, 92037, USA
| | - Jenna Sneifer
- Sanford Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California, 92037, USA
| | - Catriona Jamieson
- Sanford Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California, 92037, USA
| |
Collapse
|
4
|
Rashid F, Zaongo SD, Iqbal H, Harypursat V, Song F, Chen Y. Interactions between HIV proteins and host restriction factors: implications for potential therapeutic intervention in HIV infection. Front Immunol 2024; 15:1390650. [PMID: 39221250 PMCID: PMC11361988 DOI: 10.3389/fimmu.2024.1390650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood. We therefore propose, in this review article, to examine and discuss the HIV proteins that counteract those host restriction proteins which results directly in increased infectivity of HIV. We elaborate on HIV proteins that antagonize host cellular proteins to promote HIV replication, and thus HIV infection. We examine the functions and mechanisms via which Nef, Vif, Vpu, Env, Vpr, and Vpx counteract host proteins such as Ser5, PSGL-1, IFITMS, A3G, tetherin, GBP5, SAMHD1, STING, HUSH, REAF, and TET2 to increase HIV infectivity. Nef antagonizes three host proteins, viz., Ser5, PSGL1, and IFITIMs, while Vpx also antagonizes three host restriction factors, viz., SAMHD1, STING, and HUSH complex; therefore, these proteins may be potential candidates for therapeutic intervention in HIV infection. Tetherin is targeted by Vpu and Env, PSGL1 is targeted by Nef and Vpu, while Ser5 is targeted by Nef and Env proteins. Finally, conclusive remarks and future perspectives are also presented.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hifza Iqbal
- School of science, University of Management and Technology, Lahore, Pakistan
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
5
|
Hervoso JL, Amoah K, Dodson J, Choudhury M, Bhattacharya A, Quinones-Valdez G, Pasaniuc B, Xiao X. Splicing-specific transcriptome-wide association uncovers genetic mechanisms for schizophrenia. Am J Hum Genet 2024; 111:1573-1587. [PMID: 38925119 PMCID: PMC11339621 DOI: 10.1016/j.ajhg.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.
Collapse
Affiliation(s)
- Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kofi Amoah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Dodson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
McCool MA, Bryant CJ, Abriola L, Surovtseva YV, Baserga SJ. The cytidine deaminase APOBEC3A regulates nucleolar function to promote cell growth and ribosome biogenesis. PLoS Biol 2024; 22:e3002718. [PMID: 38976757 PMCID: PMC11257408 DOI: 10.1371/journal.pbio.3002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Mason A. McCool
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carson J. Bryant
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, United States of America
| | - Susan J. Baserga
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Ishikawa M, Hori K. The elimination of two restriction enzyme genes allows for electroporation-based transformation and CRISPR-Cas9-based base editing in the non-competent Gram-negative bacterium Acinetobacter sp. Tol 5. Appl Environ Microbiol 2024; 90:e0040024. [PMID: 38722179 PMCID: PMC11218613 DOI: 10.1128/aem.00400-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 06/19/2024] Open
Abstract
Environmental isolates are promising candidates for new chassis of synthetic biology because of their inherent capabilities, which include efficiently converting a wide range of substrates into valuable products and resilience to environmental stresses; however, many remain genetically intractable and unamenable to established genetic tools tailored for model bacteria. Acinetobacter sp. Tol 5, an environmentally isolated Gram-negative bacterium, possesses intriguing properties for use in synthetic biology applications. Despite the previous development of genetic tools for the engineering of strain Tol 5, its genetic manipulation has been hindered by low transformation efficiency via electroporation, rendering the process laborious and time-consuming. This study demonstrated the genetic refinement of the Tol 5 strain, achieving efficient transformation via electroporation. We deleted two genes encoding type I and type III restriction enzymes. The resulting mutant strain not only exhibited marked efficiency of electrotransformation but also proved receptive to both in vitro and in vivo DNA assembly technologies, thereby facilitating the construction of recombinant DNA without reliance on intermediate Escherichia coli constructs. In addition, we successfully adapted a CRISPR-Cas9-based base-editing platform developed for other Acinetobacter species. Our findings provide genetic modification strategies that allow for the domestication of environmentally isolated bacteria, streamlining their utilization in synthetic biology applications.IMPORTANCERecent synthetic biology has sought diverse bacterial chassis from environmental sources to circumvent the limitations of laboratory Escherichia coli strains for industrial and environmental applications. One of the critical barriers in cell engineering of bacterial chassis is their inherent resistance to recombinant DNA, propagated either in vitro or within E. coli cells. Environmental bacteria have evolved defense mechanisms against foreign DNA as a response to the constant threat of phage infection. The ubiquity of phages in natural settings accounts for the genetic intractability of environmental isolates. The significance of our research is in demonstrating genetic modification strategies for the cell engineering of such genetically intractable bacteria. This research marks a pivotal step in the domestication of environmentally isolated bacteria, promising candidates for emerging synthetic biology chassis. Our work thus significantly contributes to advancing their applications across industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, Japan
| |
Collapse
|
8
|
Van Norden M, Falls Z, Mandloi S, Segal BH, Baysal BE, Samudrala R, Elkin PL. The implications of APOBEC3-mediated C-to-U RNA editing for human disease. Commun Biol 2024; 7:529. [PMID: 38704509 PMCID: PMC11069577 DOI: 10.1038/s42003-024-06239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Intra-organism biodiversity is thought to arise from epigenetic modification of constituent genes and post-translational modifications of translated proteins. Here, we show that post-transcriptional modifications, like RNA editing, may also contribute. RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosine to uracil. RNAsee (RNA site editing evaluation) is a computational tool developed to predict the cytosines edited by these enzymes. We find that 4.5% of non-synonymous DNA single nucleotide polymorphisms that result in cytosine to uracil changes in RNA are probable sites for APOBEC3A/G RNA editing; the variant proteins created by such polymorphisms may also result from transient RNA editing. These polymorphisms are associated with over 20% of Medical Subject Headings across ten categories of disease, including nutritional and metabolic, neoplastic, cardiovascular, and nervous system diseases. Because RNA editing is transient and not organism-wide, future work is necessary to confirm the extent and effects of such editing in humans.
