1
|
Sreenivasan S, Jiwani RA, White R, Bakalov V, Moll R, Liput J, Greenberg L. Advances in Targeted and Systemic Therapy for Salivary Gland Carcinomas: Current Options and Future Directions. Curr Oncol 2025; 32:232. [PMID: 40277788 PMCID: PMC12025620 DOI: 10.3390/curroncol32040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Salivary gland carcinomas (SGCs) represent a rare and heterogeneous group of malignancies accounting for 3-6% of all head and neck cancers. While surgical resection and radiotherapy remain the standard for locoregional control, systemic treatment is indicated for recurrent or metastatic disease. Advances in molecular profiling have identified actionable targets such as NTRK gene fusions, HER2, immune checkpoint regulators, androgen receptors, and RET receptors. These have facilitated the development of targeted therapies, including TRK inhibitors, HER2-directed agents, and androgen receptor modulators, as well as emerging combinations of immunotherapy and chemotherapy. Despite these advancements, challenges such as resistance mechanisms and limited therapeutic efficacy persist. Overall response rates remain relatively low across most systemic therapies, reflecting a persistent unmet clinical need. This review discusses the current landscape of treatment options and explores promising clinical trials and future directions to enhance outcomes for patients with SGCs.
Collapse
Affiliation(s)
- Sushanth Sreenivasan
- Division of Internal Medicine, Allegheny Health Network, 320 East North Ave, Pittsburgh, PA 15212, USA
| | - Rahim A. Jiwani
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| | - Richard White
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| | - Veli Bakalov
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| | - Ryan Moll
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| | - Joseph Liput
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| | - Larisa Greenberg
- Division of Medical Oncology, Allegheny Health Network, 314 East North Ave, Pittsburgh, PA 15212, USA (V.B.)
| |
Collapse
|
2
|
Huang P, Wang J, Yu Z, Lu J, Sun Z, Chen Z. Redefining bladder cancer treatment: innovations in overcoming drug resistance and immune evasion. Front Immunol 2025; 16:1537808. [PMID: 39911393 PMCID: PMC11794230 DOI: 10.3389/fimmu.2025.1537808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Bladder cancer is one of the most common malignancies of the urinary system and has always presented great challenges in treatment due to its intricate biological features and high recurrence rates. Although great developments were achieved in immunotherapy and targeted therapies within the last decade, therapeutic outcomes for a great number of patients remain unsatisfactory, particularly as to long-term efficacy. Review discusses the molecular mechanisms developed during the process of bladder cancer progression: genetic and epigenetic alterations, dynamics of the tumor microenvironment (TME), and dysregulation and abnormal activation of various signaling pathways-all contributing to therapeutic resistance. It is genetic mutation, especially in both low- and high-grade tumors, that, alongside epigenetic modifications, plays a considerable role in tumor aggressiveness and drug resistance. TME, comprising cancer-associated fibroblasts (CAFs), immunosuppressive cells, and different components of the extracellular matrix (ECM), orchestrates a setting that fosters tumor growth and immune evasion and confers resistance on any therapeutic regime that might be used. The review also provides an overview of PI3K/AKT and MAPK signaling pathways in the progression of bladder cancer and the development of targeted therapies against them. Further, it discusses the challenges and mechanisms of resistance to immunotherapy, including those involving immune checkpoint inhibitors. Other promising approaches include the development of new therapeutic strategies that target not only the signaling pathways but also immune checkpoints in combination therapies. This review aims to contribute to the elaboration of more effective and personalized treatment strategies by fully understanding the underlying mechanisms involved in bladder cancer.
