1
|
Liu Y, Wang Y, Xie G, Yang Q, Bhattacherjee A, Zhang C, Zhang Y. A molecularly defined mPFC-BLA circuit specifically regulates social novelty preference. SCIENCE ADVANCES 2025; 11:eadt9008. [PMID: 40267197 PMCID: PMC12017316 DOI: 10.1126/sciadv.adt9008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Social novelty preference is an important aspect of social interaction for evaluating new threats and opportunities for survival, but the underlying neuronal mechanism remains unclear. Here, we identify a molecularly defined medial prefrontal cortex (mPFC) excitatory neuron subtype, located in layer 5 expressing Il1rapl2, which is highly associated with social deficit disorders in genome-wide association studies and might be responsible for regulating social novelty preference. Using an Il1rapl2-Cre mouse line, we show that chemogenetic activation of the mPFC Il1rapl2-expressing neurons impairs social novelty preference but with little effect on sociability. In addition, fiber photometry recording indicates that this neuron subtype is inhibited when mice interact with novel but not with familiar mice. Furthermore, viral tracing and terminal manipulation reveal that basolateral amygdala (BLA)-projecting Il1rapl2+ neurons mediate the social novelty preference. Thus, our study uncovers a molecularly defined mPFC-BLA circuit that specifically regulates social novelty preference, highlighting that specific neuron subtypes and circuits could modulate distinct aspects of social behaviors.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Qianying Yang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Aritra Bhattacherjee
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
2
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
3
|
Paliarin F, Duplantis C, Doré E, Basavanhalli S, Weiser E, Jones TW, Maiya R. BLA KOR inputs to the BNST regulate social stress-escalated alcohol consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622470. [PMID: 39574601 PMCID: PMC11581013 DOI: 10.1101/2024.11.07.622470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Aversive social experiences can lead to escalated drug consumption and increase the risk of relapse to drug seeking. Individuals who consume alcohol to alleviate the effects of social stress are more likely to develop an alcohol use disorder (AUD). Repeated social defeat stress (SDS) enhances the rewarding and reinforcing effects of alcohol. However, the neural mechanisms that underlie social stress-escalated alcohol drinking are not well understood. Here we explored the role of the dynorphin/kappa opioid receptor (Dyn/KOR) system in regulating social stress-escalated alcohol consumption. Methods Male and female mice were subjected to repeated SDS for 10 days following which they were left undisturbed in their home cages. They were then subject to intermittent access (IA) two-bottle choice alcohol consumption procedure. The effects of systemic and BNST-specific KOR antagonism using the selective KOR antagonist NorBNI on stress-escalated drinking were evaluated. Using chemogenetic approaches in Oprk1-Cre mice, we examined the role of KOR expressing cells in the basolateral amygdala (BLA KORs ) and BLA KOR -BNST pathway in social stress-escalated alcohol consumption. Results Repeated SDS increased alcohol consumption and preference in both males and females. Systemic KOR antagonism attenuated SDS-escalated alcohol consumption in both males and females. BNST -specific KOR antagonism also attenuated stress-escalated drinking in males. Finally, selective chemogenetic activation of BLA KORs and BKA KOR -BNST pathway attenuated social stress-escalated alcohol consumption in both sexes. Conclusion Our results suggest a significant role for BLA KOR projections to the BNST in regulating social stress-escalated alcohol consumption. Our results provide further evidence that the Dyn/KOR system maybe a viable target for medications development to tareat comorbid stress and AUD.
Collapse
Affiliation(s)
- Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Chelsea Duplantis
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Evan Doré
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Samhita Basavanhalli
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Emma Weiser
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Tameka W. Jones
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| |
Collapse
|
4
|
Pantoja-Urbán AH, Richer S, Mittermaier A, Giroux M, Nouel D, Hernandez G, Flores C. Gains and Losses: Resilience to Social Defeat Stress in Adolescent Female Mice. Biol Psychiatry 2024; 95:37-47. [PMID: 37355003 PMCID: PMC10996362 DOI: 10.1016/j.biopsych.2023.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Adolescence is a unique period of psychosocial growth during which social adversity can negatively influence mental health trajectories. Understanding how adolescent social stress impacts males and females and why some individuals are particularly affected is becoming increasingly urgent. Social defeat stress models for adolescent male mice have been effective in reproducing some physical/psychological aspects of bullying. Designing a model suitable for females has proven challenging. METHODS We report a version of the adolescent male accelerated social defeat stress (AcSD) paradigm adapted for females. Early adolescent C57BL/6J female mice (N = 107) were exposed to our modified AcSD procedure twice a day for 4 days and categorized as resilient or susceptible based on a social interaction test 24 hours later. Mice were then assessed for changes in Netrin-1/DCC guidance cue expression in dopamine systems, for inhibitory control in adulthood using the Go/No-Go task, or for alterations in dopamine connectivity organization in the matured prefrontal cortex. RESULTS Most adolescent females showed protection against stress-induced social avoidance, but in adulthood, these resilient females developed inhibitory control deficits and showed diminution of prefrontal cortex presynaptic dopamine sites. Female mice classified as susceptible were protected against cognitive and dopaminergic alterations. AcSD did not alter Netrin-1/DCC in early adolescent females, contrary to previous findings with males. CONCLUSIONS Preserving prosocial behavior in adolescent females may be important for survival advantage but seems to come at the price of developing persistent cognitive and dopamine deficiencies. The female AcSD paradigm produced findings comparable to those found in males, allowing mechanistic investigation in both sexes.
Collapse
Affiliation(s)
- Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Samuel Richer
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, Québec, Canada; Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
5
|
Cross EA, Huhman KL, Albers HE. Sex differences in the impact of social status on social reward and associated mesolimbic activation. Physiol Behav 2024; 273:114410. [PMID: 37977252 PMCID: PMC11656334 DOI: 10.1016/j.physbeh.2023.114410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Social stress plays an important role in the etiology of many neuropsychiatric disorders and can lead to a variety of behavioral deficits such as social withdrawal. One way that social stress may contribute to psychiatric disorders is by reducing social motivation and the rewarding properties of social interactions. We investigated the impact of social stress on social reward in the context of winning versus losing agonistic encounters in Syrian hamsters (Mesocricetus auratus). First, we tested the hypothesis that social stress resulting from either stable low, or subordinate, social status or from social defeat reduces the rewarding properties of social interactions. Using an Operant Social Preference (OSP) task to measure social reward/motivation, we found that both subordinate and socially defeated males made significantly fewer entries into chambers containing novel, same-sex conspecifics compared to males who were dominant (i.e., stably won the agonistic encounters). In females, however, there were no differences in social entries between winners and losers. In a second experiment, we found more activation of the mesolimbic dopamine system (MDS) as assessed with cFos immunohistochemistry in the lateral ventral tegmental area (lVTA) and the nucleus accumbens (NAc) shell of male winners compared to losers. In females, however, there were no differences in activation in the lVTA between winners and losers. Surprisingly, however, winning females displayed significantly more activation in the NAc shell as compared to losing females, despite the lack of behavioral differences. Thus, behavioral and histological data suggest that there are sex differences in the impact of social status on social reward and associated mesolimbic activation.
