1
|
Mertens M, Khalife L, Ma X, Bodamer O. Animal models of Kabuki syndrome and their applicability to novel drug discovery. Expert Opin Drug Discov 2025; 20:253-265. [PMID: 39862154 DOI: 10.1080/17460441.2025.2457624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/27/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the KMT2D and KDM6A genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development. AREAS COVERED This review examines the use of animal models in KS research, including mice, fish, frogs, and nematodes. These models replicate key mechanistic and clinical aspects of Kabuki Syndrome, facilitating preclinical studies to demonstrate therapeutic efficacy. The literature search focused on identifying studies that utilized these models to investigate the pathophysiology of Kabuki Syndrome and evaluate potential treatments. EXPERT OPINION Refining animal models is essential to enhance their relevance to human disease and accelerate the development of effective therapies for Kabuki Syndrome. Insights from these models are invaluable in understanding underlying molecular mechanisms and identifying therapeutic targets. Continued research and collaboration are crucial to translating these findings into clinical practice, offering hope for future treatments.
Collapse
Affiliation(s)
- Mareike Mertens
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Leen Khalife
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Xiaoting Ma
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Gao H, Li J, Huang J, Jiang X. Screening and regulatory mechanism exploration of M1 macrophage polarization and efferocytosis-related biomarkers in coronary heart disease. Front Cardiovasc Med 2024; 11:1478827. [PMID: 39723414 PMCID: PMC11669322 DOI: 10.3389/fcvm.2024.1478827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background Macrophage polarization and efferocytosis have been implicated in CHD. However, the underlying mechanisms remain elusive. This study aimed to identify CHD-associated biomarkers using transcriptomic data. Methods This study examined 74 efferocytosis-related genes (ERGs) and 17 M1 macrophage polarization-related genes (MRGs) across two CHD-relevant datasets, GSE113079 and GSE42148. Differential expression analysis was performed separately on each dataset to identify differentially expressed genes (DEGs1 and DEGs2). The intersection of upregulated and downregulated genes from both sets was then used to define the final DEGs. Subsequently, MRG and ERG scores were calculated within the GSE113079 dataset, followed by weighted gene co-expression network analysis (WGCNA) to identify key module genes. The overlap between these module genes and the DEGs yielded candidate biomarkers, which were further evaluated through machine learning, receiver operating characteristic (ROC) curve analysis, and expression profiling. These biomarkers were subsequently leveraged to explore immune infiltration patterns and to construct a molecular regulatory network. To further validate their expression, quantitative reverse transcriptase PCR (qRT-PCR) was performed on clinical CHD samples, confirming the relevance and expression patterns of these biomarkers in the disease. Results A total of 93 DEGs were identified by intersecting the upregulated and downregulated genes from DEGs1 and DEGs2. WGCNA of the MRG and ERG scores identified 15,936 key module genes in the GSE113079 dataset. Machine learning and ROC analysis highlighted four biomarkers: C5orf58, CTAG1A, ZNF180, and IL13RA1. Among these, C5orf58, and ZNF180 were downregulated in CHD cases, while CTAG1A and IL13RA1 was upregulated. qRT-PCR results validated these findings for C5orf58, CTAG1A, ZNF180, and IL13RA1 showed inconsistent expression trends. Immune infiltration analysis indicated IL13RA1 all had a positive correlation with M0 macrophage, while had a negative correlation with. NK cells activated. The molecular regulatory network displayed that GATA2 and YY1 could regulate CTAG1A and ZNF180. Conclusions These results suggest that C5orf58, CTAG1A, ZNF180, and IL13RA1 serve as biomarkers linking M1 macrophage polarization and efferocytosis to CHD, providing valuable insights for CHD diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Xiaojie Jiang
- Department of Cardiology, The First Hospital of Nanchang, Nanchang, China
| |
Collapse
|
3
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Berger H, Gerstner S, Horstmann MF, Pauli S, Borchers A. Fbrsl1 is required for heart development in Xenopus laevis and de novo variants in FBRSL1 can cause human heart defects. Dis Model Mech 2024; 17:dmm050507. [PMID: 38501224 PMCID: PMC11128277 DOI: 10.1242/dmm.050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
De novo truncating variants in fibrosin-like 1 (FBRSL1), a member of the AUTS2 gene family, cause a disability syndrome, including organ malformations such as heart defects. Here, we use Xenopus laevis to investigate whether Fbrsl1 plays a role in heart development. Xenopus laevis fbrsl1 is expressed in tissues relevant for heart development, and morpholino-mediated knockdown of Fbrsl1 results in severely hypoplastic hearts. Our data suggest that Fbrsl1 is required for the development of the first heart field, which contributes to the ventricle and the atria, but not for the second heart field, which gives rise to the outflow tract. The morphant heart phenotype could be rescued using a human N-terminal FBRSL1 isoform that contains an alternative exon, but lacks the AUTS2 domain. N-terminal isoforms carrying patient variants failed to rescue. Interestingly, a long human FBRSL1 isoform, harboring the AUTS2 domain, also did not rescue the morphant heart defects. Thus, our data suggest that different FBRSL1 isoforms may have distinct functions and that only the short N-terminal isoform, appears to be critical for heart development.