Collapse
Affiliation(s)
- Peng Huang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jie Wang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Zongze Yu
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhigui Chen
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| |
Collapse
|
3
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Nászai M, Bellec K, Yu Y, Román-Fernández A, Sandilands E, Johansson J, Campbell AD, Norman JC, Sansom OJ, Bryant DM, Cordero JB. RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. eLife 2021; 10:e63807. [PMID: 34096503 PMCID: PMC8216719 DOI: 10.7554/elife.63807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Endocytosis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Humans
- Hyperplasia
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice, Inbred C57BL
- Mitogen-Activated Protein Kinases/metabolism
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- ral GTP-Binding Proteins/genetics
- ral GTP-Binding Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Karen Bellec
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Yachuan Yu
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Alvaro Román-Fernández
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Emma Sandilands
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Joel Johansson
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | | | - Jim C Norman
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Owen J Sansom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - David M Bryant
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research CentreGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
| |
Collapse
|
5
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
6
|
Haga Y, Marrocco I, Noronha A, Uribe ML, Nataraj NB, Sekar A, Drago-Garcia D, Borgoni S, Lindzen M, Giri S, Wiemann S, Tsutsumi Y, Yarden Y. Host-Dependent Phenotypic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2021; 81:3862-3875. [PMID: 33941614 DOI: 10.1158/0008-5472.can-20-3555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, often due to secondary mutations. Here we describe an unconventional mechanism of resistance to dacomitinib, a newly approved covalent EGFR kinase inhibitor, and uncover a previously unknown step of resistance acquisition. Dacomitinib-resistant (DR) derivatives of lung cancer cells were established by means of gradually increasing dacomitinib concentrations. These DR cells acquired no secondary mutations in the kinase or other domains of EGFR. Along with resistance to other EGFR inhibitors, DR cells acquired features characteristic to epithelial-mesenchymal transition, including an expanded population of aldehyde dehydrogenase-positive cells and upregulation of AXL, a receptor previously implicated in drug resistance. Unexpectedly, when implanted in animals, DR cells reverted to a dacomitinib-sensitive state. Nevertheless, cell lines derived from regressing tumors displayed renewed resistance when cultured in vitro. Three-dimensional and cocultures along with additional analyses indicated lack of involvement of hypoxia, fibroblasts, and immune cells in phenotype reversal, implying that other host-dependent mechanisms might nullify nonmutational modes of resistance. Thus, similar to the phenotypic resistance of bacteria treated with antibiotics, the reversible resisters described here likely evolve from drug-tolerant persisters and give rise to the irreversible, secondary mutation-driven nonreversible resister state. SIGNIFICANCE: This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3862/F1.large.jpg.
Collapse
Affiliation(s)
- Yuya Haga
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Luz Uribe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suvendu Giri
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Marrocco I, Romaniello D, Vaknin I, Drago‐Garcia D, Oren R, Uribe ML, Belugali Nataraj N, Ghosh S, Eilam R, Salame T, Lindzen M, Yarden Y. Upfront admixing antibodies and EGFR inhibitors preempts sequential treatments in lung cancer models. EMBO Mol Med 2021; 13:e13144. [PMID: 33660397 PMCID: PMC8033519 DOI: 10.15252/emmm.202013144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Some antibacterial therapies entail sequential treatments with different antibiotics, but whether this approach is optimal for anti-cancer tyrosine kinase inhibitors (TKIs) remains open. EGFR mutations identify lung cancer patients who can derive benefit from TKIs, but most patients develop resistance to the first-, second-, and third-generation drugs. To explore alternatives to such whack-a-mole strategies, we simulated in patient-derived xenograft models the situation of patients receiving first-line TKIs. Monotherapies comprising approved first-line TKIs were compared to combinations with antibodies specific to EGFR and HER2. We observed uniform and strong superiority of all drug combinations over the respective monotherapies. Prolonged treatments, high TKI dose, and specificity were essential for drug-drug cooperation. Blocking pathways essential for mitosis (e.g., FOXM1), along with downregulation of resistance-conferring receptors (e.g., AXL), might underlie drug cooperation. Thus, upfront treatments using combinations of TKIs and antibodies can prevent emergence of resistance and hence might replace the widely applied sequential treatments utilizing next-generation TKIs.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Donatella Romaniello
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Experimental, Diagnostic and Specialty Medicine‐DIMESAlma Mater Studiorum University of BolognaBolognaItaly
| | - Itay Vaknin
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Diana Drago‐Garcia
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Mary Luz Uribe