Collapse
Affiliation(s)
- Erica A Cross
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - Kim L Huhman
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
6
|
Naderi A, Liles K, Burns T, Chavez B, Huynh-Dam KT, Kiaris H. Pair bonding and disruption impact lung transcriptome in monogamous Peromyscus californicus. BMC Genomics 2023; 24:789. [PMID: 38114920 PMCID: PMC10729396 DOI: 10.1186/s12864-023-09873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Social interactions affect physiological and pathological processes, yet their direct impact in peripheral tissues remains elusive. Recently we showed that disruption of pair bonds in monogamous Peromyscus californicus promotes lung tumorigenesis, pointing to a direct effect of bonding status in the periphery (Naderi et al., 2021). Here we show that lung transcriptomes of tumor-free Peromyscus are altered in a manner that depends on pair bonding and superseding the impact of genetic relevance between siblings. Pathways affected involve response to hypoxia and heart development. These effects are consistent with the profile of the serum proteome of bonded and bond-disrupted Peromyscus and were extended to lung cancer cells cultured in vitro, with sera from animals that differ in bonding experiences. In this setting, the species' origin of serum (deer mouse vs FBS) is the most potent discriminator of RNA expression profiles, followed by bonding status. By analyzing the transcriptomes of lung cancer cells exposed to deer mouse sera, an expression signature was developed that discriminates cells according to the history of social interactions and possesses prognostic significance when applied to primary human lung cancers. The results suggest that present and past social experiences modulate the expression profile of peripheral tissues such as the lungs, in a manner that impacts physiological processes and may affect disease outcomes. Furthermore, they show that besides the direct effects of the hormones that regulate bonding behavior, physiological changes influencing oxygen metabolism may contribute to the adverse effects of bond disruption.
Collapse
Affiliation(s)
- A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - K Liles
- Department of Mathematics and Computer Sciences, Claflin University, Orangeburg, SC, USA
| | - T Burns
- Department of Biology, Claflin University, Orangeburg, SC, USA
| | - B Chavez
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - K-T Huynh-Dam
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
7
|
Winzenried ET, Everett AC, Saito ER, Miller RM, Johnson T, Neal E, Boyce Z, Smith C, Jensen C, Kimball S, Brantley A, Melendez G, Moffat D, Davis E, Aponik L, Crofts T, Dabney B, Edwards JG. Effects of a True Prophylactic Treatment on Hippocampal and Amygdala Synaptic Plasticity and Gene Expression in a Rodent Chronic Stress Model of Social Defeat. Int J Mol Sci 2023; 24:11193. [PMID: 37446371 PMCID: PMC10342862 DOI: 10.3390/ijms241311193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a complex stress-related disorder induced by exposure to traumatic stress that is characterized by symptoms of re-experiencing, avoidance, and hyper-arousal. While it is widely accepted that brain regions involved in emotional regulation and memory-e.g., the amygdala and hippocampus-are dysregulated in PTSD, the pathophysiology of the disorder is not well defined and therefore, pharmacological interventions are extremely limited. Because stress hormones norepinephrine and cortisol (corticosterone in rats) are heavily implicated in the disorder, we explored whether preemptively and systemically antagonizing β-adrenergic and glucocorticoid receptors with propranolol and mifepristone are sufficient to mitigate pathological changes in synaptic plasticity, gene expression, and anxiety induced by a modified social defeat (SD) stress protocol. Young adult, male Sprague Dawley rats were initially pre-screened for anxiety. The rats were then exposed to SD and chronic light stress to induce anxiety-like symptoms. Drug-treated rats were administered propranolol and mifepristone injections prior to and continuing throughout SD stress. Using competitive ELISAs on plasma, field electrophysiology at CA1 of the ventral hippocampus (VH) and the basolateral amygdala (BLA), quantitative RT-PCR, and behavior assays, we demonstrate that our SD stress increased anxiety-like behavior, elevated long-term potentiation (LTP) in the VH and BLA, and altered the expression of mineralocorticoid, glucocorticoid, and glutamate receptors. These measures largely reverted to control levels with the administration of propranolol and mifepristone. Our findings indicate that SD stress increases LTP in the VH and BLA and that prophylactic treatment with propranolol and mifepristone may have the potential in mitigating these and other stress-induced effects.