Collapse
Affiliation(s)
- Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marc-Frederik Horstmann
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
6
|
Prasad T, Iyer S, Chatterjee S, Kumar M. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder. WIREs Mech Dis 2023:e1603. [PMID: 36754084 DOI: 10.1002/wsbm.1603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023]
Abstract
The genesis and functioning of the central nervous system are one of the most intricate and intriguing aspects of embryogenesis. The big lacuna in the field of human CNS development is the lack of accessibility of the human brain for direct observation during embryonic and fetal development. Thus, it is imperative to establish alternative animal models to gain deep mechanistic insights into neurodevelopment, establishment of neural circuitry, and its function. Neurodevelopmental events such as neural specification, differentiation, and generation of neuronal and non-neuronal cell types have been comprehensively studied using a variety of animal models and in vitro model systems derived from human cells. The experimentations on animal models have revealed novel, mechanistic insights into neurogenesis, formation of neural networks, and function. The models, thus serve as indispensable tools to understand the molecular basis of neurodevelopmental disorders (NDDs) arising from aberrations during embryonic development. Here, we review the spectrum of in vivo models such as fruitfly, zebrafish, frog, mice, and nonhuman primates to study neurogenesis and NDDs like microcephaly and Autism Spectrum Disorder. We also discuss nonconventional models such as ascidians and the recent technological advances in the field to study neurogenesis, disease mechanisms, and pathophysiology of human NDDs. This article is categorized under: Cancer > Stem Cells and Development Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Tuhina Prasad
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sayoni Chatterjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Ismail T, Lee H, Kim Y, Ryu HY, Cho DH, Ryoo ZY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS. PCNB exposure during early embryogenic development induces developmental delay and teratogenicity by altering the gene expression in Xenopus laevis. ENVIRONMENTAL TOXICOLOGY 2023; 38:216-224. [PMID: 36218123 DOI: 10.1002/tox.23679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide commonly used to treat seeds against seedling infections and controlling snow mold on golf courses. PCNB has been demonstrated to be toxic to living organisms, including fish and several terrestrial organisms. However, only phenotypical deformities have been studied, and the effects of PCNB on early embryogenesis, where primary organogenesis occurs, have not been completely studied. In the current study, the developmental toxicity and teratogenicity of PCNB is evaluated by using frog embryo teratogenesis assay Xenopus (FETAX). Our results confirmed the teratogenic potential of PCNB revealing the teratogenic index of 1.29 during early embryogenesis. Morphological studies revealed tiny head, bent axis, reduced inter ocular distance, hyperpigmentation, and reduced total body lengths. Whole mount in situ hybridization and reverse transcriptase polymerase chain reaction were used to identify PCNB teratogenic effects at the gene level. The gene expression analyses revealed that PCNB was embryotoxic to the liver and heart of developing embryos. Additionally, to determine the most sensitive developmental stages to PCNB, embryos were exposed to the compound at various developmental stages, demonstrating that the most sensitive developmental stage to PCNB is primary organogenesis. Taken together, we infer that PCNB's teratogenic potential affects not just the phenotype of developing embryos but also the associated genes and involving the oxidative stress as a possible mechanism of toxicity, posing a hazard to normal embryonic growth. However, the mechanisms of teratogenesis require additional extensive investigation to be defined completely.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hong-Yeoul Ryu
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Hyung Cho
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Zae Young Ryoo
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, South Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Rosenthal SB, Willsey HR, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T. A convergent molecular network underlying autism and congenital heart disease. Cell Syst 2021; 12:1094-1107.e6. [PMID: 34411509 PMCID: PMC8602730 DOI: 10.1016/j.cels.2021.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022]
Abstract
Patients with neurodevelopmental disorders, including autism, have an elevated incidence of congenital heart disease, but the extent to which these conditions share molecular mechanisms remains unknown. Here, we use network genetics to identify a convergent molecular network underlying autism and congenital heart disease. This network is impacted by damaging genetic variants from both disorders in multiple independent cohorts of patients, pinpointing 101 genes with shared genetic risk. Network analysis also implicates risk genes for each disorder separately, including 27 previously unidentified genes for autism and 46 for congenital heart disease. For 7 genes with shared risk, we create engineered disruptions in Xenopus tropicalis, confirming both heart and brain developmental abnormalities. The network includes a family of ion channels, such as the sodium transporter SCN2A, linking these functions to early heart and brain development. This study provides a road map for identifying risk genes and pathways involved in co-morbid conditions.