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | | | - Soma Ghosh
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Thoracic Head and Neck Medical OncologyDivision of Cancer MedicineMD Anderson Cancer CenterHoustonTXUSA
| | - Raya Eilam
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Tomer‐Meir Salame
- Department of Life Sciences Core FacilityWeizmann Institute of ScienceRehovotIsrael
| | - Moshit Lindzen
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| | - Yosef Yarden
- Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
8
|
Łukasik P, Baranowska-Bosiacka I, Kulczycka K, Gutowska I. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. Int J Mol Sci 2021; 22:ijms22062806. [PMID: 33802080 PMCID: PMC8001317 DOI: 10.3390/ijms22062806] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/04/2022] Open
Abstract
Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Katarzyna Kulczycka
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
9
|
Romaniello D, Marrocco I, Belugali Nataraj N, Ferrer I, Drago-Garcia D, Vaknin I, Oren R, Lindzen M, Ghosh S, Kreitman M, Kittel JC, Gaborit N, Bergado Baez G, Sanchez B, Eilam R, Pikarsky E, Paz-Ares L, Yarden Y. Targeting HER3, a Catalytically Defective Receptor Tyrosine Kinase, Prevents Resistance of Lung Cancer to a Third-Generation EGFR Kinase Inhibitor. Cancers (Basel) 2020; 12:cancers12092394. [PMID: 32847130 PMCID: PMC7563838 DOI: 10.3390/cancers12092394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Although two growth factor receptors, EGFR and HER2, are amongst the best targets for cancer treatment, no agents targeting HER3, their kinase-defective family member, have so far been approved. Because emergence of resistance of lung tumors to EGFR kinase inhibitors (EGFRi) associates with compensatory up-regulation of HER3 and several secreted forms, we anticipated that blocking HER3 would prevent resistance. As demonstrated herein, a neutralizing anti-HER3 antibody we generated can clear HER3 from the cell surface, as well as reduce HER3 cleavage by ADAM10, a surface metalloproteinase. When combined with a kinase inhibitor and an anti-EGFR antibody, the antibody completely blocked patient-derived xenograft models that acquired resistance to EGFRi. We found that the underlying mechanism involves posttranslational downregulation of HER3, suppression of MET and AXL upregulation, as well as concomitant inhibition of AKT signaling and upregulation of BIM, which mediates apoptosis. Thus, although HER3 is nearly devoid of kinase activity, it can still serve as an effective drug target in the context of acquired resistance. Because this study simulated in animals the situation of patients who develop resistance to EGFRi and remain with no obvious treatment options, the observations presented herein may warrant clinical testing.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Nishanth Belugali Nataraj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Irene Ferrer
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (I.F.); (L.P.-A.)
- Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Diana Drago-Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Itay Vaknin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel; (R.O.); (R.E.)
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Jeanette Clarissa Kittel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
| | - Nadege Gaborit
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, 34298 Montpellier, France;
- Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Gretchen Bergado Baez
- Tumor Biology Direction, Center of Molecular Immunology, Havana 11600, Cuba; (G.B.B.); (B.S.)
| | - Belinda Sanchez
- Tumor Biology Direction, Center of Molecular Immunology, Havana 11600, Cuba; (G.B.B.); (B.S.)
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel; (R.O.); (R.E.)
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Luis Paz-Ares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; (I.F.); (L.P.-A.)
- Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
- Medical Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; (D.R.); (I.M.); (N.B.N.); (D.D.-G.); (I.V.); (M.L.); (S.G.); (M.K.); (J.C.K.)
- Correspondence: ; Tel.: +972-8-934-3974
| |
Collapse
|
10
|
Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. NEXT GENERATION KINASE INHIBITORS 2020. [PMCID: PMC7359047 DOI: 10.1007/978-3-030-48283-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As described in the previous chapter, most kinase inhibitors that have been developed for use in the clinic act by blocking ATP binding; however, there is growing interest in identifying compounds that target kinase activities and functions without interfering with the conserved features of the ATP-binding site. This chapter will highlight alternative approaches that exploit unique kinase structural features that are being targeted to identify more selective and potent inhibitors. The figure below, adapted from (Sammons et al., Molecular Carcinogenesis 58:1551–1570, 2019), provides a graphical description of the various approaches to manipulate kinase activity. In addition to the type I and II inhibitors, type III kinase inhibitors have been identified to target sites adjacent to the ATP-binding site in the catalytic domain. New information on kinase structure and substrate-binding sites has enabled the identification of type IV kinase inhibitor compounds that target regions outside the catalytic domain. The combination of targeting unique allosteric sites outside the catalytic domain with ATP-targeted compounds has yielded a number of novel bivalent type V kinase inhibitors. Finally, emerging interest in the development of irreversible compounds that form selective covalent interactions with key amino acids involved in kinase functions comprise the class of type VI kinase inhibitors.
