1
|
Bonato B, Bennett T, Guerra S, Avesani S, Castiello U. Do strigolactones play a role in the ascent and attachment behavior of Pisum sativum? PLANT SIGNALING & BEHAVIOR 2025; 20:2447455. [PMID: 39745925 DOI: 10.1080/15592324.2024.2447455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Strigolactones (SLs) are signaling compounds made by plants. They play a crucial role in acting as long-distance signals from root to shoot to coordinate shoot growth with root environmental conditions. Here, we test whether and how SLs play a role in the climbing behavior of pea plants by studying the circumnutation of the tendrils using three-dimensional (3D) kinematical analysis. To assess this, we compare the typical behavior of P. sativum, a wild-type plant that produces and perceives SLs, with mutants defective in SLs synthesis or signaling, known as ramosus(rms) mutants. The results indicate that mutant plants seem unable to locate and grasp a potential support. Their movement appears to be disoriented and much less energized. We contend that this research opens new avenues for exploring SLs' role in plant behavior, a novel lens through which the role of SLs in root-to-shoot communication can be observed and analyzed.
Collapse
Affiliation(s)
- Bianca Bonato
- Department of General Psychology, University of Padova, Padova, Italy
| | - Tom Bennett
- Faculty of Biological Science, University of Leeds, Leeds, UK
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Padova, Italy
| | - Sara Avesani
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Guerra S, Bonato B, Ravazzolo L, Dadda M, Castiello U. When two become one: perceptual completion in pea plants. PLANT SIGNALING & BEHAVIOR 2025; 20:2473528. [PMID: 40079205 PMCID: PMC11913383 DOI: 10.1080/15592324.2025.2473528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Pea plants depend on external structures to reach the strongest light source. To do this, they need to perceive a potential support and to flexibly adapt the movement of their motile organs (e.g. tendrils). In natural environments, there are several above- and belowground elements that could impede the complete perception of potential supports. In such instances, plants may be required to perform a sort of perceptual "completion" to establish a unified percept. We tested whether pea plants are capable of performing perceptual completion by investigating their ascent and attachment behavior using three-dimensional (3D) kinematic analysis. Pea plants were tested in the presence of a support divided into two parts positioned at opposite locations. One part was grounded and perceived only by the root system. The remaining portion was elevated from the ground so that it was only accessible by the aerial part. Control conditions were also included. We hypothesized that if pea plants are able to perceptually integrate the two parts of the support, then they would perform a successful clasping movement. Alternatively, if such integration does not occur, plants may exhibit disoriented exploratory behavior that does not lead to clasping the support. The results demonstrated that pea plants are capable of perceptual completion, allowing for the integration of information coming from the root system and the aerial part. We contend that perceptual completion may be achieved through a continuous crosstalk between a plant's modules determined by a complex signaling network. By integrating these findings with ecological observations, it may be possible to identify specific factors related to support detection and coding in climbing plants.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology, University of Padova, Padova, Italy
| | - Bianca Bonato
- Department of General Psychology, University of Padova, Padova, Italy
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Pandey BK, George TS, Cooper HV, Sturrock CJ, Bennett T, Bennett MJ. Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1500-1509. [PMID: 39707161 PMCID: PMC11981895 DOI: 10.1093/jxb/erae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Agricultural intensification coupled with changing climate are causing soils to become increasingly vulnerable to stresses such as drought, soil erosion, and compaction. The mechanisms by which roots detect and respond to soil stresses remain poorly understood. Recent breakthroughs show that roots release volatile and soluble hormone signals into the surrounding soil, then monitor their levels to sense soil stresses. Our review discusses how hormones can act 'outside the plant' as 'rhizocrine' signals that function to improve plant resilience to different soil stresses. We also propose a novel signalling paradigm which we term 'root RADAR' where 'rhizocrine' levels change in soil in response to environmental stresses, feeding back to roots and triggering adaptive responses.