Collapse
Affiliation(s)
- Melissa Van Norden
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sapan Mandloi
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Brahm H Segal
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Bora E Baysal
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Peter L Elkin
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
- Department of Veterans Affairs, VA Western New York Healthcare System, Buffalo, NY, USA.
- Faculty of Engineering, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Dennis M, Hurley A, Bray N, Cordero C, Ilagan J, Mertz TM, Roberts SA. Her2 amplification, Rel-A, and Bach1 can influence APOBEC3A expression in breast cancer cells. PLoS Genet 2024; 20:e1011293. [PMID: 38805570 PMCID: PMC11161071 DOI: 10.1371/journal.pgen.1011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
APOBEC-induced mutations occur in 50% of sequenced human tumors, with APOBEC3A (A3A) being a major contributor to mutagenesis in breast cancer cells. The mechanisms that cause A3A activation and mutagenesis in breast cancers are still unknown. Here, we describe factors that influence basal A3A mRNA transcript levels in breast cancer cells. We found that basal A3A mRNA correlates with A3A protein levels and predicts the amount of APOBEC signature mutations in a panel of breast cancer cell lines, indicating that increased basal transcription may be one mechanism leading to breast cancer mutagenesis. We also show that alteration of ERBB2 expression can drive A3A mRNA levels, suggesting the enrichment of the APOBEC mutation signature in Her2-enriched breast cancer could in part result from elevated A3A transcription. Hierarchical clustering of transcripts in primary breast cancers determined that A3A mRNA was co-expressed with other genes functioning in viral restriction and interferon responses. However, reduction of STAT signaling via inhibitors or shRNA in breast cancer cell lines had only minor impact on A3A abundance. Analysis of single cell RNA-seq from primary tumors indicated that A3A mRNA was highest in infiltrating immune cells within the tumor, indicating that correlations of A3A with STAT signaling in primary tumors may be result from higher immune infiltrates and are not reflective of STAT signaling controlling A3A expression in breast cancer cells. Analysis of ATAC-seq data in multiple breast cancer cell lines identified two transcription factor sites in the APOBEC3A promoter region that could promote A3A transcription. We determined that Rel-A, and Bach1, which have binding sites in these peaks, elevated basal A3A expression. Our findings highlight a complex and variable set of transcriptional activators for A3A in breast cancer cells.
Collapse
Affiliation(s)
- Madeline Dennis
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Alyssa Hurley
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Nicholas Bray
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Jose Ilagan
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Tony M. Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| | - Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
10
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
11
|
Yi B, Tanaka YL, Cornish D, Kosako H, Butlertanaka EP, Sengupta P, Lippincott-Schwartz J, Hultquist JF, Saito A, Yoshimura SH. Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism. iScience 2024; 27:109107. [PMID: 38384847 PMCID: PMC10879702 DOI: 10.1016/j.isci.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Binbin Yi
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri L. Tanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Erika P. Butlertanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Lu Q, Zhou W, Fan L, Ding T, Wang W, Zhang X. Tumor neoantigens derived from RNA editing events show significant clinical relevance in melanoma patients treated with immunotherapy. Anticancer Drugs 2024; 35:305-314. [PMID: 38170793 DOI: 10.1097/cad.0000000000001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study aimed to investigate the clinical significance of RNA editing (RE) and RNA editing derived (RED-) neoantigens in melanoma patients treated with immunotherapy. Vardict and VEP were used to identify the somatic mutations. RE events were identified by Reditools2 and filtered by the custom pipeline. miRTar2GO was implemented to predict the RE whether located in miRNA targets within the 3' UTR region. NetMHCpan and NetCTLpan were used to identify and characterize RED-neoantigens. In total, 7116 RE events were identified, most of which were A-to-I events. Using our custom pipeline, 631 RED-neoantigens were identified that show a significantly greater peptide-MHC affinity, and facilitate epitope processing and presentation than wild-type peptides. The OS of the patients with high RED-neoantigens burden was significantly longer ( P = 0.035), and a significantly higher RED-neoantigens burden was observed in responders ( P = 0.048). The area under the curve of the RED-neoantigen was 0.831 of OS. Then, we validated the reliability of RED-neoantigens in predicting the prognosis in an independent cohort and found that patients with high RED-neoantigens exhibited a longer OS ( P = 0.008). To our knowledge, this is the first study to systematically assess the clinical relevance of RED-neoantigens in melanoma patients treated with immunotherapy.
Collapse
Affiliation(s)
- Qicheng Lu
- Department of Gastrointestinal Surgery, Changzhou First People's Hospital, Changzhou, Jiangsu
| | - Wenhao Zhou
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Ligang Fan
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou
| | - Tian Ding
- Department of Clinical Medicine, Medical School, Nantong University
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, Guangdong
| | - Xiaodong Zhang
- Department of Medical Oncology, Tumor Hospital Affiliated To Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Pravallika G, Rajasekaran R. Stage II oesophageal carcinoma: peril in disguise associated with cellular reprogramming and oncogenesis regulated by pseudogenes. BMC Genomics 2024; 25:135. [PMID: 38308202 PMCID: PMC10835973 DOI: 10.1186/s12864-024-10023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.
Collapse
Affiliation(s)
- Govada Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
14
|
Dananberg A, Striepen J, Rozowsky JS, Petljak M. APOBEC Mutagenesis in Cancer Development and Susceptibility. Cancers (Basel) 2024; 16:374. [PMID: 38254863 PMCID: PMC10814203 DOI: 10.3390/cancers16020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
APOBEC cytosine deaminases are prominent mutators in cancer, mediating mutations in over 50% of cancers. APOBEC mutagenesis has been linked to tumor heterogeneity, persistent cell evolution, and therapy responses. While emerging evidence supports the impact of APOBEC mutagenesis on cancer progression, the understanding of its contribution to cancer susceptibility and malignant transformation is limited. We examine the existing evidence for the role of APOBEC mutagenesis in carcinogenesis on the basis of the reported associations between germline polymorphisms in genes encoding APOBEC enzymes and cancer risk, insights into APOBEC activities from sequencing efforts of both malignant and non-malignant human tissues, and in vivo studies. We discuss key knowledge gaps and highlight possible ways to gain a deeper understanding of the contribution of APOBEC mutagenesis to cancer development.