Collapse
|
11
|
Lu X, Saeed MEM, Hegazy MEF, Kampf CJ, Efferth T. Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells. Biomolecules 2020; 10:E1000. [PMID: 32635587 PMCID: PMC7407630 DOI: 10.3390/biom10071000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
The popular beverage green tea possesses chemopreventive activity against various types of tumors. However, the effects of its chemopreventive effect on hematological malignancies have not been defined. In the present study, we evaluated antitumor efficacies of a specific green tea, sencha tea, on sensitive and multidrug-resistant leukemia and a panel of nine multiple myelomas (MM) cell lines. We found that sencha extracts induced cytotoxicity in leukemic cells and MM cells to different extents, yet its effect on normal cells was limited. Furthermore, sencha extracts caused G2/M and G0/G1 phase arrest during cell cycle progression in CCRF/CEM and KMS-12-BM cells, respectively. Specifically, sencha-MeOH/H2O extracts induced apoptosis, ROS, and MMP collapse on both CCRF/CEM and KMS-12-BM cells. The analysis with microarray and COMPARE in 53 cell lines of the NCI panel revealed diverse functional groups, including cell morphology, cellular growth and proliferation, cell cycle, cell death, and survival, which were closely associated with anti-tumor effects of sencha tea. It is important to note that PI3K/Akt and NF-κB pathways were the top two dominant networks by ingenuity pathway analysis. We demonstrate here the multifactorial modes of action of sencha tea leading to chemopreventive effects of sencha tea against cancer.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed E. M. Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Christopher J. Kampf
- Department for Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| |
Collapse
|
12
|
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Adv Cancer Res 2020; 147:1-57. [PMID: 32593398 DOI: 10.1016/bs.acr.2020.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Collapse
|
13
|
Ilan Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:335-344. [PMID: 32671136 PMCID: PMC7341037 DOI: 10.1016/j.omtm.2020.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic administration of drugs leads to the activation of compensatory mechanisms that may inhibit some of their activity and induce unwanted toxicity. These mechanisms are an obstacle for maintaining a sustainable effect for many chronic medications. Pathways that adapt to the burden induced by chronic drugs, whether or not related to the underlying disease, can lead to a partial or complete loss of effect. Variability characterizes many biological systems and manifests itself as large intra- and inter-individual differences in the response to drugs. Circadian rhythm-based chronotherapy is further associated with variability in responses noted among patients. This paper reviews current knowledge regarding the loss of effect of chronic medications and the range of variabilities that have been described in responses and loss of responses. Establishment of a personalized platform for overcoming these prohibitive mechanisms is presented as a model for ensuring long-term sustained medication effects. This novel platform implements personalized variability signatures and individualized circadian rhythms for preventing and opposing the prohibitive effect of the compensatory mechanisms induced by chronic drug administration.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, IL91120 Jerusalem, Israel
- Corresponding author: Yaron Ilan, MD, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120 Jerusalem, Israel
| |
Collapse
|
14
|
Vander Velde R, Yoon N, Marusyk V, Durmaz A, Dhawan A, Miroshnychenko D, Lozano-Peral D, Desai B, Balynska O, Poleszhuk J, Kenian L, Teng M, Abazeed M, Mian O, Tan AC, Haura E, Scott J, Marusyk A. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat Commun 2020; 11:2393. [PMID: 32409712 PMCID: PMC7224215 DOI: 10.1038/s41467-020-16212-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors develop resistance and relapse. In contrast to the substantial body of research on the molecular mechanisms of resistance, understanding of how resistance evolves remains limited. Using an experimental model of ALK positive NSCLC, we explored the evolution of resistance to different clinical ALK inhibitors. We found that resistance can originate from heterogeneous, weakly resistant subpopulations with variable sensitivity to different ALK inhibitors. Instead of the commonly assumed stochastic single hit (epi) mutational transition, or drug-induced reprogramming, we found evidence for a hybrid scenario involving the gradual, multifactorial adaptation to the inhibitors through acquisition of multiple cooperating genetic and epigenetic adaptive changes. Additionally, we found that during this adaptation tumor cells might present unique, temporally restricted collateral sensitivities, absent in therapy naïve or fully resistant cells, suggesting the potential for new therapeutic interventions, directed against evolving resistance. Acquired resistance to cancer therapies reflects the ability of cancers to adapt to therapy-imposed selective pressures. Here, the authors elucidate the dynamics of developing resistance to ALK inhibitors in an ALK+ lung cancer cell line showing that resistance originates from drug-specific tolerant cancer cells and it develops as a gradual adaptation.