Collapse
Affiliation(s)
- Bipin K Pandey
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Hannah V Cooper
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Craig J Sturrock
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Malcolm J Bennett
- Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
4
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
5
|
Xu Y, Lv Z, Manzoor MA, Song L, Wang M, Wang L, Wang S, Zhang C, Jiu S. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. MOLECULAR HORTICULTURE 2024; 4:40. [PMID: 39456080 PMCID: PMC11515387 DOI: 10.1186/s43897-024-00117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
The D14 protein, an alpha/beta hydrolase, is a key receptor in the strigolactone (SL) signaling pathway. However, the response of VvD14 to SL signals and its role in grapevine root architecture formation remain unclear. This study demonstrated that VvD14c was highly expressed in grapevine tissues and fruit stages than other VvD14 isoforms. Application of GR24, an SL analog, enhanced the elongation and diameter of adventitious roots but inhibited the elongation and density of lateral roots (LRs) and increased VvD14c expression. Additionally, GR24 is nested within the VvD14c pocket and strongly bound to the VvD14c protein, with an affinity of 5.65 × 10-9 M. Furthermore, VvD14c interacted with grapevine MORE AXILLARY GROWTH 2 (VvMAX2) in a GR24-dependent manner. Overexpression of VvD14c in the d14 mutant and VvMAX2 in the max2 Arabidopsis mutant reversed the increased LR number and density, as well as primary root elongation. Conversely, homologous overexpression of VvD14c and VvMAX2 resulted in reduced LR number and density in grapevines. VvMAX2 directly interacted with LATERAL ORGAN BOUNDARY (VvLOB) and VvLBD19, thereby positively regulating LR density. These findings highlight the role of SLs in regulating grapevine root architecture, potentially via the VvD14c-VvMAX2-VvLOB/VvLBD19 module, providing new insights into the regulation of root growth and development in grapevines.
Collapse
Affiliation(s)
- Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Linhong Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Maosen Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, P. R. China.
| |
Collapse
|
6
|
Sigalas PP, Bennett T, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:139-158. [PMID: 39136678 DOI: 10.1111/tpj.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Collapse
Affiliation(s)
| | - Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
7
|
Malinowski R, Singh D, Kasprzewska A, Blicharz S, Basińska-Barczak A. Vascular tissue - boon or bane? How pathogens usurp long-distance transport in plants and the defence mechanisms deployed to counteract them. THE NEW PHYTOLOGIST 2024; 243:2075-2092. [PMID: 39101283 DOI: 10.1111/nph.20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024]
Abstract
Evolutionary emergence of specialised vascular tissues has enabled plants to coordinate their growth and adjust to unfavourable external conditions. Whilst holding a pivotal role in long-distance transport, both xylem and phloem can be encroached on by various biotic factors for systemic invasion and hijacking of nutrients. Therefore, a complete understanding of the strategies deployed by plants against such pathogens to restrict their entry and establishment within plant tissues, is of key importance for the future development of disease-tolerant crops. In this review, we aim to describe how microorganisms exploit the plant vascular system as a route for gaining access and control of different host tissues and metabolic pathways. Highlighting several biological examples, we detail the wide range of host responses triggered to prevent or hinder vascular colonisation and effectively minimise damage upon biotic invasions.
Collapse
Affiliation(s)
- Robert Malinowski
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Deeksha Singh
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Kasprzewska
- Regulation of Gene Expression Team, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Sara Blicharz
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Aneta Basińska-Barczak
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| |
Collapse
|
8
|
Walker CH, Bennett T. Cytokinin and reproductive shoot architecture: bigger and better? Biochem Soc Trans 2024; 52:1885-1893. [PMID: 39083016 PMCID: PMC11668285 DOI: 10.1042/bst20231565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Cytokinin (CK) is a key plant hormone, but one whose effects are often misunderstood, partly due to reliance on older data from before the molecular genetic age of plant science. In this mini-review, we examine the role of CK in controlling the reproductive shoot architecture of flowering plants. We begin with a long overdue re-examination of the role of CK in shoot branching, and discuss the relatively paucity of genetic evidence that CK does play a major role in this process. We then examine the role of CK in determining the number of inflorescences, flowers, fruit and seed that plants initiate during reproductive development, and how these are arranged in space and time. The genetic evidence for a major role of CK in controlling these processes is much clearer, and CK has profound effects in boosting the size and number of most reproductive structures. Conversely, the attenuation of CK levels during the reproductive phase likely contributes to reduced organ size seen later in flowering, and the ultimate arrest of inflorescence meristems during end-of-flowering. We finish by discussing how this information can potentially be used to improve crop yields.