Collapse
Affiliation(s)
- Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Mei
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheng Wang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Charlotte Curtis
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Sempou
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arthur Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Marquez J, Mann N, Arana K, Deniz E, Ji W, Konstantino M, Mis EK, Deshpande C, Jeffries L, McGlynn J, Hugo H, Widmeier E, Konrad M, Tasic V, Morotti R, Baptista J, Ellard S, Lakhani SA, Hildebrandt F, Khokha MK. DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes. J Med Genet 2021; 58:453-464. [PMID: 32631816 PMCID: PMC7785698 DOI: 10.1136/jmedgenet-2019-106805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. METHODS Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. RESULTS Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. CONCLUSION These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nina Mann
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathya Arana
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julie McGlynn
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hannah Hugo
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eugen Widmeier
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Konrad
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children's Hospital, Skopje, North Macedonia
| | - Raffaella Morotti
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical & Clinical Science, College of Medicine and Health, Exeter, UK
| | - Saquib Ali Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Baxi AB, Pade LR, Nemes P. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. Curr Top Dev Biol 2021; 145:205-231. [PMID: 34074530 PMCID: PMC8314003 DOI: 10.1016/bs.ctdb.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The South African clawed frog (Xenopus laevis), a prominent vertebrate model in cell and developmental biology, has been instrumental in studying molecular mechanisms of neural development and disease. Recently, high-resolution mass spectrometry (HRMS), a bioanalytical technology, has expanded the molecular toolbox of protein detection and characterization (proteomics). This chapter overviews the characteristics, advantages, and challenges of this biological model and technology. Discussions are offered on their combined use to aid studies on cell differentiation and development of neural tissues. Finally, the emerging integration of proteomics and other 'omic technologies is reflected on to generate new knowledge, drive and test new hypotheses, and ultimately, advance the understanding of neural development during states of health and disease.
Collapse
Affiliation(s)
- Aparna B Baxi
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, College Park, MD, United States; Department of Anatomy and Cell Biology, The George Washington University, Washington, DC, United States.
| |
Collapse
|
11
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
13
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
14
|
Willsey HR, Exner CRT, Xu Y, Everitt A, Sun N, Wang B, Dea J, Schmunk G, Zaltsman Y, Teerikorpi N, Kim A, Anderson AS, Shin D, Seyler M, Nowakowski TJ, Harland RM, Willsey AJ, State MW. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 2021; 109:788-804.e8. [PMID: 33497602 DOI: 10.1016/j.neuron.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amanda Everitt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Galina Schmunk
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yefim Zaltsman
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Albert Kim
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aoife S Anderson
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Meghan Seyler
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Gao J, Shen W. Xenopus in revealing developmental toxicity and modeling human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115809. [PMID: 33096388 DOI: 10.1016/j.envpol.2020.115809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
17
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
18
|
Kakebeen AD, Chitsazan AD, Wills AE. Tissue disaggregation and isolation of specific cell types from transgenic Xenopus appendages for transcriptional analysis by FACS. Dev Dyn 2020; 250:1381-1392. [PMID: 33137227 DOI: 10.1002/dvdy.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Xenopus embryos and tadpoles are versatile models for embryological, cell biological, and regenerative studies. Genomic and transcriptomic approaches have been increasingly employed in these frogs. Most of these genome-wide analyses have profiled tissues in bulk, but there are many scenarios where isolation of single cells may be advantageous, including isolation of a preferred cell type, or generation of a single-cell suspension for applications such as scRNA-Seq. RESULTS Here we present a protocol for the disaggregation of complex tail and limb bud tissue, and use cell type-specific fluorescence in transgenic X. tropicalis appendages to isolate specific cell populations using fluorescence activated cell sorting (FACS). Our protocol addresses a specific challenge in Xenopus embryos and tadpoles: the storage of maternal yolk platelets in each cell, which can introduce light scatter and thereby false positives into FACS analysis. CONCLUSIONS Here we gate against both nontransgenic and ubiquitously transgenic animals to reduce both false positives and false negatives. We use the Xtr.Tg(pax6:GFP;cryga:RFP;actc1:RFP)Papal transgenic line as a test case to demonstrate that nucleic acid preparations made from sorted cells are high quality and specific. We anticipate this method will be adaptable to study various cell types that have transgenic reporter lines to better profile cell types of interest.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Biochemistry, University of Washington Seattle, Seattle, Washington, USA