Collapse
Affiliation(s)
- Robert Vander Velde
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Nara Yoon
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Viktoriya Marusyk
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.,Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Andrew Dhawan
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Daria Miroshnychenko
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Diego Lozano-Peral
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.,Supercomputer and Bioinnovation Center, University of Málaga, Málaga, Spain
| | - Bina Desai
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA.,University of South Florida Cancer Biology PhD Program, Tampa, FL, USA
| | - Olena Balynska
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Jan Poleszhuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Liu Kenian
- Department of Pathology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Mingxiang Teng
- Department of Biostatistic and Bioinformatics, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Mohamed Abazeed
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Omar Mian
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Aik Choon Tan
- Department of Biostatistic and Bioinformatics, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Eric Haura
- Department of Thoracic Oncology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA. .,Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Andriy Marusyk
- Department of Cancer Physiology, H Lee Moffitt Cancer Centre and Research Institute, Tampa, FL, USA. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
15
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
16
|
Clarke PA, Roe T, Swabey K, Hobbs SM, McAndrew C, Tomlin K, Westwood I, Burke R, van Montfort R, Workman P. Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Oncogene 2019; 38:5076-5090. [PMID: 30905967 PMCID: PMC6755994 DOI: 10.1038/s41388-019-0780-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Genomic alterations in cancer cells result in vulnerabilities that clinicians can exploit using molecularly targeted drugs, guided by knowledge of the tumour genotype. However, the selective activity of these drugs exerts an evolutionary pressure on cancers that can result in the outgrowth of resistant clones. Use of rational drug combinations can overcome resistance to targeted drugs, but resistance may eventually develop to combinatorial therapies. We selected MAPK- and PI3K-pathway inhibition in colorectal cancer as a model system to dissect out mechanisms of resistance. We focused on these signalling pathways because they are frequently activated in colorectal tumours, have well-characterised mutations and are clinically relevant. By treating a panel of 47 human colorectal cancer cell lines with a combination of MEK- and PI3K-inhibitors, we observe a synergistic inhibition of growth in almost all cell lines. Cells with KRAS mutations are less sensitive to PI3K inhibition, but are particularly sensitive to the combined treatment. Colorectal cancer cell lines with inherent or acquired resistance to monotherapy do not show a synergistic response to the combination treatment. Cells that acquire resistance to an MEK-PI3K inhibitor combination treatment still respond to an ERK-PI3K inhibitor regimen, but subsequently also acquire resistance to this combination treatment. Importantly, the mechanisms of resistance to MEK and PI3K inhibitors observed, MEK1/2 mutation or loss of PTEN, are similar to those detected in the clinic. ERK inhibitors may have clinical utility in overcoming resistance to MEK inhibitor regimes; however, we find a recurrent active site mutation of ERK2 that drives resistance to ERK inhibitors in mono- or combined regimens, suggesting that resistance will remain a hurdle. Importantly, we find that the addition of low concentrations of the BCL2-family inhibitor navitoclax to the MEK-PI3K inhibitor regimen improves the synergistic interaction and blocks the acquisition of resistance.
Collapse
Affiliation(s)
- Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK.
| | - Toby Roe
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kate Swabey
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Steve M Hobbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Craig McAndrew
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Kathy Tomlin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Isaac Westwood
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Robert van Montfort
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
17
|
Abstract
Since the approval of the first monoclonal antibody (mAb), rituximab, for hematological malignancies, almost 30 additional mAbs have been approved in oncology. Despite remarkable advances, relatively weak responses and resistance to antibody monotherapy remain major open issue. Overcoming resistance might require combinations of drugs blocking both the major target and the emerging secondary target. We review clinically approved combinations of antibodies and either cytotoxic regimens (chemotherapy and irradiation) or kinase inhibitors. Thereafter, we focus on the most promising and currently very active arena that combines mAbs inhibiting immune checkpoints or growth factor receptors. Clinically approved and experimental oligoclonal mixtures of mAbs targeting different antigens (hetero-combinations) or different epitopes of the same antigen (homo-combinations) are described. Effective oligoclonal mixtures of antibodies that mimic the polyclonal immune response will likely become a mainstay of cancer therapy.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Romaniello D, Mazzeo L, Mancini M, Marrocco I, Noronha A, Kreitman M, Srivastava S, Ghosh S, Lindzen M, Salame TM, Onn A, Bar J, Yarden Y. A Combination of Approved Antibodies Overcomes Resistance of Lung Cancer to Osimertinib by Blocking Bypass Pathways. Clin Cancer Res 2018; 24:5610-5621. [PMID: 29967248 DOI: 10.1158/1078-0432.ccr-18-0450] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Because of emergence of resistance to osimertinib, a third-generation EGFR tyrosine kinase inhibitor (TKI), no targeted treatments are available for patients with lung cancer who lose sensitivity due to new mutations or bypass mechanisms. We examined in animals and in vitro an alternative therapeutic approach making use of antibodies.Experimental Design: An osimertinib-sensitive animal model of lung cancer, which rapidly develops drug resistance, has been employed. To overcome compensatory hyperactivation of ERK, which we previously reported, an anti-EGFR antibody (cetuximab) was combined with other antibodies, as well as with a subtherapeutic dose of osimertinib, and cancer cell apoptosis was assayed.Results: Our animal studies identified a combination of three clinically approved drugs, cetuximab, trastuzumab (an anti-HER2 mAb), and osimertinib (low dose), as an effective and long-lasting treatment that is able to prevent onset of resistance to osimertinib. A continuous schedule of concurrent treatment was sufficient for effective tumor inhibition and for prevention of relapses. Studies employing cultured cells and analyses of tumor extracts indicated that the combination of two mAbs and a subtherapeutic TKI dose sorted EGFR and HER2 for degradation; cooperatively enhanced apoptosis; inhibited activation of ERK; and reduced abundance of several bypass proteins, namely MET, AXL, and HER3.Conclusions: Our in vitro assays and animal studies identified an effective combination of clinically approved drugs that might overcome resistance to irreversible TKIs in clinical settings. The results we present attribute the long-lasting effect of the drug combination to simultaneous blockade of several well-characterized mechanisms of drug resistance. Clin Cancer Res; 24(22); 5610-21. ©2018 AACR See related commentary by Fan and Yu, p. 5499.