Collapse
Affiliation(s)
- Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Jacob S. Rozowsky
- Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Petljak
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M'bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
17
|
Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, Zhang Z, Tirado CR, Xu Y, Metang LA, Gonzalez J, Mukherji A, Ye J, Yang Y, Peng W, Tang Y, Hofstad M, Xie Z, Yoon H, Chen L, Liu X, Chen S, Zhu H, Strand D, Liang H, Raj G, He HH, Mendell JT, Li B, Wang T, Mu P. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell 2023; 41:1427-1449.e12. [PMID: 37478850 PMCID: PMC10530398 DOI: 10.1016/j.ccell.2023.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Peng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Heewon Yoon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Liping Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Hong Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Abruzzi KC, Ratner C, Rosbash M. Comparison of TRIBE and STAMP for identifying targets of RNA binding proteins in human and Drosophila cells. RNA (NEW YORK, N.Y.) 2023; 29:1230-1242. [PMID: 37169395 PMCID: PMC10351885 DOI: 10.1261/rna.079608.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
RNA binding proteins (RBPs) perform a myriad of functions and are implicated in numerous neurological diseases. To identify the targets of RBPs in small numbers of cells, we developed TRIBE, in which the catalytic domain of the RNA editing enzyme ADAR (ADARcd) is fused to an RBP. When the RBP binds to an mRNA, ADAR catalyzes A to G modifications in the target mRNA that can be easily identified in standard RNA sequencing. In STAMP, the concept is the same except the ADARcd is replaced by the RNA editing enzyme APOBEC. Here we compared TRIBE and STAMP side-by-side in human and Drosophila cells. The goal is to learn the pros and cons of each method so that researchers can choose the method best suited to their RBP and system. In human cells, TRIBE and STAMP were performed using the RBP TDP-43. Although they both identified TDP-43 target mRNAs, combining the two methods more successfully identified high-confidence targets. In Drosophila cells, RBP-APOBEC fusions generated only low numbers of editing sites, comparable to the level of control editing. This was true for two different RBPs, Hrp48 and Thor (Drosophila EIF4E-BP), indicating that STAMP does not work well in Drosophila.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Corrie Ratner
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
19
|
Van Norden M, Falls Z, Mandloi S, Segal B, Baysal B, Samudrala R, Elkin PL. The Role of C-to-U RNA Editing in Human Biodiversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.550344. [PMID: 37577456 PMCID: PMC10418052 DOI: 10.1101/2023.07.31.550344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Intra-organism biodiversity is thought to arise from epigenetic modification of our constituent genes and post-translational modifications after mRNA is translated into proteins. We have found that post-transcriptional modification, also known as RNA editing, is also responsible for a significant amount of our biodiversity, substantively expanding this story. The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosines to uracils (C>U) in specific stem-loop structures.1,2 We used RNAsee (RNA site editing evaluation), a tool developed to predict the locations of APOBEC3A/G RNA editing sites, to determine whether known single nucleotide polymorphisms (SNPs) in DNA could be replicated in RNA via RNA editing. About 4.5% of non-synonymous SNPs which result in C>U changes in RNA, and about 5.4% of such SNPs labelled as pathogenic, were identified as probable sites for APOBEC3A/G editing. This suggests that the variant proteins created by these DNA mutations may also be created by transient RNA editing, with the potential to affect human health. Those SNPs identified as potential APOBEC3A/G-mediated RNA editing sites were disproportionately associated with cardiovascular diseases, digestive system diseases, and musculoskeletal diseases. Future work should focus on common sites of RNA editing, any variant proteins created by these RNA editing sites, and the effects of these variants on protein diversity and human health. Classically, our biodiversity is thought to come from our constitutive genetics, epigenetic phenomenon, transcriptional differences, and post-translational modification of proteins. Here, we have shown evidence that RNA editing, often stimulated by environmental factors, could account for a significant degree of the protein biodiversity leading to human disease. In an era where worries about our changing environment are ever increasing, from the warming of our climate to the emergence of new diseases to the infiltration of microplastics and pollutants into our bodies, understanding how environmentally sensitive mechanisms like RNA editing affect our own cells is essential.
Collapse
Affiliation(s)
- Melissa Van Norden
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Sapan Mandloi
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Brahm Segal
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Roswell Park Cancer Center
| | | | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
| | - Peter L Elkin
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Department of Veterans Affairs, VA Western New York Healthcare System, Buffalo, NY, USA
- Faculty of Engineering, University of Southern Denmark
| |
Collapse
|
20
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining distinct RNA-protein interactomes of SARS-CoV-2 genomic and subgenomic RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540806. [PMID: 37293069 PMCID: PMC10245570 DOI: 10.1101/2023.05.15.540806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral defense mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA at either of two time points. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. The interactomes indicated viral associations with cell response pathways including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We validated the significance of five protein interactors predicted to exhibit antiviral activity (APOBEC3F, TRIM71, PPP1CC, LIN28B, and MSI2) using siRNA knockdowns, with each knockdown yielding increases in viral production. This study describes new technology for studying SARS-CoV-2 and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T. Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Rachel A. Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - M’bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| |
Collapse
|
21
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Li Y, Tang M, Zhang FJ, Huang Y, Zhang J, Li J, Wang Y, Yang J, Zhu S. Screening of ulcerative colitis biomarkers and potential pathways based on weighted gene co-expression network, machine learning and ceRNA hypothesis. Hereditas 2022; 159:42. [PMID: 36419192 PMCID: PMC9685902 DOI: 10.1186/s41065-022-00259-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) refers to an intractable intestinal inflammatory disease. Its increasing incidence rate imposes a huge burden on patients and society. The UC etiology has not been determined, so screening potential biomarkers is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. METHODS The microarray datasets of intestinal mucosal biopsy of UC patients were selected from the GEO database, and integrated with R language to screen differentially expressed genes and draw proteins interaction network diagrams. GO, KEGG, DO and GSEA enrichment analyses were performed to explore their biological functions. Through machine learning and WGCNA analysis, targets that can be used as UC potential biomarkers are screened out. ROC curves were drawn to verify the reliability of the results and predicted the mechanism of marker genes from the aspects of immune cell infiltration, co-expression analysis, and competitive endogenous network (ceRNA). RESULTS Two datasets GSE75214 and GSE87466 were integrated for screening, and a total of 107 differentially expressed genes were obtained. They were mainly related to biological functions such as humoral immune response and inflammatory response. Further screened out five marker genes, and found that they were associated with M0 macrophages, quiescent mast cells, M2 macrophages, and activated NK cells in terms of immune cell infiltration. The co-expression network found significant co-expression relationships between 54 miRNAs and 5 marker genes. According to the ceRNA hypothesis, NEAT1-miR-342-3p/miR-650-SLC6A14, NEAT1-miR-650-IRAK3, and XIST-miR-342-3p-IRAK3 axes were found as potential regulatory pathways in UC. CONCLUSION This study screened out five biomarkers that can be used for the diagnosis and treatment of UC, namely SLC6A14, TIMP1, IRAK3, HMGCS2, and APOBEC3B. Confirmed that they play a role in the occurrence and development of UC at the level of immune infiltration, and proposed a potential RNA regulatory pathway that controls the progression of UC.