Collapse
Affiliation(s)
| | - Anna C. Everett
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Erin R. Saito
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Roxanne M. Miller
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Taylor Johnson
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Eliza Neal
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Zachary Boyce
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Calvin Smith
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Chloe Jensen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Spencer Kimball
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Adam Brantley
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Gabriel Melendez
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Devin Moffat
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Erin Davis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Lyndsey Aponik
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Tyler Crofts
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Bryson Dabney
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Jeffrey G. Edwards
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
8
|
Koskinen MK, Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci 2023; 46:318-331. [PMID: 36828693 DOI: 10.1016/j.tins.2023.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Anxiety and fear are evolutionarily conserved emotions that increase the likelihood of an organism surviving threatening situations. Anxiety and vigilance states are regulated by neural networks involving multiple brain regions. In anxiety disorders, this intricate regulatory system is disturbed, leading to excessive or prolonged anxiety or fear. Anxiety disorders have both genetic and environmental risk factors. Genetic research has the potential to identify specific genetic variants causally associated with specific phenotypes. In recent decades, genome-wide association studies (GWASs) have revealed variants predisposing to neuropsychiatric disorders, suggesting novel neurobiological pathways in the etiology of these disorders. Here, we review recent human GWASs of anxiety disorders, and genetic studies of anxiety-like behavior in rodent models. These studies are paving the way for a better understanding of the neurobiological mechanisms underlying anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program and Department of Psychology and Logopedics, Faculty of Medicine, PO Box 21, 00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Bales KL, Hang S, Paulus JP, Jahanfard E, Manca C, Jost G, Boyer C, Bern R, Yerumyan D, Rogers S, Mederos SL. Individual differences in social homeostasis. Front Behav Neurosci 2023; 17:1068609. [PMID: 36969803 PMCID: PMC10036751 DOI: 10.3389/fnbeh.2023.1068609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The concept of “social homeostasis”, introduced by Matthews and Tye in 2019, has provided a framework with which to consider our changing individual needs for social interaction, and the neurobiology underlying this system. This model was conceived as including detector systems, a control center with a setpoint, and effectors which allow us to seek out or avoid additional social contact. In this article, we review and theorize about the many different factors that might contribute to the setpoint of a person or animal, including individual, social, cultural, and other environmental factors. We conclude with a consideration of the empirical challenges of this exciting new model.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, >Davis, CA, United States
- *Correspondence: Karen L. Bales
| | - Sally Hang
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - John P. Paulus
- Graduate Group in Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elaina Jahanfard
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Claudia Manca
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Geneva Jost
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Chase Boyer
- Graduate Group in Human Development, University of California, Davis, Davis, CA, United States
| | - Rose Bern
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Daniella Yerumyan
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sophia Rogers
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sabrina L. Mederos
- Graduate Group in Animal Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
11
|
Chen Z, Wang Q, Xue X, Huang Z, Wang Y. The neural connections of oxytocin-mediated parental behavior in male mice. Front Mol Neurosci 2023; 16:1091139. [PMID: 36910264 PMCID: PMC9998477 DOI: 10.3389/fnmol.2023.1091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Zhichao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Medina-Rodriguez EM, Rice KC, Jope RS, Beurel E. Comparison of inflammatory and behavioral responses to chronic stress in female and male mice. Brain Behav Immun 2022; 106:180-197. [PMID: 36058417 PMCID: PMC9561002 DOI: 10.1016/j.bbi.2022.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating disease with a high worldwide prevalence. Despite its greater prevalence in women, male animals are used in most preclinical studies of depression even though there are many sex differences in key components of depression, such as stress responses and immune system functions. In the present study, we found that chronic restraint stress-induced depressive-like behaviors are quite similar in male and female mice, with both sexes displaying increased immobility time in the tail suspension test and reduced social interactions, and both sexes exhibited deficits in working and spatial memories. However, in contrast to the similar depressive-like behaviors developed by male and female mice in response to stress, they displayed different patterns of pro-inflammatory cytokine increases in the periphery and the brain, different changes in microglia, and different changes in the expression of Toll-like receptor 4 in response to stress. Treatment with (+)-naloxone, a Toll-like receptor 4 antagonist that previously demonstrated anti-depressant-like effects in male mice, was more efficacious in male than female mice in reducing the deleterious effects of stress, and its effects were not microbiome-mediated. Altogether, these results suggest differential mechanisms to consider in potential sex-specific treatments of depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
13
|
Teng T, Fan L, Yan W, Li X, Zhang Y, Xiang Y, Jiang Y, Yuan K, Yin B, Shi L, Liu X, Yu Y, Zhou X, Lu L, Xie P. A diathesis-stress rat model induced suicide-implicated endophenotypes and prefrontal cortex abnormalities in the PKA and GABA receptor signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110538. [PMID: 35189256 DOI: 10.1016/j.pnpbp.2022.110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Suicide is one of the leading causes of death and represents a significant public health problem worldwide; however, the underlying mechanism of suicide remains unclear, and there is no animal model with suicide-implicated endophenotypes for investigating the etiology, course and potential treatment targets of suicide. Thus, we generated a diathesis-stress rat model to simulate suicide-implicated endophenotypes. First, two hundred rats were screened in two rounds of learned helplessness (LH) tests and selected as learned helplessness-sensitive (LHS) rats (n = 37) and learned helplessness-resistant (LHR) rats (n = 39). Then, all LHS rats and half of the rats (randomly selected) in the LHR group were exposed to four weeks of social defeat stress (SDS) (LHS + SDS group, n = 37 and LHR + SDS group, n = 20, respectively). The remainder of the LHR rats were handled as controls (LHR + CON group, n = 19). The LHS + SDS group showed significantly more suicide-implicated endophenotypes than the LHR + CON group, including longer immobile times in the forced swim test (hopelessness), higher scores in the irritability test (irritability), shorter latencies to attack (impulsivity), longer total attack times in the resident-intruder test (aggression), and lower sucrose preference indices (anhedonia). Proteomic analyses revealed that the canonical pathways that were the most common between the LHS + SDS and LHR + CON groups were the PKA and GABA receptor pathways in the prefrontal cortex. A diathesis-stress paradigm would be a useful way to establish a rat model with suicide-implicated endophenotypes, providing novel perspectives for revealing the potential mechanism of suicide.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bangmin Yin
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Horvath S, Haghani A, Zoller JA, Naderi A, Soltanmohammadi E, Farmaki E, Kaza V, Chatzistamou I, Kiaris H. Methylation studies in Peromyscus: aging, altitude adaptation, and monogamy. GeroScience 2022; 44:447-461. [PMID: 34698996 PMCID: PMC8810952 DOI: 10.1007/s11357-021-00472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscus clocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude in Peromyscus. The human-Peromyscus epigenetic clocks are expected to provide a significant boost to the attractiveness of Peromyscus as a biological model.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Elham Soltanmohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Elena Farmaki
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC USA
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC USA
| |
Collapse
|
15
|
de Abreu MS, Demin KA, Giacomini ACVV, Amstislavskaya TG, Strekalova T, Maslov GO, Kositsin Y, Petersen EV, Kalueff AV. Understanding how stress responses and stress-related behaviors have evolved in zebrafish and mammals. Neurobiol Stress 2021; 15:100405. [PMID: 34722834 PMCID: PMC8536782 DOI: 10.1016/j.ynstr.2021.100405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Stress response is essential for the organism to quickly restore physiological homeostasis disturbed by various environmental insults. In addition to well-established physiological cascades, stress also evokes various brain and behavioral responses. Aquatic animal models, including the zebrafish (Danio rerio), have been extensively used to probe pathobiological mechanisms of stress and stress-related brain disorders. Here, we critically discuss the use of zebrafish models for studying mechanisms of stress and modeling its disorders experimentally, with a particular cross-taxon focus on the potential evolution of stress responses from zebrafish to rodents and humans, as well as its translational implications.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medcicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Gleb O Maslov
- Neuroscience Program, Sirius University, Sochi, Russia
| | - Yury Kositsin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neuroscience Program, Sirius University, Sochi, Russia
| | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
16
|
Hale LH, Tickerhoof MC, Smith AS. Chronic intranasal oxytocin reverses stress-induced social avoidance in female prairie voles. Neuropharmacology 2021; 198:108770. [PMID: 34461067 DOI: 10.1016/j.neuropharm.2021.108770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Social anxiety disorder (SAD) is a prevalent mental illness in both men and women, but current treatment approaches with selective serotonin reuptake inhibitors (SSRI) have limited success. The neuropeptide oxytocin (OXT) has become a therapeutic target due to its prosocial and anxiolytic effects. Nevertheless, no research has focused on the impact of chronic OXT treatment in animal models of SAD. Social defeat stress is an animal model of social conflict that reliably induces a social avoidance phenotype, reflecting symptoms observed in individuals suffering from SAD. Here, we used the socially monogamous prairie vole, which exhibits aggressive behavior in both sexes, to examine the effects of OXT and SSRI treatment following social defeat stress in males and females. Defeated voles became avoidant in unfamiliar social situations as early as one day after defeat experience, and this phenotype persisted for at least eight weeks. OXT receptor (OXTR) binding in mesocorticolimbic and paralimbic regions was reduced in defeated females during the eight-week recovery period. In males, serotonin 1A receptor binding was decreased in the basolateral amygdala and dorsal raphe nucleus starting at one week and four weeks post-defeat, respectively. Chronic intranasal treatment with OXT had a negative effect on sociability and mesolimbic OXTR binding in non-defeated females. However, chronic intranasal OXT promoted social engagement and increased mesolimbic OXTR binding in defeated females but not males. SSRI treatment led to only modest effects. This study identifies a sex-specific and stress-dependent function of intranasal OXT on mesolimbic OXTR and social behaviors.