Collapse
Affiliation(s)
| | - Luigi Mazzeo
- Department of Biological Regulation, Rehovot, Israel
| | | | | | | | | | | | - Soma Ghosh
- Department of Biological Regulation, Rehovot, Israel
| | | | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Onn
- Institute of Pulmonology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Rehovot, Israel.
| |
Collapse
|
19
|
Mancini M, Gal H, Gaborit N, Mazzeo L, Romaniello D, Salame TM, Lindzen M, Mahlknecht G, Enuka Y, Burton DG, Roth L, Noronha A, Marrocco I, Adreka D, Altstadter RE, Bousquet E, Downward J, Maraver A, Krizhanovsky V, Yarden Y. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol Med 2018; 10:294-308. [PMID: 29212784 PMCID: PMC5801506 DOI: 10.15252/emmm.201708076] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations identify patients with lung cancer who derive benefit from kinase inhibitors. However, most patients eventually develop resistance, primarily due to the T790M second-site mutation. Irreversible inhibitors (e.g., osimertinib/AZD9291) inhibit T790M-EGFR, but several mechanisms, including a third-site mutation, C797S, confer renewed resistance. We previously reported that a triple mixture of monoclonal antibodies, 3×mAbs, simultaneously targeting EGFR, HER2, and HER3, inhibits T790M-expressing tumors. We now report that 3×mAbs, including a triplet containing cetuximab and trastuzumab, inhibits C797S-expressing tumors. Unlike osimertinib, which induces apoptosis, 3×mAbs promotes degradation of the three receptors and induces cellular senescence. Consistent with distinct mechanisms, treatments combining 3×mAbs plus sub-inhibitory doses of osimertinib synergistically and persistently eliminated tumors. Thus, oligoclonal antibodies, either alone or in combination with kinase inhibitors, might preempt repeated cycles of treatment and rapid emergence of resistance.
Collapse
Affiliation(s)
- Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hilah Gal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadège Gaborit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Luigi Mazzeo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Donatella Romaniello
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Meir Salame
- Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Georg Mahlknecht
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dominick Ga Burton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilaria Marrocco
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Adreka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Emilie Bousquet
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Julian Downward
- Signal Transduction Laboratory, Francis Crick Institute, London, UK
- Lung Cancer Group, The Institute of Cancer Research, London, UK
| | - Antonio Maraver
- Oncogenic Pathways in Lung Cancer, Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Montpellier Cedex 5, France
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
FAM83 proteins: Fostering new interactions to drive oncogenic signaling and therapeutic resistance. Oncotarget 2018; 7:52597-52612. [PMID: 27221039 PMCID: PMC5239576 DOI: 10.18632/oncotarget.9544] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
The FAM83 proteins were recently identified as novel transforming oncogenes that function as intermediaries in EGFR/RAS signaling. Using two distinct forward genetics screens, the Bissell and Jackson laboratories uncovered the importance of the FAM83 proteins in promoting resistance to EGFR tyrosine kinase inhibitors and therapies targeting downstream EGFR signaling effectors. The discovery of this novel oncogene family using distinct genetic screens provides compelling evidence that the FAM83 proteins are key oncogenic players in cancer-associated signaling when they are overexpressed or dysregulated. Consistent with a role in oncogenic transformation, the FAM83 genes are frequently overexpressed in diverse human cancer specimens. Importantly, ablation of numerous FAM83 members results in a marked suppression of cancer-associated signaling and loss of tumorigenic potential. Here, we review the current knowledge of the FAM83 proteins’ involvement in cancer signaling and discuss the potential mechanisms by which they contribute to tumorigenesis. Both redundant activities shared by all 8 FAM83 members and non-redundant activities unique to each member are highlighted. We discuss the promise and challenges of the FAM83 proteins as novel points of attack for future cancer therapies.