Collapse
Affiliation(s)
- Ying Li
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China ,grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Mengyao Tang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Innovation and Research of Traditional Chinese Medicine, Jinan, 250000 China
| | - Feng Jun Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China ,grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Yihan Huang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Junqi Li
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Yunpeng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Gastroenterology, Jinan, China
| | - Jinguang Yang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, The First College for Clinical Medicine, Jinan, China
| | - Shu Zhu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, College of Innovation and Research of Traditional Chinese Medicine, Jinan, 250000 China
| |
Collapse
|
23
|
Papini C, Wang Z, Kudalkar SN, Schrank TP, Tang S, Sasaki T, Wu C, Tejada B, Ziegler SJ, Xiong Y, Issaeva N, Yarbrough WG, Anderson KS. Exploring ABOBEC3A and APOBEC3B substrate specificity and their role in HPV positive head and neck cancer. iScience 2022; 25:105077. [PMID: 36164654 PMCID: PMC9508485 DOI: 10.1016/j.isci.2022.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
APOBEC3 family members are cytidine deaminases catalyzing conversion of cytidine to uracil. Many studies have established a link between APOBEC3 expression and cancer development and progression, especially APOBEC3A (A3A) and APOBEC3B (A3B). Preclinical studies with human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) and clinical trial specimens revealed induction of A3B, but not A3A expression after demethylation. We examined the kinetic features of the cytidine deaminase activity for full length A3B and found that longer substrates and a purine at −2 position favored by A3B, whereas A3A prefers shorter substrates and an adenine or thymine at −2 position. The importance and biological significance of A3B catalytic activity rather than A3A and a preference for purine at the −2 position was also established in HPV+ HNSCCs. Our study explored factors influencing formation of A3A and A3B-related cancer mutations that are essential for understanding APOBEC3-related carcinogenesis and facilitating drug discovery. A3B is upregulated after 5-AzaC treatment and related to 5-AzaC sensitivity in HPV+ HNSCC Full-length A3B prefers longer substrates and a purine at −2 site biochemically A3B also prefers a purine at −2 site in both HPV+ and HPV− HNSCC cells A3B signature at -2 site linked to poor patient survival in HPV+ HNSCC low smokers
Collapse
Affiliation(s)
- Christina Papini
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zechen Wang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Travis Parke Schrank
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Su Tang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Cory Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Brandon Tejada
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Prognostic value, immune signature and molecular mechanisms of the APOBEC family members APOBEC1, APOBEC3A, APOBEC3G and APOBEC3H in pancreatic adenocarcinoma. Front Mol Biosci 2022; 9:1036287. [PMID: 36339709 PMCID: PMC9631948 DOI: 10.3389/fmolb.2022.1036287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 02/26/2024] Open
Abstract
Background: Increasing evidence supports that the APOBEC family is associated with development of a variety of cancers. However, the function of APOBEC1/3A/3G/3H in pancreatic adenocarcinoma (PAAD) is still unclear. Methods: Comprehensive bioinformatic analysis using R (version 3.6.3), TISIDB, Metascape etc. were performed to study the clinicopathological characteristics, prognostic value, immune features and functional mechanisms of the APOBEC1/3A/3G/3H in PAAD. Results: APOBEC1/3A/3G/3H showed significantly elevated expression in PAAD than para-cancerous or normal tissues. Their high expression or amplification were significantly correlated with worse clinicopathological characteristics and prognosis in PAAD patients. In addition, the role of APOBEC1/3A/3G/3H in the immune regulation is diverse and complex, the high expression of APOBEC1 may inhibit the infiltration level of many kinds of immunoreactive tumor-infiltrating cells, which may be an important factor leading to immune escape of PAAD cells. Mechanistically, APOBEC1/3A/3G/3H played an activating role in multiple oncogenic pathways, including the EMT, RAS/MAPK and TSC/mTOR pathways. Moreover, we found that the expression level of APOBEC3G was positively correlated with the sensitivity of gemcitabine and doxorubicin. Conclusion: APOBEC1/3A/3G/3H play an oncogenic role in the development of PAAD and might serve as new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaohao Zheng
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
26
|
EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines 2022; 10:biomedicines10061280. [PMID: 35740302 PMCID: PMC9220071 DOI: 10.3390/biomedicines10061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are synthesized through a canonical pathway and play a role in human diseases, such as cancers and cardiovascular, neurodegenerative, psychiatric, and chronic inflammatory diseases. The development of sequencing technologies has enabled the identification of variations in noncoding miRNAs. These miRNA variants, called isomiRs, are generated through a non-canonical pathway, by several enzymes that alter the length and sequence of miRNAs. The isomiR family is, now, expanding further to include episomiRs, which are miRNAs with different modifications. Since recent findings have shown that isomiRs reflect the cell-specific biological function of miRNAs, knowledge about episomiRs and isomiRs can, possibly, contribute to the optimization of diagnosis and therapeutic technology for precision medicine.