| | - Alexander Daniel Chitsazan
- Oregon Health Sciences Center For Early Detection Advanced Research Center (CEDAR), Portland, Oregon, USA
| | | |
Collapse
|
19
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
20
|
Hoppler S, Conlon FL. Xenopus: Experimental Access to Cardiovascular Development, Regeneration Discovery, and Cardiovascular Heart-Defect Modeling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037200. [PMID: 31767648 DOI: 10.1101/cshperspect.a037200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenopus has been used to study a wide array of developmental processes, benefiting from vast quantities of relatively large, externally developing eggs. Xenopus is particularly amenable to examining the cardiac system because many of the developmental processes and genes involved in cardiac specification, differentiation, and growth are conserved between Xenopus and human and have been characterized in detail. Furthermore, compared with other higher vertebrate models, Xenopus embryos can survive longer without a properly functioning heart or circulatory system, enabling investigation of later consequences of early embryological manipulations. This biology is complemented by experimental technology, such as embryonic explants to study the heart, microinjection of overexpression constructs, and, most recently, the generation of genetic mutations through gene-editing technologies. Recent investigations highlight Xenopus as a powerful experimental system for studying injury/repair and regeneration and for congenital heart disease (CHD) modeling, which reinforces why this model system remains ideal for studying heart development.
Collapse
Affiliation(s)
- Stefan Hoppler
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Frank L Conlon
- Department of Biology and Genetics, University of North Carolina McAllister Heart Institute, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
21
|
An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. NPJ Regen Med 2020; 5:2. [PMID: 32047653 PMCID: PMC7000827 DOI: 10.1038/s41536-020-0087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
Infections have numerous effects on the brain. However, possible roles of the brain in protecting against infection, and the developmental origin and role of brain signaling in immune response, are largely unknown. We exploited a unique Xenopus embryonic model to reveal control of innate immune response to pathogenic E. coli by the developing brain. Using survival assays, morphological analysis of innate immune cells and apoptosis, and RNA-seq, we analyzed combinations of infection, brain removal, and tail-regenerative response. Without a brain, survival of embryos injected with bacteria decreased significantly. The protective effect of the developing brain was mediated by decrease of the infection-induced damage and of apoptosis, and increase of macrophage migration, as well as suppression of the transcriptional consequences of the infection, all of which decrease susceptibility to pathogen. Functional and pharmacological assays implicated dopamine signaling in the bacteria–brain–immune crosstalk. Our data establish a model that reveals the very early brain to be a central player in innate immunity, identify the developmental origins of brain–immune interactions, and suggest several targets for immune therapies.
Collapse
|
22
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
23
|
Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol 2019; 17:e3000437. [PMID: 31490923 PMCID: PMC6750614 DOI: 10.1371/journal.pbio.3000437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/18/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.
Collapse
Affiliation(s)
| | - Panna Tandon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caralynn M. Wilczewski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lauren Wasson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura E. Herring
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Ileana M. Cristea
- Princeton University, Princeton, New Jersey, United States of America
| | - Frank L. Conlon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Kakebeen A, Wills A. Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis. Dev Dyn 2019; 248:620-625. [PMID: 31254427 DOI: 10.1002/dvdy.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Xenopus laevis and Xenopus tropicalis have long been used to drive discovery in developmental, cell, and molecular biology. These dual frog species boast experimental strengths for embryology including large egg sizes that develop externally, well-defined fate maps, and cell-intrinsic sources of nutrients that allow explanted tissues to grow in culture. Development of the Xenopus cell extract system has been used to study cell cycle and DNA replication. Xenopus tadpole tail and limb regeneration have provided fundamental insights into the underlying mechanisms of this processes, and the loss of regenerative competency in adults adds a complexity to the system that can be more directly compared to humans. Moreover, Xenopus genetics and especially disease-causing mutations are highly conserved with humans, making them a tractable system to model human disease. In the last several years, genome editing, expanding genomic resources, and intersectional approaches leveraging the distinct characteristics of each species have generated new frontiers in cell biology. While Xenopus have enduringly represented a leading embryological model, new technologies are generating exciting diversity in the range of discoveries being made in areas from genomics and proteomics to regenerative biology, neurobiology, cell scaling, and human disease modeling.