Collapse
|
21
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 964] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
22
|
Engstrom LD, Aranda R, Lee M, Tovar EA, Essenburg CJ, Madaj Z, Chiang H, Briere D, Hallin J, Lopez-Casas PP, Baños N, Menendez C, Hidalgo M, Tassell V, Chao R, Chudova DI, Lanman RB, Olson P, Bazhenova L, Patel SP, Graveel C, Nishino M, Shapiro GI, Peled N, Awad MM, Jänne PA, Christensen JG. Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring MET Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models. Clin Cancer Res 2017; 23:6661-6672. [DOI: 10.1158/1078-0432.ccr-17-1192] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
|
23
|
Mesbah Ardakani N, Leslie C, Grieu-Iacopetta F, Lam WS, Budgeon C, Millward M, Amanuel B. Clinical and therapeutic implications of BRAF mutation heterogeneity in metastatic melanoma. Pigment Cell Melanoma Res 2017; 30:233-242. [PMID: 28002643 DOI: 10.1111/pcmr.12569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022]
Abstract
Heterogeneity of BRAF mutation in melanoma has been a controversial subject. Quantitative data on BRAF allele frequency (AF) are sparse, and the potential relationship with response to BRAF inhibitors (BRAFi) in patients with metastatic melanoma is unknown. We quantitatively measured BRAF AF in a cohort of treatment naïve metastatic melanoma samples by pyrosequencing and correlated with survival data in patients treated with BRAFi as part of their clinical care. Fifty-two samples from 50 patients were analysed. BRAF V600E mutations were detected in 71.1% of samples followed by V600K (25%) and V600R (3.9%). There was a wide range of AF from 3.9% to 80.3% (median 41.3%). In 33 patients treated with BRAFi, there was no difference in overall or progression-free survival when the patients were categorized into high or low AF groups. There was no correlation between AF and degree of response, and no difference in survival based on genotype.
Collapse
Affiliation(s)
- Nima Mesbah Ardakani
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Fabienne Grieu-Iacopetta
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Wei-Sen Lam
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Charley Budgeon
- Centre for Applied Statistics, University of Western Australia, Crawley, WA, Australia
| | - Michael Millward
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | - Benhur Amanuel
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
24
|
Kaplan JB, Platanias LC. Another tyrosine kinase inhibitor-resistance mutation within the BCR-ABL kinase domain: chasing our tails? Leuk Lymphoma 2017; 58:1526-1527. [PMID: 28140710 DOI: 10.1080/10428194.2017.1283034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jason B Kaplan
- a Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University, Robert H. Lurie Comprehensive Cancer Center , Chicago , IL , USA
| | - Leonidas C Platanias
- a Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University, Robert H. Lurie Comprehensive Cancer Center , Chicago , IL , USA.,b Jesse Brown VA Medical Center , Chicago , IL , USA
| |
Collapse
|
25
|
Smith CIE. Enigmas in tumor resistance to kinase inhibitors and calculation of the drug resistance index for cancer (DRIC). Semin Cancer Biol 2016; 45:36-49. [PMID: 27865897 DOI: 10.1016/j.semcancer.2016.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Darwinian selection is also applicable when antibiotics, the immune system or other host factors shape the repertoire of microorganisms, and similarly, clonal selection is the hallmark of tumor evolution. The ongoing revolution in new anti-cancer treatment modalities, combined with an unprecedented precision in characterizing malignant clones at the level below one percent, profoundly improves the understanding of repertoire-tuning mechanisms. There is no fundamental difference between selection of the tumor cells in the presence, or absence, of therapy. However, under treatment the influence of a single agent can be measured, simplifying the analysis. Because of their beneficial and selective therapeutic effect, the focus in this review is set on protein kinase inhibitors (PKIs), predominantly tyrosine kinase inhibitors (TKIs). This is one of the most rapidly growing families of novel cancer medicines. In order to limit the number of drugs, the following representative target kinases are included: ALK, BCR-ABL, BRAF, BTK, and EGFR. A key therapeutic challenge is how to reduce tumor growth after treatment, since this is rate-limiting for the generation and expansion of more malignant escape mutants. Thus, upon efficient treatment, tumor cell loss often enables a profoundly increased growth rate among resistant cells. Strategies to reduce this risk, such as concomitant, competitive outgrowth of non-transformed cells, are described. Seven parameters: 1. Drug type, 2. tumor type, 3. presence of metastases or phenotypic change, 4. tumor cell number, 5. net growth rate (proliferation minus cell death), 6. inherited genetic- and 7. epigenetic- variations are crucial for drug responses. It is envisaged that it might become possible to calculate a clinically relevant Drug Resistance Index for Cancer (DRIC) for each patient.