Collapse
Affiliation(s)
- Luanne H Hale
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Maria C Tickerhoof
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
17
|
Lucius MD, Ji H, Altomare D, Doran R, Torkian B, Havighorst A, Kaza V, Zhang Y, Gasparian AV, Magagnoli J, Shankar V, Shtutman M, Kiaris H. Genomic variation in captive deer mouse (Peromyscus maniculatus) populations. BMC Genomics 2021; 22:662. [PMID: 34521341 PMCID: PMC8438655 DOI: 10.1186/s12864-021-07956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.
Collapse
Affiliation(s)
- Matthew D Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Robert Doran
- Research Computing, Division of Information Technology, University of South Carolina, Columbia, SC, USA
| | - Ben Torkian
- Research Computing, Division of Information Technology, University of South Carolina, Columbia, SC, USA
| | - Amanda Havighorst
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - Youwen Zhang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Alexander V Gasparian
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Joseph Magagnoli
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vijay Shankar
- Center for Human Genetics, College of Science, Clemson University, Clemson, SC, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
18
|
Lopez J, Bagot RC. Defining Valid Chronic Stress Models for Depression With Female Rodents. Biol Psychiatry 2021; 90:226-235. [PMID: 33965195 DOI: 10.1016/j.biopsych.2021.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Women are twice as likely to experience depression than men, yet until recently, preclinical studies in rodents have focused almost exclusively on males. As interest in sex differences and sex-specific mechanisms of stress susceptibility increases, chronic stress models for inducing depression-relevant behavioral and physiological changes in male rodents are being applied to females, and several new models have emerged to include both males and females, yet not all models have been systematically validated in females. An increasing number of researchers seek to include female rodents in their experimental designs, asking the question "what is the ideal chronic stress model for depression in females?" We review criteria for assessing female model validity in light of key research questions and the fundamental distinction between studying sex differences and studying both sexes. In overviewing current models, we explore challenges inherent to establishing an ideal female chronic stress model, with particular emphasis on the need for standardization and adoption of validated behavioral tests sensitive to stress effects in females. Taken together, these considerations will empower female chronic stress models to provide a better understanding of stress susceptibility and allow the development of efficient sex-specific treatments.
Collapse
Affiliation(s)
- Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Quebec, Canada.
| |
Collapse
|
19
|
Hou W, Ma H, Xun Y, Zhang X, Cai W, Huang S, He Z, Tai F, Jia R. Sex-Dependent Effects of Chronic Social Defeat on Emotional and Social Behaviors, and Parameters of Oxytocin and Vasopressin Systems in Mandarin Voles ( Microtus mandarinus). Front Neurosci 2021; 15:625116. [PMID: 34045941 PMCID: PMC8144301 DOI: 10.3389/fnins.2021.625116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In the regulation of emotional and social behaviors, both oxytocin (OT) and vasopressin (AVP) are sex specific. Although significant sex differences have been reported in the context of behavioral and hormonal responses to social stress, such differences in response to chronic social defeat stress (CSDS) and the underlying neural mechanisms remain largely unknown. By investigating monogamous mandarin voles (Microtus mandarinus), CSDS was found to decrease the percentages of time spent in the central area of the open field, in the open arms of the elevated plus maze, as well as in the light area of the light and dark boxes in both male and female voles. CSDS also increased the observed level of social withdrawal in both sex groups. However, CSDS exposure increased the percentages of immobile time in both the tail suspension test and the forced swim test and reduced the locomotor activity in the open field (in females only). Along with these behavioral changes, the oxytocin receptor (OTR) levels in the nucleus accumbens (NAc) were significantly lower in CSDS-exposed voles of both sexes; however, in males, the levels of OTR in the paraventricular nucleus (PVN) were reduced. CSDS-exposed males showed lower levels of V1aR in the NAc than CSDS-exposed females. Furthermore, induced by a single social defeat event, CSDS reduced c-Fos and OT double labeling in the PVN of females but increased c-Fos and AVP double-labeled neurons in the PVN of males exposed to a single social defeat event. Collectively, the present study indicates that OT and AVP systems may play important regulatory roles in the sex differences of behavioral performances in response to CSDS. These findings suggest mandarin voles as a useful animal model for studying sex-specific behavioral performance and the underlying neurobiological mechanisms of stress-related mental disorders in preclinical studies.
Collapse
Affiliation(s)
- Wenjuan Hou
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Yufeng Xun
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Xin Zhang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Shuying Huang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
21
|
Reguilón MD, Ferrer-Pérez C, Miñarro J, Rodríguez-Arias M. Oxytocin reverses ethanol consumption and neuroinflammation induced by social defeat in male mice. Horm Behav 2021; 127:104875. [PMID: 33069753 DOI: 10.1016/j.yhbeh.2020.104875] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Oxytocin (OXT) modulates social interactions, attenuates stressful responses and can decrease drug-seeking and taking behaviors. In previous studies, we observed that social defeat (SD) induced a long-lasting increase in ethanol intake and neuroinflammation in male mice. We also know that OXT blocks the increase in cocaine reward induced by SD. Therefore, in the present study we aimed to evaluate the effect of 1 mg/kg of OXT administered 30 min before each episode of SD on ethanol consumption and the neuroinflammatory response in adult male mice. Three weeks after the last SD, mice underwent oral ethanol self-administration (SA) procedure, and striatal levels of the two chemokines CX3CL1 and CXCL12 were measured after the last SD and at the end of the ethanol SA. OXT administration blocked the increase in voluntary ethanol consumption observed in defeated mice, although it did not affect motivation for ethanol. An increase in the striatal levels of CX3CL1 and CXCL12 was observed in defeated animals immediately after the last defeat and after the ethanol SA. However, defeated mice treated with OXT did not show this increase in the neuroinflammatory response. In conclusion, OXT treatment can be a powerful therapeutic target to reduce the negative effects of social stress on ethanol consumption and the neuroinflammatory process.