Collapse
Affiliation(s)
- Catriona H. Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
9
|
Kopecká R, Černý M. Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22. PLANTS (BASEL, SWITZERLAND) 2024; 13:1983. [PMID: 39065510 PMCID: PMC11281318 DOI: 10.3390/plants13141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Collapse
Affiliation(s)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
10
|
Clark J, Bennett T. Cracking the enigma: understanding strigolactone signalling in the rhizosphere. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1159-1173. [PMID: 37623748 PMCID: PMC10860530 DOI: 10.1093/jxb/erad335] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The rhizosphere is a complex physical and chemical interface between plants and their underground environment, both biotic and abiotic. Plants exude a large number of chemicals into the rhizosphere in order to manipulate these biotic and abiotic components. Among such chemicals are strigolactones, ancient signalling molecules that in flowering plants act as both internal hormones and external rhizosphere signals. Plants exude strigolactones to communicate with their preferred symbiotic partners and neighbouring plants, but at least some classes of parasitic organisms are able to 'crack' these private messages and eavesdrop on the signals. In this review, we examine the intentional consequences of strigolactone exudation, and also the unintentional consequences caused by eavesdroppers. We examine the molecular mechanisms by which strigolactones act within the rhizosphere, and attempt to understand the enigma of the strigolactone molecular diversity synthesized and exuded into the rhizosphere by plants. We conclude by looking at the prospects of using improved understanding of strigolactones in agricultural contexts.
Collapse
Affiliation(s)
- Jed Clark
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Solanki MK, Joshi NC, Singh PK, Singh SK, Santoyo G, Basilio de Azevedo LC, Kumar A. From concept to reality: Transforming agriculture through innovative rhizosphere engineering for plant health and productivity. Microbiol Res 2024; 279:127553. [PMID: 38007891 DOI: 10.1016/j.micres.2023.127553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, India
| | - Sandeep Kumar Singh
- Department of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Lucas Carvalho Basilio de Azevedo
- Instituto de Ciências Agrárias, Campus Glória-Bloco CCG, Universidade Federal de Uberlândia, RodoviaBR-050, KM 78, S/N, Uberlândia CEP 38410-337, Brazil
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
12
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
13
|
Robinson D. OPT-ing out: Root-shoot dynamics are caused by local resource capture and biomass allocation, not optimal partitioning. PLANT, CELL & ENVIRONMENT 2023; 46:3023-3039. [PMID: 36285352 DOI: 10.1111/pce.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Combining plant growth analysis with a simple model of local resource capture and biomass allocation applied to exemplary experimental data, showed that dynamic changes in allocation to roots when nutrients are scarce is caused by disparities in growth rates between roots and shoots. Whole-plant growth rates also change but are not caused by an adaptive allocation response. Allocation and whole-plant growth rate are interdependent, not independent, traits. Following a switch in nutrient availability or partial biomass removal, convergence of allocation and growth rate trajectories does not reflect goal-seeking behaviour, but the constraints imposed by finite resource availability. Optimal root-shoot allocations are unnecessary to maximise whole-plant growth rate. Similar growth rates are attainable with different allocations. Changes in allocation cannot maintain or restore a superior whole-plant growth rate. Roots and shoots do not have to be tightly coordinated but can operate semiautonomously, as their modular construction permits. These findings question the plausibility of the prevailing general explanation of plants' root-shoot allocation responses, 'optimal partitioning theory' (OPT). Local allocation models, not OPT, explain the origins of variability in root-shoot trade-offs in individuals, the allocation of biomass at global and ecosystem scales and inform selection for allocation plasticity in crop breeding.