Collapse
Affiliation(s)
- C I Edvard Smith
- Clinical Research Center, Dept. of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186, Huddinge, Sweden.
| |
Collapse
|
26
|
Walliser C, Hermkes E, Schade A, Wiese S, Deinzer J, Zapatka M, Désiré L, Mertens D, Stilgenbauer S, Gierschik P. The Phospholipase Cγ2 Mutants R665W and L845F Identified in Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the Rho GTPase Rac2 Protein. J Biol Chem 2016; 291:22136-22148. [PMID: 27542411 PMCID: PMC5063995 DOI: 10.1074/jbc.m116.746842] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the gene encoding phospholipase C-γ2 (PLCγ2) have been shown to be associated with resistance to targeted therapy of chronic lymphocytic leukemia (CLL) with the Bruton's tyrosine kinase inhibitor ibrutinib. The fact that two of these mutations, R665W and L845F, imparted upon PLCγ2 an ∼2-3-fold ibrutinib-insensitive increase in the concentration of cytosolic Ca2+ following ligation of the B cell antigen receptor (BCR) led to the assumption that the two mutants exhibit constitutively enhanced intrinsic activity. Here, we show that the two PLCγ2 mutants are strikingly hypersensitive to activation by Rac2 such that even wild-type Rac2 suffices to activate the mutant enzymes upon its introduction into intact cells. Enhanced "basal" activity of PLCγ2 in intact cells is shown using the pharmacologic Rac inhibitor EHT 1864 and the PLCγ2F897Q mutation mediating Rac resistance to be caused by Rac-stimulated rather than by constitutively enhanced PLCγ2 activity. We suggest that R665W and L845F be referred to as allomorphic rather than hypermorphic mutations of PLCG2 Rerouting of the transmembrane signals emanating from BCR and converging on PLCγ2 through Rac in ibrutinib-resistant CLL cells may provide novel drug treatment strategies to overcome ibrutinib resistance mediated by PLCG2 mutations or to prevent its development in ibrutinib-treated CLL patients.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation, Missense
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phospholipase C gamma/antagonists & inhibitors
- Phospholipase C gamma/genetics
- Phospholipase C gamma/metabolism
- Piperidines
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- Quinolines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- rac GTP-Binding Proteins/genetics
- rac GTP-Binding Proteins/metabolism
- RAC2 GTP-Binding Protein
Collapse
Affiliation(s)
| | | | - Anja Schade
- From the Institute of Pharmacology and Toxicology and
| | - Sebastian Wiese
- the Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, 89081 Ulm, Germany
| | - Julia Deinzer
- From the Institute of Pharmacology and Toxicology and
| | - Marc Zapatka
- the Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany, and
| | - Laurent Désiré
- the Diaxonhit, 63-65 Boulevard Masséna, 75013 Paris, France
| | - Daniel Mertens
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89070 Ulm, Germany
| | | |
Collapse
|
27
|
Patterson SE, Liu R, Statz CM, Durkin D, Lakshminarayana A, Mockus SM. The clinical trial landscape in oncology and connectivity of somatic mutational profiles to targeted therapies. Hum Genomics 2016; 10:4. [PMID: 26772741 PMCID: PMC4715272 DOI: 10.1186/s40246-016-0061-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/10/2016] [Indexed: 12/24/2022] Open
Abstract
Background Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult. Results To support clinical decision-making, we have developed a data loader and mapper that connects sequence information from oncology patients to data stored in an in-house database, the JAX Clinical Knowledgebase (JAX-CKB), which can be queried readily to access comprehensive data for clinical reporting via customized reporting queries. JAX-CKB functions as a repository to house expertly curated clinically relevant data surrounding our 358-gene panel, the JAX Cancer Treatment Profile (JAX CTP), and supports annotation of functional significance of molecular variants. Through queries of data housed in JAX-CKB, we have analyzed the landscape of clinical trials relevant to our 358-gene targeted sequencing panel to evaluate strengths and weaknesses in current molecular targeting in oncology. Through this analysis, we have identified patient indications, molecular aberrations, and targeted therapy classes that have strong or weak representation in clinical trials. Conclusions Here, we describe the development and disseminate system methods for associating patient genomic sequence data with clinically relevant information, facilitating interpretation and providing a mechanism for informing therapeutic decision-making. Additionally, through customized queries, we have the capability to rapidly analyze the landscape of targeted therapies in clinical trials, enabling a unique view into current therapeutic availability in oncology.
Collapse
Affiliation(s)
- Sara E Patterson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT, 06032, USA.
| | - Rangjiao Liu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT, 06032, USA.
| | - Cara M Statz
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT, 06032, USA.
| | - Daniel Durkin
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT, 06032, USA.
| | | | - Susan M Mockus
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT, 06032, USA.
| |
Collapse
|