Collapse
Affiliation(s)
- Anneke Kakebeen
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Andrea Wills
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Lasser M, Pratt B, Monahan C, Kim SW, Lowery LA. The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome. Front Physiol 2019; 10:817. [PMID: 31297068 PMCID: PMC6607408 DOI: 10.3389/fphys.2019.00817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
Wolf–Hirschhorn syndrome (WHS) is a rare developmental disorder characterized by intellectual disability and various physical malformations including craniofacial, skeletal, and cardiac defects. These phenotypes, as they involve structures that are derived from the cranial neural crest, suggest that WHS may be associated with abnormalities in neural crest cell (NCC) migration. This syndrome is linked with assorted mutations on the short arm of chromosome 4, most notably the microdeletion of a critical genomic region containing several candidate genes. However, the function of these genes during embryonic development, as well as the cellular and molecular mechanisms underlying the disorder, are still unknown. The model organism Xenopus laevis offers a number of advantages for studying WHS. With the Xenopus genome sequenced, genetic manipulation strategies can be readily designed in order to alter the dosage of the WHS candidate genes. Moreover, a variety of assays are available for use in Xenopus to examine how manipulation of WHS genes leads to changes in the development of tissue and organ systems affected in WHS. In this review article, we highlight the benefits of using X. laevis as a model system for studying human genetic disorders of development, with a focus on WHS.
Collapse
Affiliation(s)
- Micaela Lasser
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Benjamin Pratt
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Connor Monahan
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
27
|
Musunuru K, Bernstein D, Cole FS, Khokha MK, Lee FS, Lin S, McDonald TV, Moskowitz IP, Quertermous T, Sankaran VG, Schwartz DA, Silverman EK, Zhou X, Hasan AAK, Luo XZJ. Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002178. [PMID: 29654098 DOI: 10.1161/circgen.118.002178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.).
| | - Daniel Bernstein
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - F Sessions Cole
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Mustafa K Khokha
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Frank S Lee
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Shin Lin
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas V McDonald
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ivan P Moskowitz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas Quertermous
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Vijay G Sankaran
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - David A Schwartz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Edwin K Silverman
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiaobo Zhou
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ahmed A K Hasan
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiao-Zhong James Luo
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| |
Collapse
|
28
|
Bennett TD, Callahan TJ, Feinstein JA, Ghosh D, Lakhani SA, Spaeder MC, Szefler SJ, Kahn MG. Data Science for Child Health. J Pediatr 2019; 208:12-22. [PMID: 30686480 PMCID: PMC6486872 DOI: 10.1016/j.jpeds.2018.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tellen D Bennett
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.
| | - Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - James A Feinstein
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Debashis Ghosh
- CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Michael C Spaeder
- Pediatric Critical Care, University of Virginia School of Medicine, Charlottesville, VA
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Michael G Kahn
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
29
|
Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM. Xenbase: Facilitating the Use of Xenopus to Model Human Disease. Front Physiol 2019; 10:154. [PMID: 30863320 PMCID: PMC6399412 DOI: 10.3389/fphys.2019.00154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.
Collapse
Affiliation(s)
- Mardi J Nenni
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Malcolm E Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Troy J Pells
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Virgilio Ponferrada
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Stanley Chu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joshua D Fortriede
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kevin A Burns
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Ying Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Vaneet S Lotay
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dong Zhou Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Erik Segerdell
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
30
|
Ott T, Kaufmann L, Granzow M, Hinderhofer K, Bartram CR, Theiß S, Seitz A, Paramasivam N, Schulz A, Moog U, Blum M, Evers CM. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front Physiol 2019; 10:134. [PMID: 30858804 PMCID: PMC6397843 DOI: 10.3389/fphys.2019.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.