Collapse
Affiliation(s)
- M D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
22
|
Morová M, Senko T, Olexová L, Dzirbíková Z, Kršková L. A mixture of diethylhexyl, diisononyl and dibutyl phthalate decreased anogenital distance, postnatal testosterone levels, and changed social behavior in Wistar rats. Physiol Res 2020; 69:S489-S498. [PMID: 33476171 DOI: 10.33549/physiolres.934599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Phthalates are chemicals interfering with the function of testosterone and are suspected to play a role in the emergence of neurodevelopmental diseases. This could be due to interference with brain development for which optimal testosterone levels are essential. We investigated the effect of prenatal and early postnatal exposure to a phthalate mixture on the anogenital distance (AGD), plasma testosterone levels and social behavior in rats. Pregnant rats were exposed to a mixture of diethylhexyl, diisononyl and dibutyl phthalate, each at a dose of 4.5 mg/kg/day, from gestational day 15 to postnatal day 4. A social interaction test was performed to assess sociability in the three ontogenetic stages (weaning, puberty, adulthood). AGD was measured in adulthood to assess changes in prenatal testosterone levels. Plasma testosterone levels were measured in adults by a radioimmunoassay. The total frequency and time of socio-cohesive interactions were decreased in phthalate exposed females in weaning, puberty and adulthood. Phthalate exposed males showed a decrease in the frequency of social interactions in weaning only. Shorter anogenital distance was observed in adult males exposed to phthalates. Decreased testosterone levels were observed in the exposed group in both sexes. Our results suggest that early developmental phthalate exposure may play an important role in the hormonal and behavioral changes associated with several neurodevelopmental diseases.
Collapse
Affiliation(s)
- M Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
23
|
Wright EC, Hostinar CE, Trainor BC. Anxious to see you: Neuroendocrine mechanisms of social vigilance and anxiety during adolescence. Eur J Neurosci 2020; 52:2516-2529. [PMID: 31782841 PMCID: PMC7255921 DOI: 10.1111/ejn.14628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
Social vigilance is a behavioral strategy commonly used in adverse or changing social environments. In animals, a combination of avoidance and vigilance allows an individual to evade potentially dangerous confrontations while monitoring the social environment to identify favorable changes. However, prolonged use of this behavioral strategy in humans is associated with increased risk of anxiety disorders, a major burden for human health. Elucidating the mechanisms of social vigilance in animals could provide important clues for new treatment strategies for social anxiety. Importantly, during adolescence the prevalence of social anxiety increases significantly. We hypothesize that many of the actions typically characterized as anxiety behaviors begin to emerge during this time as strategies for navigating more complex social structures. Here, we consider how the social environment and the pubertal transition shape neural circuits that modulate social vigilance, focusing on the bed nucleus of the stria terminalis and prefrontal cortex. The emergence of gonadal hormone secretion during adolescence has important effects on the function and structure of these circuits, and may play a role in the emergence of a notable sex difference in anxiety rates across adolescence. However, the significance of these changes in the context of anxiety is still uncertain, as not enough studies are sufficiently powered to evaluate sex as a biological variable. We conclude that greater integration between human and animal models will aid the development of more effective strategies for treating social anxiety.
Collapse
Affiliation(s)
- Emily C Wright
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
24
|
Miyata S, Yamagata H, Matsuo K, Uchida S, Harada K, Fujihara K, Yanagawa Y, Watanabe Y, Mikuni M, Nakagawa S, Fukuda M. Characterization of the signature of peripheral innate immunity in women with later-life major depressive disorder. Brain Behav Immun 2020; 87:831-839. [PMID: 32217081 DOI: 10.1016/j.bbi.2020.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The prevalence of depression in later life is higher in women than in men. However, the sex difference in the pathophysiology of depression in elderly patients is not fully understood. Here, we performed gene expression profiling in leukocytes of middle-aged and elderly patients with major depressive disorder, termed later-life depression (LLD) in this context, and we characterized the sex-dependent pathophysiology of LLD. A microarray dataset obtained from leukocytes of patients (aged ≥50 years) with LLD (32 males and 39 females) and age-matched healthy individuals (20 males and 24 females) was used. Differentially expressed probes were determined by comparing the expression levels between patients and healthy individuals, and then functional annotation analyses (Ingenuity Pathway Analysis, Reactome pathway analysis, and cell-type enrichment analysis) were performed. A total of 1656 probes were differentially expressed in LLD females, but only 3 genes were differentially expressed in LLD males. The differentially expressed genes in LLD females were relevant to leukocyte extravasation signaling, Tec kinase signaling and the innate immune response. The upregulated genes were relevant to myeloid lineage cells such as CD14+ monocytes. In contrast, the downregulated genes were relevant to CD4+ and CD8+ T cells. Remarkable innate immune signatures are present in the leukocytes of LLD females but not males. Because inflammation is involved in the pathophysiology of depression, the altered inflammatory activity may be involved in the pathophysiology of LLD in women. In contrast, abnormal inflammation may be an uncommon feature in LLD males.
Collapse
Affiliation(s)
- Shigeo Miyata
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; Department of Psychiatry, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Iruma, Saitama 350-0495, Japan
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kazuyuki Fujihara
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; Southern TOHOKU Research Institute for Neuroscience, Southern TOHOKU General Hospital, 7-115 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan
| | - Masahiko Mikuni
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masato Fukuda
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
25
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
26
|
Sherer LM, Certel SJ. The fight to understand fighting: neurogenetic approaches to the study of aggression in insects. CURRENT OPINION IN INSECT SCIENCE 2019; 36:18-24. [PMID: 31302354 PMCID: PMC6906251 DOI: 10.1016/j.cois.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Aggression is an evolutionarily conserved behavior that evolved in the framework of defending or obtaining resources. When expressed out of context, unchecked aggression can have destructive consequences. Model systems that allow examination of distinct neuronal networks at the molecular, cellular, and circuit levels are adding immensely to our understanding of the biological basis of this behavior and should be relatable to other species up to and including man. Investigators have made particular use of insect models to both describe this quantifiable and stereotyped behavior and to manipulate genes and neuron function via numerous genetic and pharmacological tools. This review discusses recent advances in techniques that improve our ability to identify, manipulate, visualize, and compare the genes, neurons, and circuits that are required for the output of this complex and clinically relevant social behavior.