Collapse
|
27
|
Xu W, Biswas J, Singer RH, Rosbash M. Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 2022; 82:389-403. [PMID: 34739873 PMCID: PMC8792254 DOI: 10.1016/j.molcel.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.
Collapse
Affiliation(s)
- Weijin Xu
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA.
| |
Collapse
|
28
|
Amweg A, Tusup M, Cheng P, Picardi E, Dummer R, Levesque MP, French LE, Guenova E, Läuchli S, Kundig T, Mellett M, Pascolo S. The A to I editing landscape in melanoma and its relation to clinical outcome. RNA Biol 2022; 19:996-1006. [PMID: 35993275 PMCID: PMC9415457 DOI: 10.1080/15476286.2022.2110390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.
Collapse
Affiliation(s)
- Austeja Amweg
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| |
Collapse
|
29
|
The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J 2021; 479:39-55. [PMID: 34870314 DOI: 10.1042/bcj20210529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.
Collapse
|
30
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
31
|
RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms222111870. [PMID: 34769301 PMCID: PMC8584444 DOI: 10.3390/ijms222111870] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The intrinsic cellular heterogeneity and molecular complexity of the mammalian nervous system relies substantially on the dynamic nature and spatiotemporal patterning of gene expression. These features of gene expression are achieved in part through mechanisms involving various epigenetic processes such as DNA methylation, post-translational histone modifications, and non-coding RNA activity, amongst others. In concert, another regulatory layer by which RNA bases and sugar residues are chemically modified enhances neuronal transcriptome complexity. Similar RNA modifications in other systems collectively constitute the cellular epitranscriptome that integrates and impacts various physiological processes. The epitranscriptome is dynamic and is reshaped constantly to regulate vital processes such as development, differentiation and stress responses. Perturbations of the epitranscriptome can lead to various pathogenic conditions, including cancer, cardiovascular abnormalities and neurological diseases. Recent advances in next-generation sequencing technologies have enabled us to identify and locate modified bases/sugars on different RNA species. These RNA modifications modulate the stability, transport and, most importantly, translation of RNA. In this review, we discuss the formation and functions of some frequently observed RNA modifications—including methylations of adenine and cytosine bases, and isomerization of uridine to pseudouridine—at various layers of RNA metabolism, together with their contributions to abnormal physiological conditions that can lead to various neurodevelopmental and neurological disorders.
Collapse
|
32
|
Brown AL, Collins CD, Thompson S, Coxon M, Mertz TM, Roberts SA. Single-stranded DNA binding proteins influence APOBEC3A substrate preference. Sci Rep 2021; 11:21008. [PMID: 34697369 PMCID: PMC8546098 DOI: 10.1038/s41598-021-00435-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The cytidine deaminase, APOBEC3A (A3A), is a prominent source of mutations in multiple cancer types. These APOBEC-signature mutations are non-uniformly distributed across cancer genomes, associating with single-stranded (ss) DNA formed during DNA replication and hairpin-forming sequences. The biochemical and cellular factors that influence these specificities are unclear. We measured A3A's cytidine deaminase activity in vitro on substrates that model potential sources of ssDNA in the cell and found that A3A is more active on hairpins containing 4 nt ssDNA loops compared to hairpins with larger loops, bubble structures, replication fork mimics, ssDNA gaps, or linear DNA. Despite pre-bent ssDNAs being expected to fit better in the A3A active site, we determined A3A favors a 4 nt hairpin substrate only 2- to fivefold over linear ssDNA substrates. Addition of whole cell lysates or purified RPA to cytidine deaminase assays more severely reduced A3A activity on linear ssDNA (45 nt) compared to hairpin substrates. These results indicate that the large enrichment of A3A-driven mutations in hairpin-forming sequences in tumor genomes is likely driven in part by other proteins that preferentially bind longer ssDNA regions, which limit A3A's access. Furthermore, A3A activity is reduced at ssDNA associated with a stalled T7 RNA polymerase, suggesting that potential protein occlusion by RNA polymerase also limits A3A activity. These results help explain the small transcriptional strand bias for APOBEC mutation signatures in cancer genomes and the general targeting of hairpin-forming sequences in the lagging strand template during DNA replication.
Collapse
Affiliation(s)
- Amber L Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher D Collins
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Secily Thompson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Margo Coxon
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Tony M Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
33
|
Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021; 3:zcab036. [PMID: 34541538 PMCID: PMC8445368 DOI: 10.1093/narcan/zcab036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
34
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
35
|
Bader SB, Ma TS, Simpson CJ, Liang J, Maezono S, Olcina M, Buffa F, Hammond E. Replication catastrophe induced by cyclic hypoxia leads to increased APOBEC3B activity. Nucleic Acids Res 2021; 49:7492-7506. [PMID: 34197599 PMCID: PMC8287932 DOI: 10.1093/nar/gkab551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.