Collapse
Affiliation(s)
- Tim Ott
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Christina M Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
31
|
Baxi AB, Lombard-Banek C, Moody SA, Nemes P. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. ACS Chem Neurosci 2018; 9:2064-2073. [PMID: 29578674 DOI: 10.1021/acschemneuro.7b00525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular program by which embryonic ectoderm is induced to form neural tissue is essential to understanding normal and impaired development of the central nervous system. Xenopus has been a powerful vertebrate model in which to elucidate this process. However, abundant vitellogenin (yolk) proteins in cells of the early Xenopus embryo interfere with protein detection by high-resolution mass spectrometry (HRMS), the technology of choice for identifying these gene products. Here, we systematically evaluated strategies of bottom-up proteomics to enhance proteomic detection from the neural ectoderm (NE) of X. laevis using nanoflow high-performance liquid chromatography (nanoLC) HRMS. From whole embryos, high-pH fractionation prior to nanoLC-HRMS yielded 1319 protein groups vs 762 proteins without fractionation (control). Compared to 702 proteins from dorsal halves of embryos (control), 1881 proteins were identified after yolk platelets were depleted via sucrose-gradient centrifugation. We combined these approaches to characterize protein expression in the NE of the early embryo. To guide microdissection of the NE tissues from the gastrula (stage 10), their precursor (midline dorsal-animal, or D111) cells were fate-mapped from the 32-cell embryo using a fluorescent lineage tracer. HRMS of the cell clones identified 2363 proteins, including 147 phosphoproteins (without phosphoprotein enrichment), transcription factors, and members from pathways of cellular signaling. In reference to transcriptomic maps of the developing X. laevis, 76 proteins involved in signaling pathways were gene matched to transcripts with known enrichment in the neural plate. Besides a protocol, this work provides qualitative proteomic data on the early developing NE.
Collapse
Affiliation(s)
- Aparna B. Baxi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Camille Lombard-Banek
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20052, United States
| |
Collapse
|
32
|
Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N, Teerikorpi N, Baum TB, Cagney G, Bender KJ, Desai TA, Srivastava D, Davis GW, Doudna J, Chang E, Sohal V, Lowenstein DH, Li H, Agard D, Keiser MJ, Shoichet B, von Zastrow M, Mucke L, Finkbeiner S, Gan L, Sestan N, Ward ME, Huttenhain R, Nowakowski TJ, Bellen HJ, Frank LM, Khokha MK, Lifton RP, Kampmann M, Ideker T, State MW, Krogan NJ. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell 2018; 174:505-520. [PMID: 30053424 PMCID: PMC6247911 DOI: 10.1016/j.cell.2018.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Montana T Morris
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen R Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tierney B Baum
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kevin J Bender
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Chang
- Department of Neurological Surgery, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas Sohal
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Lowenstein
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Agard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Keiser
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian Shoichet
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark von Zastrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lennart Mucke
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Steven Finkbeiner
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Gan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Ruth Huttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, Schweickert A, LeBlanc-Straceski JM, Noselli S, Blum M. A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. Curr Biol 2018; 28:810-816.e3. [PMID: 29478852 DOI: 10.1016/j.cub.2018.01.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/01/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Anatomical and functional asymmetries are widespread in the animal kingdom [1, 2]. In vertebrates, many visceral organs are asymmetrically placed [3]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [1]. Nodal signaling is widely used [4], and many, but not all, vertebrates use cilia for symmetry breaking [5]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [6, 7]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in >50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in >70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [8], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry.
Collapse
Affiliation(s)
- Melanie Tingler
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Tim Ott
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Franziska Fuhl
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | - Stéphane Noselli
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Parc Valrose, 06108 Nice, France
| | - Martin Blum
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany.