Collapse
Affiliation(s)
- Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
27
|
Cathomas F, Murrough JW, Nestler EJ, Han MH, Russo SJ. Neurobiology of Resilience: Interface Between Mind and Body. Biol Psychiatry 2019; 86:410-420. [PMID: 31178098 PMCID: PMC6717018 DOI: 10.1016/j.biopsych.2019.04.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Stress-related neuropsychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, exact enormous socioeconomic and individual consequences. Resilience, the process of adaptation in the face of adversity, is an important concept that is enabling the field to understand individual differences in stress responses, with the hope of harnessing this information for the development of novel therapeutics that mimic the body's natural resilience mechanisms. This review provides an update on the current state of research of the neurobiological mechanisms of stress resilience. We focus on physiological and transcriptional adaptations of specific brain circuits, the role of cellular and humoral factors of the immune system, the gut microbiota, and changes at the interface between the brain and the periphery, the blood-brain barrier. We propose viewing resilience as a process that requires the integration of multiple central and peripheral systems and that elucidating the underlying neurobiological mechanisms will ultimately lead to novel therapeutic options.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming-Hu Han
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Affective Neuroscience of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
28
|
Steinman MQ, Duque-Wilckens N, Trainor BC. Complementary Neural Circuits for Divergent Effects of Oxytocin: Social Approach Versus Social Anxiety. Biol Psychiatry 2019; 85:792-801. [PMID: 30503164 PMCID: PMC6709863 DOI: 10.1016/j.biopsych.2018.10.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023]
Abstract
Oxytocin (OT) is widely known for promoting social interactions, but there is growing appreciation that it can sometimes induce avoidance of social contexts. The social salience hypothesis posed an innovative solution to these apparently opposing actions by proposing that OT enhances the salience of both positive and negative social interactions. The mesolimbic dopamine system was put forth as a likely system to evaluate social salience owing to its well-described role in motivation. Evidence from several sources supports the premise that OT acting within the nucleus accumbens and ventral tegmental area facilitates social reward and approach behavior. However, in aversive social contexts, additional pathways play critical roles in mediating the effects of OT. Recent data indicate that OT acts in the bed nucleus of the stria terminalis to induce avoidance of potentially dangerous social contexts. Here, we review evidence for neural circuits mediating the effects of OT in appetitive and aversive social contexts. Specifically, we propose that distinct but potentially overlapping circuits mediate OT-dependent social approach or social avoidance. We conclude that a broader and more inclusive consideration of neural circuits of social approach and avoidance is needed as the field continues to evaluate the potential of OT-based therapeutics.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Natalia Duque-Wilckens
- Department of Large Animal Clinical Sciences and Department of Physiology/Neuroscience, Michigan State University, East Lansing, Michigan
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, Davis, California.
| |
Collapse
|
29
|
Repeated social defeat in female mice induces anxiety-like behavior associated with enhanced myelopoiesis and increased monocyte accumulation in the brain. Brain Behav Immun 2019; 78:131-142. [PMID: 30684650 PMCID: PMC6488440 DOI: 10.1016/j.bbi.2019.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/30/2022] Open
Abstract
Anxiety and mood disorders affect both men and women. The majority of experimental models of stress, however, are completed using only male animals. For repeated social defeat (RSD), a rodent model, this is due to the inherent difficulty in eliciting male aggression toward female mice. To address this limitation, a recent study showed that a DREADD-based activation of the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) was effective in inducing aggressive behavior in male mice towards females in a social defeat paradigm. Therefore, the goal of this study was to determine if this modified version of RSD in females elicited behavioral, physiological, and immune responses similar to those reported in males. Here, we show that female mice subjected to RSD with the male DREADD aggressor developed anxiety-like behavior and social avoidance. These behavioral alterations coincided with enhanced neuronal and microglial activation in threat-appraisal regions of the brain. Moreover, stressed female mice had an enhanced peripheral immune response characterized by increased myelopoiesis, release of myeloid cells into circulation, and monocyte accumulation in the spleen and brain. These results are consistent with previously reported findings that male mice exposed to RSD exhibited increased fear and threat appraisal responses, enhanced myelopoiesis, myeloid cell release and trafficking, and anxiety-like behavior. These findings validate that RSD is a relevant model to study stress responses in female mice.
Collapse
|
30
|
Harro J. Animal models of depression: pros and cons. Cell Tissue Res 2018; 377:5-20. [PMID: 30560458 DOI: 10.1007/s00441-018-2973-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Animal models of depression are certainly needed but the question in the title has been raised owing to the controversies in the interpretation of the readout in a number of tests, to the perceived lack of progress in the development of novel treatments and to the expressed doubts in whether animal models can offer anything to make a true breakthrough in understanding the neurobiology of depression and producing novel drugs against depression. Herewith, it is argued that if anything is wrong with animal models, including those for depression, it is not about the principle of modelling complex human disorder in animals but in the way the tests are selected, conducted and interpreted. Further progress in the study of depression and in developing new treatments, will be supported by animal models of depression if these were more critically targeted to drug screening vs. studies of underlying neurobiology, clearly stratified to vulnerability and pathogenetic models, focused on well-defined endophenotypes and validated for each setting while bearing the existing limits to validation in mind. Animal models of depression need not to rely merely on behavioural readouts but increasingly incorporate neurobiological measures as the understanding of depression as human brain disorder advances. Further developments would be fostered by cross-fertilizinga translational approach that is bidirectional, research on humans making more use of neurobiological findings in animals.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
31
|
Reed SC, Haney M, Manubay J, Campagna BR, Reed B, Foltin RW, Evans SM. Sex differences in stress reactivity after intranasal oxytocin in recreational cannabis users. Pharmacol Biochem Behav 2018; 176:72-82. [PMID: 30521833 DOI: 10.1016/j.pbb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Cannabis is the most widely used illicit drugs and the changing legal, political and cultural climate will likely increase cannabis use further. One factor that may underlie the transition from recreational use to problematic use is stress. The hormone oxytocin (OXT) modulates stress and may have therapeutic efficacy for substance use disorders, but few studies have examined OXT in cannabis users. Another factor is sex; although more men smoke cannabis, the transition from recreational to problematic use is faster in women. Using a within-subjects design, the effects of intranasal (i.n.) oxytocin (OXT; 40 IU) administration on stress reactivity (using the Trier Social Stress Test; TSST) and cannabis (5.6% THC) self-administration was assessed in recreational cannabis using men (n = 31) and women (n = 32) relative to i.n. placebo (PBO) and no-stress (NST) conditions. The TSST produced expected subjective and cardiovascular effects compared to the NST. However, in the i.n. OXT-TSST condition, positive subjective effects were lower and negative subjective effects were higher in women compared to PBO administration and compared to men. Further, latency to self-administer cannabis was longer in women than men and women self-administered less cannabis than men regardless of stress condition. There were no differences in cannabis craving as a function of sex, stress, or medication. These results suggest that OXT administration may lead to greater stress reactivity in recreational cannabis users, particularly women, and support growing evidence that sex differences should be carefully considered when examining the therapeutic potential of OXT.