Collapse
Affiliation(s)
- Samuel B Bader
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Charlotte J Simpson
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Jiachen Liang
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Sakura Eri B Maezono
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Monica M Olcina
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Francesca M Buffa
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
36
|
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2021; 20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022]
Abstract
Editing mutated genes is a potential way for the treatment of genetic diseases. G-to-A mutations are common in mammals and can be treated by adenosine-to-inosine (A-to-I) editing, a type of substitutional RNA editing. The molecular mechanism of A-to-I editing involves the hydrolytic deamination of adenosine to an inosine base; this reaction is mediated by RNA-specific deaminases, adenosine deaminases acting on RNA (ADARs), family protein. Here, we review recent findings regarding the application of ADARs to restoring the genetic code along with different approaches involved in the process of artificial RNA editing by ADAR. We have also addressed comparative studies of various isoforms of ADARs. Therefore, we will try to provide a detailed overview of the artificial RNA editing and the role of ADAR with a focus on the enzymatic site directed A-to-I editing.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa, 923-1292, Japan
| |
Collapse
|
37
|
Botvinnik A, Shivam P, Smith Y, Sharma G, Olshevsky U, Moshel O, Manevitch Z, Climent N, Oliva H, Britan-Rosich E, Kotler M. APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS J 2021; 288:6063-6077. [PMID: 33999509 DOI: 10.1111/febs.16025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (hA3G), a member of the APOBEC family, was described as an anti-HIV-1 restriction factor, deaminating reverse transcripts of the HIV-1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B-cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double-strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
Collapse
Affiliation(s)
- Alexander Botvinnik
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Pushkar Shivam
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Gunjan Sharma
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Udy Olshevsky
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zakhariya Manevitch
- Core Research Facility, Light Microscopy and Image Analysis Laboratory, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Nuria Climent
- Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Elena Britan-Rosich
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Moshe Kotler
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
38
|
Whole Blood Transcriptome Profiling Reveals Positive Effects of Olive Leaves-Supplemented Diet on Cholesterol in Goats. Animals (Basel) 2021; 11:ani11041150. [PMID: 33920539 PMCID: PMC8072609 DOI: 10.3390/ani11041150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The aim of this study was to analyze the whole blood transcriptome of lactating goats fed a dietary supplementation with 10% olive leaves, one of the main by-products deriving from the olive oil chain supply. This evaluation was effective in identifying the differential regulation of the gene coding for apolipoprotein B mRNA editing enzyme catalytic subunit 2 (APOBEC2), which showed downregulated in goats that received the dietary supplementation. Taking into account the strong association between plasma apoB and low-density lipoprotein, an evaluation was performed of both blood and milk cholesterol. The obtained data demonstrated a significant lower concentration of circulating cholesterol and cholesterol released into the milk through the mammary gland, demonstrating positive effects of olive leaves feeding on animal welfare and potential health benefits for consumers. Abstract Agro-industrial by-products represent an important source of compounds credited with high biotechnological potential. In the last decade, considerable interest has developed toward the use of these matrices as dietary supplements in the zootechnical field, paying particular attention to the qualitative aspects associated with animal products. However, less is known about the effect of these matrices on gene expression and thus on animal metabolism. Therefore, the aim of this study was to analyze the whole blood transcriptome of lactating goats fed a dietary supplementation with 10% olive leaves (OL), one of the main by-products deriving from the olive oil chain supply. By applying a false discovery rate (FDR) < 0.05 and a Log2 Fold change (Log2Fc) lower than −0.5 or higher than +0.5, it was possible to identify the differential regulation of gene coding for the apolipoprotein B (apoB) mRNA editing enzyme catalytic subunit 2 (APOBEC2), which showed downregulation in goats that received the dietary supplementation. An evaluation of both blood and milk cholesterol was performed, taking into account the strong association between plasma apoB and low-density lipoprotein (LDL). Results showed significantly lower concentrations of circulating cholesterol and cholesterol released into the milk through the mammary gland, demonstrating positive effects of OL feeding on animal welfare and potential health benefits for consumers.
Collapse
|
39
|
Wang G, Guan J, Khan NU, Li G, Shao J, Zhou Q, Xu L, Huang C, Deng J, Zhu H, Chen Z. Potential capacity of interferon-α to eliminate covalently closed circular DNA (cccDNA) in hepatocytes infected with hepatitis B virus. Gut Pathog 2021; 13:22. [PMID: 33845868 PMCID: PMC8040234 DOI: 10.1186/s13099-021-00421-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon-alpha (IFN-α) and nucleot(s)ide analogs (NAs) are first-line drugs for the treatment of chronic hepatitis B virus (HBV) infections. Generally, NAs target the reverse transcription of HBV pregenomic RNA, but they cannot eliminate covalently-closed-circular DNA (cccDNA). Although effective treatment with NAs can dramatically decrease HBV proteins and DNA loads, and even promote serological conversion, cccDNA persists in the nucleus of hepatocytes due to the lack of effective anti-cccDNA drugs. Of the medications currently available, only IFN-α can potentially target cccDNA. However, the clinical effects of eradicating cccDNA using IFN-α in the hepatocytes of patients with HBV are not proficient as well as expected and are not well understood. Herein, we review the anti-HBV mechanisms of IFN-α involving cccDNA modification as the most promising approaches to cure HBV infection. We expect to find indications of promising areas of research that require further study to eliminate cccDNA of HBV in patients.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nazif U Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Guojun Li
- Institute for Hepatology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, Shenzhen, 518112, Guangdong, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
| | - Junwei Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qihui Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jingwen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
40
|
Kawaguchi M, Nakayama A, Aoyagi Y, Nakamura T, Shimizu S, Kawamura Y, Takao M, Tamura T, Hishida A, Nagayoshi M, Nagase M, Ooyama K, Ooyama H, Shinomiya N, Matsuo H. Both variants of A1CF and BAZ1B genes are associated with gout susceptibility: a replication study and meta-analysis in a Japanese population. Hum Cell 2021; 34:293-299. [PMID: 33517564 PMCID: PMC7900071 DOI: 10.1007/s13577-021-00485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022]
Abstract
Gout is a common type of acute arthritis that results from elevated serum uric acid (SUA) levels. Recent genome-wide association studies (GWASs) have revealed several novel single nucleotide polymorphism (SNPs) associated with SUA levels. Of these, rs10821905 of A1CF and rs1178977 of BAZ1B showed the greatest and the second greatest significant effect size for increasing SUA level in the Japanese population, but their association with gout is not clear. We examined their association with gout using 1411 clinically-defined Japanese gout patients and 1285 controls, and meta-analyzed our previous gout GWAS data to investigate any association with gout. Replication studies revealed both SNPs to be significantly associated with gout (P = 0.0366, odds ratio [OR] with 95% confidence interval [CI]: 1.30 [1.02-1.68] for rs10821905 of A1CF, P = 6.49 × 10-3, OR with 95% CI: 1.29 [1.07-1.55] for rs1178977 of BAZ1B). Meta-analysis also revealed a significant association with gout in both SNPs (Pmeta = 3.16 × 10-4, OR with 95% CI: 1.39 [1.17-1.66] for rs10821905 of A1CF, Pmeta = 7.28 × 10-5, OR with 95% CI 1.32 [1.15-1.51] for rs1178977 of BAZ1B). This study shows the first known association between SNPs of A1CF, BAZ1B and clinically-defined gout cases in Japanese. Our results also suggest a shared physiological/pathophysiological background between several populations, including Japanese, for both SUA increase and gout susceptibility. Our findings will not only assist the elucidation of the pathophysiology of gout and hyperuricemia, but also suggest new molecular targets.