| |
Collapse
|
34
|
Herrera-Rincon C, Levin M. Booting up the organism during development: Pre-behavioral functions of the vertebrate brain in guiding body morphogenesis. Commun Integr Biol 2018; 11:e1433440. [PMID: 29497473 PMCID: PMC5824965 DOI: 10.1080/19420889.2018.1433440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 01/24/2023] Open
Abstract
A recent study in Xenopus laevis embryos showed that the very early brain has important functions long before behavior. While the nascent brain is being constructed, it is required for normal patterning of the muscle and peripheral nerve networks, including those far away from the head. In addition to providing important developmental signals to remote tissues in normal embryogenesis, its presence is also able to render harmless exposure to specific chemicals that normally act as teratogens. These activities of the early brain can be partially compensated for in a brainless embryo by experimental modulation of neurotransmitter and ion channel signaling. Here, we discuss the major findings of this paper in the broader context of developmental physiology, neuroscience, and biomedicine. This novel function of the embryonic brain has significant implications, especially for understanding developmental toxicology and teratogenesis in the context of pharmaceutical and environmental reagents.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, and Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
35
|
Zahn N, Levin M, Adams DS. The Zahn drawings: new illustrations of Xenopus embryo and tadpole stages for studies of craniofacial development. Development 2017; 144:2708-2713. [PMID: 28765211 PMCID: PMC5560046 DOI: 10.1242/dev.151308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The embryos and tadpoles of the frog Xenopus are increasingly important subjects for studies of the development of the head and face - studies that are providing novel and crucial insight into the causes and prevention of a suite of devastating birth defects, as well as basic evolutionary and developmental biology. However, many studies are conducted on a range of embryonic stages that are not fully represented in the beloved Xenopus resource, Nieuwkoop and Faber's classic Normal Table of Xenopus laevis (Daudin) The lack of standardized images at these stages acts as a barrier to the efficient and accurate representation and communication of experimental methodology and expression data. To fill this gap, we have created 27 new high-quality illustrations. Like their oft-used predecessors from Nieuwkoop and Faber, these drawings can be freely downloaded and used, and will, we hope, serve as an essential resource for this important model system.
Collapse
Affiliation(s)
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.,Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Dany Spencer Adams
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
36
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
37
|
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol 2017; 426:325-335. [PMID: 27109192 PMCID: PMC5074924 DOI: 10.1016/j.ydbio.2016.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations.
Collapse
Affiliation(s)
- Panna Tandon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | - Frank Conlon
- University of North Carolina McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States
| | - J David Furlow
- Deparment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616, United States
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, United States.
| |
Collapse
|
38
|
Shi Z, Tian D, Xin H, Lian J, Guo X, Chen Y. Targeted integration of genes in Xenopus tropicalis. Genesis 2017; 55. [PMID: 28095621 DOI: 10.1002/dvg.23006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 11/06/2022]
Abstract
With the successful establishment of both targeted gene disruption and integration methods in the true diploid frog Xenopus tropicalis, this excellent vertebrate genetic model now is making a unique contribution to modelling human diseases. Here, we summarize our efforts on establishing homologous recombination-mediated targeted integration in Xenopus tropicalis, the usefulness, and limitation of targeted integration via the homology-independent strategy, and future directions on how to further improve targeted gene integration in Xenopus tropicalis.
Collapse
Affiliation(s)
- Zhaoying Shi
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Dandan Tian
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Huhu Xin
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jingru Lian
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaogang Guo
- DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200, Copenhagen N, Denmark
| | - Yonglong Chen
- Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
39
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
40
|
Pitcairn E, Harris H, Epiney J, Pai VP, Lemire JM, Ye B, Shi NQ, Levin M, McLaughlin KA. Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis. Commun Integr Biol 2017; 10:e1309488. [PMID: 28702127 PMCID: PMC5501196 DOI: 10.1080/19420889.2017.1309488] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Hyperpolarization-activated cyclic-nucleotide gated channel (HCN) proteins are important regulators of both neuronal and cardiac excitability. Among the 4 HCN isoforms, HCN4 is known as a pacemaker channel, because it helps control the periodicity of contractions in vertebrate hearts. Although the physiological role of HCN4 channel has been studied in adult mammalian hearts, an earlier role during embryogenesis has not been clearly established. Here, we probe the embryonic roles of HCN4 channels, providing the first characterization of the expression profile of any of the HCN isoforms during Xenopus laevis development and investigate the consequences of altering HCN4 function on embryonic pattern formation. We demonstrate that both overexpression of HCN4 and injection of dominant-negative HCN4 mRNA during early embryogenesis results in improper expression of key patterning genes and severely malformed hearts. Our results suggest that HCN4 serves to coordinate morphogenetic control factors that provide positional information during heart morphogenesis in Xenopus.