Collapse
Affiliation(s)
- Stephanie C Reed
- New York State Psychiatric Institute, New York, NY, United States of America; Columbia University Medical Center, New York, NY, United States of America.
| | - Margaret Haney
- New York State Psychiatric Institute, New York, NY, United States of America; Columbia University Medical Center, New York, NY, United States of America
| | - Jeanne Manubay
- New York State Psychiatric Institute, New York, NY, United States of America; Columbia University Medical Center, New York, NY, United States of America
| | - Bianca R Campagna
- New York State Psychiatric Institute, New York, NY, United States of America
| | - Brian Reed
- Rockefeller University, New York, NY, United States of America
| | - Richard W Foltin
- New York State Psychiatric Institute, New York, NY, United States of America; Columbia University Medical Center, New York, NY, United States of America
| | - Suzette M Evans
- New York State Psychiatric Institute, New York, NY, United States of America; Columbia University Medical Center, New York, NY, United States of America
| |
Collapse
|
32
|
Wang L, Zhu Z, Hou W, Zhang X, He Z, Yuan W, Yang Y, Zhang S, Jia R, Tai F. Serotonin Signaling Trough Prelimbic 5-HT1A Receptors Modulates CSDS-Induced Behavioral Changes in Adult Female Voles. Int J Neuropsychopharmacol 2018; 22:208-220. [PMID: 30445535 PMCID: PMC6403097 DOI: 10.1093/ijnp/pyy093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Most previous studies have focused on the effects of social defeat in male juvenile individuals. Whether chronic social defeat stress in adulthood affects female emotion and the underlying mechanisms remains unclear. METHODS Using highly aggressive adult female mandarin voles (Microtus mandarinus), the present study aimed to determine the effects of chronic social defeat stress on anxiety- and depression-like behaviors in adult female rodents and investigate the neurobiological mechanisms underlying these effects. RESULTS Exposure of adult female voles to social defeat stress for 14 days reduced the time spent in the central area of the open field test and in the open arms of the elevated plus maze and lengthened the immobility time in the tail suspension and forced swimming tests, indicating increased anxiety- and depression-like behaviors. Meanwhile, defeated voles exhibited increased neural activity in the prelimbic cortex of the medial prefrontal cortex. Furthermore, chronic social defeat stress reduced serotonin projections and levels of serotonin 1A receptors in the medial prefrontal cortex-prelimbic cortex. Intra-prelimbic cortex microinjections of the serotonin 1A receptor agonist 8-OH-DPAT reversed the alterations in emotional behaviors, whereas injections of the serotonin 1A receptor antagonist WAY-100635 into the prelimbic cortex of control voles increased the levels of anxiety- and depression-like behaviors. CONCLUSIONS Taken together, our results demonstrated that chronic social defeat stress increased anxiety- and depression-like behaviors in adult female voles, and these effects were mediated by the action of serotonin on the serotonin 1A receptors in the prelimbic cortex. The serotonin system may be a promising target to treat emotional disorders induced by chronic social defeat stress.
Collapse
Affiliation(s)
- Limin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhenxiang Zhu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wenjuan Hou
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Xueni Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Zhixiong He
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Wei Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Yang Yang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Siyi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Fadao Tai
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China,Correspondence: Fadao Tai, PhD, Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi 710062, China ()
| |
Collapse
|
33
|
Monteggia LM, Heimer H, Nestler EJ. Meeting Report: Can We Make Animal Models of Human Mental Illness? Biol Psychiatry 2018; 84:542-545. [PMID: 29606372 PMCID: PMC6269650 DOI: 10.1016/j.biopsych.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023]
Abstract
Modeling aspects of the human condition in animals has provided invaluable information on the physiology of all organ systems and has assisted in the development of virtually all new therapeutics. Research in cardiovascular disease, cancer, immunology, and other disciplines has benefited substantially from the availability of animal models that capture aspects of specific human diseases and that have been used effectively to advance new treatments. By comparison, animal models for neurological and psychiatric disorders have faced several unique obstacles. This paper highlights topics covered in a recent Cold Spring Harbor Laboratory meeting charged with examining the status of animal models for mental illness. The consensus of the conference is that despite the difficulties inherent with modeling brain disorders in animals, when used judiciously-fully cognizant that models of specific behavioral or biological aspects cannot completely recapitulate the human disorder-animal research is crucial for advancing our understanding of neuropsychiatric disease.
Collapse
Affiliation(s)
- Lisa M. Monteggia
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hakon Heimer
- Banbury Center, Cold Spring Harbor Laboratory, Cold Spring Harbor
| | - Eric J. Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Wright EC, Parks TV, Alexander JO, Supra R, Trainor BC. Activation of kappa opioid receptors in the dorsal raphe have sex dependent effects on social behavior in California mice. Behav Brain Res 2018; 351:83-92. [PMID: 29768187 PMCID: PMC6120584 DOI: 10.1016/j.bbr.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/05/2023]
Abstract
Kappa opioid receptor activation has been linked to stress and anxiety behavior, thus leading to kappa antagonists being popularized in research as potential anxiolytics. However, while these findings may hold true in standard models, the neuromodulatory effects of social defeat may change the behavioral outcome of kappa opioid receptor activation. Previous research has shown that social defeat can lead to hyperactivity of serotonergic neurons in the dorsal raphe nucleus, and that inhibition of this increase blocks the social deficits caused by defeat. Kappa opioid receptor activation in the dorsal raphe nucleus works to decrease serotonergic activity. We injected the kappa opioid receptor U50,488 directly into the dorsal raphe nucleus of male and female, defeat and control adult California mice. Here we show evidence that U50,488 induces anxiety behavior in control male California mice, but helps relieve it in defeated males. Consistent with previous literature, we find little effect in females adding evidence that there are marked and important sex differences in the kappa opioid system.