Collapse
Affiliation(s)
- Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yuka Aoyagi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, Premedical Course, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mako Nagayoshi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
41
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, Calin GA. Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. Int J Mol Sci 2021; 22:ijms22020581. [PMID: 33430133 PMCID: PMC7827606 DOI: 10.3390/ijms22020581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: m5C, hm5C, m6A, m1A, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered “non-functional” ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer it is possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Collapse
Affiliation(s)
- Ligia I. Torsin
- Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania;
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Alexandru A. Sabo
- Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| |
Collapse
|
43
|
Duan S, Wang S, Song Y, Gao N, Meng L, Gai Y, Zhang Y, Wang S, Wang C, Yu B, Wu J, Yu X. A novel HIV-1 inhibitor that blocks viral replication and rescues APOBEC3s by interrupting vif/CBFβ interaction. J Biol Chem 2020; 295:14592-14605. [PMID: 32817167 PMCID: PMC7586213 DOI: 10.1074/jbc.ra120.013404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
HIV remains a health challenge worldwide, partly because of the continued development of resistance to drugs. Therefore, it is urgent to find new HIV inhibitors and targets. Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3) are important host restriction factors that inhibit HIV-1 replication by their cytidine deaminase activity. HIV-1 viral infectivity factor (Vif) promotes proteasomal degradation of APOBEC3 proteins by recruiting the E3 ubiquitin ligase complex, in which core-binding factor β (CBFβ) is a necessary molecular chaperone. Interrupting the interaction between Vif and CBFβ can release APOBEC3 proteins to inhibit HIV-1 replication and may be useful for developing new drug targets for HIV-1. In this study, we identified a potent small molecule inhibitor CBFβ/Vif-3 (CV-3) of HIV-1 replication by employing structure-based virtual screening using the crystal structure of Vif and CBFβ (PDB: 4N9F) and validated CV-3's antiviral activity. We found that CV-3 specifically inhibited HIV-1 replication (IC50 = 8.16 µm; 50% cytotoxic concentration >100 µm) in nonpermissive lymphocytes. Furthermore, CV-3 treatment rescued APOBEC3 family members (human APOBEC3G (hA3G), hA3C, and hA3F) in the presence of Vif and enabled hA3G packaging into HIV-1 virions, which resulted in Gly-to-Ala hypermutations in viral genomes. Finally, we used FRET to demonstrate that CV-3 inhibited the interaction between Vif and CBFβ by simultaneously forming hydrogen bonds with residues Gln-67, Ile-102, and Arg-131 of CBFβ. These findings demonstrate that CV-3 can effectively inhibit HIV-1 by blocking the interaction between Vif and CBFβ and that this interaction can serve as a new target for developing HIV-1 inhibitors.
Collapse
Affiliation(s)
- Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shiqi Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanxin Gai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Ying Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
44
|
Feng S, Zhong Z, Wang M, Jacobsen SE. Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics Chromatin 2020; 13:42. [PMID: 33028374 PMCID: PMC7542392 DOI: 10.1186/s13072-020-00361-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background 5′ methylation of cytosines in DNA molecules is an important epigenetic mark in eukaryotes. Bisulfite sequencing is the gold standard of DNA methylation detection, and whole-genome bisulfite sequencing (WGBS) has been widely used to detect methylation at single-nucleotide resolution on a genome-wide scale. However, sodium bisulfite is known to severely degrade DNA, which, in combination with biases introduced during PCR amplification, leads to unbalanced base representation in the final sequencing libraries. Enzymatic conversion of unmethylated cytosines to uracils can achieve the same end product for sequencing as does bisulfite treatment and does not affect the integrity of the DNA; enzymatic methylation sequencing may, thus, provide advantages over bisulfite sequencing. Results Using an enzymatic methyl-seq (EM-seq) technique to selectively deaminate unmethylated cytosines to uracils, we generated and sequenced libraries based on different amounts of Arabidopsis input DNA and different numbers of PCR cycles, and compared these data to results from traditional whole-genome bisulfite sequencing. We found that EM-seq libraries were more consistent between replicates and had higher mapping and lower duplication rates, lower background noise, higher average coverage, and higher coverage of total cytosines. Differential methylation region (DMR) analysis showed that WGBS tended to over-estimate methylation levels especially in CHG and CHH contexts, whereas EM-seq detected higher CG methylation levels in certain highly methylated areas. These phenomena can be mostly explained by a correlation of WGBS methylation estimation with GC content and methylated cytosine density. We used EM-seq to compare methylation between leaves and flowers, and found that CHG methylation level is greatly elevated in flowers, especially in pericentromeric regions. Conclusion We suggest that EM-seq is a more accurate and reliable approach than WGBS to detect methylation. Compared to WGBS, the results of EM-seq are less affected by differences in library preparation conditions or by the skewed base composition in the converted DNA. It may therefore be more desirable to use EM-seq in methylation studies.