Collapse
Affiliation(s)
- Emily Pitcairn
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah Harris
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Justine Epiney
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Vaibhav P Pai
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Joan M Lemire
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Bin Ye
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nian-Qing Shi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelly A McLaughlin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| |
Collapse
|
41
|
Jackson TR, Kim HY, Balakrishnan UL, Stuckenholz C, Davidson LA. Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function. Curr Biol 2017; 27:1326-1335. [PMID: 28434863 DOI: 10.1016/j.cub.2017.03.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
During early cardiogenesis, bilateral fields of mesenchymal heart progenitor cells (HPCs) move from the anterior lateral plate mesoderm to the ventral midline, undergoing a mesenchymal-to-epithelial transition (MET) en route to forming a single epithelial sheet. Through tracking of tissue-level deformations in the heart-forming region (HFR) as well as movement trajectories and traction generation of individual HPCs, we find that the onset of MET correlates with a peak in mechanical stress within the HFR and changes in HPC migratory behaviors. Small-molecule inhibitors targeting actomyosin contractility reveal a temporally specific requirement of bulk tissue compliance to regulate heart development and MET. Targeting mutant constructs to modulate contractility and compliance in the underlying endoderm, we find that MET in HPCs can be accelerated in response to microenvironmental stiffening and can be inhibited by softening. To test whether MET in HPCs was responsive to purely physical mechanical cues, we mimicked a high-stress state by injecting an inert oil droplet to generate high strain in the HFR, demonstrating that exogenously applied stress was sufficient to drive MET. MET-induced defects in anatomy result in defined functional lesions in the larval heart, implicating mechanical signaling and MET in the etiology of congenital heart defects. From this integrated analysis of HPC polarity and mechanics, we propose that normal heart development requires bilateral HPCs to undergo a critical behavioral and phenotypic transition on their way to the ventral midline, and that this transition is driven in response to the changing mechanical properties of their endoderm substrate.
Collapse
Affiliation(s)
- Timothy R Jackson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hye Young Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Uma L Balakrishnan
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carsten Stuckenholz
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
42
|
Davis A, Amin NM, Johnson C, Bagley K, Ghashghaei HT, Nascone-Yoder N. Stomach curvature is generated by left-right asymmetric gut morphogenesis. Development 2017; 144:1477-1483. [PMID: 28242610 PMCID: PMC5399665 DOI: 10.1242/dev.143701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
Abstract
Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1, Nodal and Pitx2 Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts.
Collapse
Affiliation(s)
- Adam Davis
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nirav M Amin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
43
|
Pearl E, Morrow S, Noble A, Lerebours A, Horb M, Guille M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017; 92:149-155. [PMID: 28237331 PMCID: PMC5340284 DOI: 10.1016/j.theriogenology.2017.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Cryogenic storage of sperm from genetically altered Xenopus improves cost effectiveness and animal welfare associated with their use in research; currently it is routine for X. tropicalis but not reliable for X. laevis. Here we compare directly the three published protocols for Xenopus sperm freeze-thaw and determine whether sperm storage temperature, method of testes maceration and delays in the freezing protocols affect successful fertilisation and embryo development in X. laevis. We conclude that the protocol is robust and that the variability observed in fertilisation rates is due to differences between individuals. We show that the embryos made from the frozen-thawed sperm are normal and that the adults they develop into are reproductively indistinguishable from others in the colony. This opens the way for using cryopreserved sperm to distribute dominant genetically altered (GA) lines, potentially saving travel-induced stress to the male frogs, reducing their numbers used and making Xenopus experiments more cost effective. Xenopus cryopreservation is robust using an optimized method. Success is dependent on the quality of animals from which the sperm are taken. Frozen sperm may now be used to distribute lines and wild-type male gametes around the world.
Collapse
Affiliation(s)
- Esther Pearl
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Sean Morrow
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Anna Noble
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Adelaide Lerebours
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Marko Horb
- National Xenopus Resource, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Matthew Guille
- European Xenopus Resource Centre, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
| |
Collapse
|
44
|
Nantie L, Sun X. An Ephrin-Eph Tug and Push in Left-Right Organ Placement. Dev Cell 2016; 39:282-283. [PMID: 27825437 DOI: 10.1016/j.devcel.2016.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
During development, the placement of internal organs asymmetrically along the left-right axis is critical for their proper adult function. Reporting in Developmental Cell, Cayuso et al. (2016) demonstrate an active role of the endoderm in this process, challenging the prior view that the endoderm is passively pushed by the mesoderm.
Collapse
Affiliation(s)
- Leah Nantie
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xin Sun
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pediatrics, University of California, San Diego, CA 92093, USA.
| |
Collapse
|