Collapse
Affiliation(s)
- Emily C Wright
- Department of Psychology, University of California, Davis, CA, USA
| | - Tiffany V Parks
- Department of Psychology, University of California, Davis, CA, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Rajesh Supra
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
Li CY, Huang SP, Garcia M, Fuller A, Hsu Y, Earley RL. Sexual phenotype drives variation in endocrine responses to social challenge in a quasi-clonal animal. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180002. [PMID: 29765691 PMCID: PMC5936956 DOI: 10.1098/rsos.180002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
In many species, males tend to behave more aggressively than females and female aggression often occurs during particular life stages such as maternal defence of offspring. Though many studies have revealed differences in aggression between the sexes, few studies have compared the sexes in terms of their neuroendocrine responses to contest experience. We investigated sex differences in the endocrine response to social challenge using mangrove rivulus fish, Kryptolebias marmoratus. In this species, sex is determined environmentally, allowing us to produce males and hermaphrodites with identical genotypes. We hypothesized that males would show elevated androgen levels (testosterone and 11-ketotestosterone) following social challenge but that hermaphrodite responses might be constrained by having to maintain both testicular and ovarian tissue. To test this hypothesis, we staged fights between males and between hermaphrodites, and then compared contest behaviour and hormone responses between the sexes. Hermaphrodites had significantly higher oestradiol but lower 11-ketotestosterone than males before contests. Males took longer to initiate contests but tended to fight more aggressively and sustain longer fights than hermaphrodites. Males showed a dramatic post-fight increase in 11-ketotestosterone but hermaphrodites did not. Thus, despite being genetically identical, males and hermaphrodites exhibit dramatically different fighting strategies and endocrine responses to contests.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, USA
| | - Shu-Ping Huang
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei 116, Taiwan, Republic of China
| | - Mark Garcia
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, USA
| | - Adam Fuller
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, USA
| | - Yuying Hsu
- Department of Life Science, National Taiwan Normal University, No. 88, Section 4, Tingchou Rd, Taipei 116, Taiwan, Republic of China
| | - Ryan L. Earley
- Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Box 870344, Tuscaloosa, AL 35487, USA
| |
Collapse
|
36
|
Glasper ER, Hyer MM, Hunter TJ. Enduring Effects of Paternal Deprivation in California Mice ( Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival. Front Behav Neurosci 2018; 12:20. [PMID: 29487509 PMCID: PMC5816956 DOI: 10.3389/fnbeh.2018.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/28/2022] Open
Abstract
Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex-dependent. Together, these findings demonstrate that, in a species where paternal care is not only important for offspring survival, PD can also contribute to altered structural and functional neuroplasticity of the hippocampus. The mechanisms contributing to the observed sex-dependent alterations in new cell survival in the dentate gyrus should be further investigated.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Molly M Hyer
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, MD, United States
| | - Terrence J Hunter
- Department of Psychology, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
37
|
Kowalczyk AS, Davila RF, Trainor BC. Effects of social defeat on paternal behavior and pair bonding behavior in male California mice (Peromyscus californicus). Horm Behav 2018; 98:88-95. [PMID: 29289657 PMCID: PMC5828991 DOI: 10.1016/j.yhbeh.2017.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022]
Abstract
Male parental care is an important social behavior for several mammalian species. Psychosocial stress is usually found to inhibit maternal behavior, but effects on paternal behavior have been less consistent. We tested the effects of social defeat stress on pair bond formation and paternal behavior in the monogamous California mouse (Peromyscus californicus). Social defeat reduced time spent in a chamber with a stranger female during a partner preference test conducted 24h after pairing, but increased latency to the first litter. In 10min partner preference tests conducted after the birth of pups, both control and stressed males exhibited selective aggression towards stranger females. Unlike prairie voles, side by side contact was not observed in either partner preference test. Stressed male California mice engaged in more paternal behavior than controls and had reduced anxiety-like responses in the open-field test. Defeat stress enhanced prodynorphin and KOR expression in the medial preoptic area (MPOA) but not PVN. Increased KOR signaling has been linked to increased selective aggression in prairie voles. Together the results show that defeat stress enhances behaviors related to parental care and pair bonding in male California mice.
Collapse
Affiliation(s)
- Alex S Kowalczyk
- Department of Psychology, University of California, Davis, United States
| | - Randy F Davila
- Department of Psychology, University of California, Davis, United States
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, United States.
| |
Collapse
|
38
|
Dzirbíková Z, Talarovičová A, Štefánik P, Olexová L, Kršková L. Testosterone enhancement during pregnancy influences social coping and gene expression of oxytocin and vasopressin in the brain of adult rats. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Wright EC, Johnson SA, Hao R, Kowalczyk AS, Greenberg GD, Sanchez EO, Laman-Maharg A, Trainor BC, Rosenfeld CS. Exposure to extrinsic stressors, social defeat or bisphenol A, eliminates sex differences in DNA methyltransferase expression in the amygdala. J Neuroendocrinol 2017; 29:10.1111/jne.12475. [PMID: 28406523 PMCID: PMC5501704 DOI: 10.1111/jne.12475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 12/24/2022]
Abstract
Chemical and psychological stressors can exert long lasting changes in brain function and behaviour. Changes in DNA methylation have been shown to be an important mechanism mediating long lasting changes in neural function and behaviour, especially for anxiety-like or stress responses. In the present study, we examined the effects of either a social or chemical stressor on DNA methyltransferase (DNMT) gene expression in the amygdala, an important brain region modulating stress responses and anxiety. In adult California mice (Peromyscus californicus) that were naïve to social defeat, females had higher levels of Dnmt1 expression in punch samples of the central amygdala (CeA) than males. In addition, mice that underwent social defeat stress showed reduced Dnmt1 and Dnmt3a expression in the CeA of females but not males. A second study using more anatomically specific punch samples replicated these effects for Dnmt1. Perinatal exposure (spanning from periconception through lactation) to bisphenol A or ethinyl oestradiol (oestrogens in birth control pills) also abolished sex differences in Dnmt1 expression in the CeA but not the basolateral amygdala. These findings identify a robust sex difference in Dnmt1 expression in the CeA that is sensitive to both psychological and chemical stressors. Future studies should aim to examine the impact of psychological and chemical stressors on DNA methylation in the CeA and also investigate whether Dnmt1 may have an underappreciated role in plasticity in behaviour.
Collapse
Affiliation(s)
- Emily C. Wright
- Department of Psychology, University of California, Davis, CA, USA
| | - Sarah A. Johnson
- Bond Life Science Center, Department of Biomedical Sciences, Department of Animal Science, University of Missouri, Columbia, MO, USA
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Gian D. Greenberg
- Neuroscience Graduate Group, University of California, Davis, CA, USA
| | | | | | - Brian C. Trainor
- Department of Psychology, University of California, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, CA, USA
| | - Cheryl S. Rosenfeld
- Bond Life Science Center, Department of Biomedical Sciences, Department of Animal Science, University of Missouri, Columbia, MO, USA
- Genetics Area Program and Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
40
|
Kiaris H. Editorial. Semin Cell Dev Biol 2017; 61:80-81. [PMID: 28081800 DOI: 10.1016/j.semcdb.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|