Collapse
Affiliation(s)
- Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS One 2020; 15:e0237689. [PMID: 33006981 PMCID: PMC7531822 DOI: 10.1371/journal.pone.0237689] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella-another positive single stranded (ss) RNA virus. Each of the rubella virus isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella virus, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2-likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
Affiliation(s)
- Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Thomas A. Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| |
Collapse
|
46
|
Wang R, Hozumi Y, Zheng YH, Yin C, Wei GW. Host Immune Response Driving SARS-CoV-2 Evolution. Viruses 2020; 12:v12101095. [PMID: 32992592 PMCID: PMC7599751 DOI: 10.3390/v12101095] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
The transmission and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of paramount importance in controlling and combating the coronavirus disease 2019 (COVID-19) pandemic. Currently, over 15,000 SARS-CoV-2 single mutations have been recorded, which have a great impact on the development of diagnostics, vaccines, antibody therapies, and drugs. However, little is known about SARS-CoV-2’s evolutionary characteristics and general trend. In this work, we present a comprehensive genotyping analysis of existing SARS-CoV-2 mutations. We reveal that host immune response via APOBEC and ADAR gene editing gives rise to near 65% of recorded mutations. Additionally, we show that children under age five and the elderly may be at high risk from COVID-19 because of their overreaction to the viral infection. Moreover, we uncover that populations of Oceania and Africa react significantly more intensively to SARS-CoV-2 infection than those of Europe and Asia, which may explain why African Americans were shown to be at increased risk of dying from COVID-19, in addition to their high risk of COVID-19 infection caused by systemic health and social inequities. Finally, our study indicates that for two viral genome sequences of the same origin, their evolution order may be determined from the ratio of mutation type, C > T over T > C.
Collapse
Affiliation(s)
- Rui Wang
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA; (R.W.); (Y.H.)
| | - Yuta Hozumi
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA; (R.W.); (Y.H.)
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Changchuan Yin
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA; (R.W.); (Y.H.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
47
|
Williams LS, Caro J, Razzo B, Boyle EM, Morgan GJ. Deep sequencing as an approach to understanding the complexity and improving the treatment of multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1792285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Louis S. Williams
- Department of Hematology & Medical Oncology, NYU Langone Medical Center, New York, NY, USA
| | - Jessica Caro
- Department of Hematology & Medical Oncology, NYU Langone Medical Center, New York, NY, USA
| | - Beatrice Razzo
- Department of Internal Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Eileen M. Boyle
- Department of Hematology & Medical Oncology, Multiple Myeloma Research Program, NYU Langone Medical Center, New York, NY, USA
| | - Gareth J. Morgan
- Department of Hematology & Medical Oncology, Multiple Myeloma Research Program, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
48
|
Rabbie R, Ansari-Pour N, Cast O, Lau D, Scott F, Welsh SJ, Parkinson C, Khoja L, Moore L, Tullett M, Wong K, Ferreira I, Gómez JMM, Levesque M, Gallagher FA, Jiménez-Sánchez A, Riva L, Miller ML, Allinson K, Campbell PJ, Corrie P, Wedge DC, Adams DJ. Multi-site clonality analysis uncovers pervasive heterogeneity across melanoma metastases. Nat Commun 2020; 11:4306. [PMID: 32855398 PMCID: PMC7453196 DOI: 10.1038/s41467-020-18060-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/27/2020] [Indexed: 01/06/2023] Open
Abstract
Metastatic melanoma carries a poor prognosis despite modern systemic therapies. Understanding the evolution of the disease could help inform patient management. Through whole-genome sequencing of 13 melanoma metastases sampled at autopsy from a treatment naïve patient and by leveraging the analytical power of multi-sample analyses, we reveal evidence of diversification among metastatic lineages. UV-induced mutations dominate the trunk, whereas APOBEC-associated mutations are found in the branches of the evolutionary tree. Multi-sample analyses from a further seven patients confirmed that lineage diversification was pervasive, representing an important mode of melanoma dissemination. Our analyses demonstrate that joint analysis of cancer cell fraction estimates across multiple metastases can uncover previously unrecognised levels of tumour heterogeneity and highlight the limitations of inferring heterogeneity from a single biopsy.
Collapse
Affiliation(s)
- Roy Rabbie
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver Cast
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Doreen Lau
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, UK
| | - Francis Scott
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, UK
| | - Sarah J Welsh
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christine Parkinson
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Leila Khoja
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Vincent Drive, University of Birmingham, Birmingham, UK
| | - Luiza Moore
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Mark Tullett
- St Richard's Hospital, Spitalfield Lane, Chichester, UK
| | - Kim Wong
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Ingrid Ferreira
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Julia M Martínez Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Gloriastrasse 31, CH-8091, Zurich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Gloriastrasse 31, CH-8091, Zurich, Switzerland
| | - Ferdia A Gallagher
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, UK
| | - Alejandro Jiménez-Sánchez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Laura Riva
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Martin L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter J Campbell
- The Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Pippa Corrie
- Cambridge Cancer Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
49
|
Ng JF, Fraternali F. Understanding the structural details of APOBEC3-DNA interactions using graph-based representations. Curr Res Struct Biol 2020; 2:130-143. [PMID: 34235473 PMCID: PMC8244423 DOI: 10.1016/j.crstbi.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Human APOBEC3 (A3; apolipoprotein B mRNA editing catalytic polypeptide-like 3) is a family of seven enzymes involved in generating mutations in nascent reverse transcripts of many retroviruses, as well as the human genome in a range of cancer types. The structural details of the interaction between A3 proteins and DNA molecules are only available for a few family members. Here we use homology modelling techniques to address the difference in structural coverage of human A3 enzymes interacting with different DNA substrates. A3-DNA interfaces are represented as residue networks ("graphs"), based on which features at these interfaces are compared and quantified. We demonstrate that graph-based representations are effective in highlighting structural features of A3-DNA interfaces. By large-scale in silico mutagenesis of the bound DNA chain, we predicted the preference of substrate DNA sequence for multiple A3 domains. These data suggested that computational modelling approaches could contribute in the exploration of the structural basis for sequence specificity in A3 substrate selection, and demonstrated the utility of graph-based approaches in evaluating a large number of structural models generated in silico. APOBEC3(A3)-DNA structures have been resolved with modified deaminase domains. Structural modelling of interaction between wild-type A3 domains and DNA substrates. Graph-based representations reveal structural differences across A3-DNA interfaces. Using in silico mutagenesis we compared substrate preference of multiple A3 domains. Graph-based approaches can efficiently compare a large number of structural models.
Collapse
|
50
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.03.234005. [PMID: 32793907 PMCID: PMC7418721 DOI: 10.1101/2020.08.03.234005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella - another positive single stranded (ss) RNA virus. Each of the rubella isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2 - likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
|