Collapse
Affiliation(s)
- David Robinson
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
14
|
Pei X, Wang F, Du H, He M, Li L, Gou C, Chen Z, Wang Y, Kong F, Zhao L. Genome-wide identification and functional prediction of BYPASS1-related (BPS1) homologs in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:59. [PMID: 37496826 PMCID: PMC10366038 DOI: 10.1007/s11032-023-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
The BYPASS1-related gene (BPS1) encodes a protein with an unknown functional domain that regulates plant organ growth and development by inhibiting the continuous production of a root-derived long-distance signaling molecule called bypass (bps). We conducted a comprehensive study to investigate the BPS gene family in soybean and identified twenty-three BPS genes in Glycine max and twenty BPS genes in Glycine soja (wild soybean). Collinearity analysis revealied the existence of multiple orthologs of soybean BPS genes in wild soybean, indicating incomplete conservation between the BPS genes of soybean and wild soybean. Phylogenetic analysis successfully categorized all BPS genes into five distinct groups. We further scrutinized their chromosomal locations, gene structures, conserved motifs, cis-acting elements, and expression patterns. Leveraging publicly available data on genetic variation, phenotypic variation, and single-cell transcriptome sequencing of root nodules, we discovered a potential association between BPS genes and multiple soybean traits, particularly those related to the root nodule phenotype. This pioneering study provides a systematic and comprehensive examination of the BPS gene family in soybean. The findings establish a robust foundation for future investigations into the functional roles of BPS genes in plant growth and development. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01403-2.
Collapse
Affiliation(s)
- Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fan Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haiping Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lanxin Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chuanjie Gou
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Adedayo AA, Fadiji AE, Babalola OO. Unraveling the functional genes present in rhizosphere microbiomes of Solanum lycopersicum. PeerJ 2023; 11:e15432. [PMID: 37283894 PMCID: PMC10241170 DOI: 10.7717/peerj.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
The microbiomes living in the rhizosphere soil of the tomato plant contribute immensely to the state of health of the tomato plant alongside improving sustainable agriculture. With the aid of shotgun metagenomics sequencing, we characterized the putative functional genes (plant-growth-promoting and disease-resistant genes) produced by the microbial communities dwelling in the rhizosphere soil of healthy and powdery mildew-diseased tomato plants. The results identified twenty-one (21) plant growth promotion (PGP) genes in the microbiomes inhabiting the healthy rhizosphere (HR) which are more predomiant as compared to diseased rhizosphere (DR) that has nine (9) genes and four (4) genes in bulk soil (BR). Likewise, we identified some disease-resistant genes which include nucleotide binding genes and antimicrobial genes. Our study revealed fifteen (15) genes in HR which made it greater in comparison to DR that has three (3) genes and three (3) genes in bulk soil. Further studies should be conducted by isolating these microorganisms and introduce them to field experiments for cultivation of tomatoes.
Collapse
|
16
|
Wang F, Wang Y, Ying L, Lu H, Liu Y, Liu Y, Xu J, Wu Y, Mo X, Wu Z, Mao C. Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1164441. [PMID: 37223782 PMCID: PMC10200874 DOI: 10.3389/fpls.2023.1164441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 05/25/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two primary components of fertilizers for crop production. Coordinated acquisition and utilization of N and P are crucial for plants to achieve nutrient balance and optimal growth in a changing rhizospheric nutrient environment. However, little is known about how N and P signaling pathways are integrated. We performed transcriptomic analyses and physiological experiments to explore gene expression profiles and physiological homeostasis in the response of rice (Oryza sativa) to N and P deficiency. We revealed that N and P shortage inhibit rice growth and uptake of other nutrients. Gene Ontology (GO) analysis of differentially expressed genes (DEGs) suggested that N and Pi deficiency stimulate specific different physiological reactions and also some same physiological processes in rice. We established the transcriptional regulatory network between N and P signaling pathways based on all DEGs. We determined that the transcript levels of 763 core genes changed under both N or P starvation conditions. Among these core genes, we focused on the transcription factor gene NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) and show that its encoded protein is a positive regulator of P homeostasis and a negative regulator of N acquisition in rice. NIGT1 promoted Pi uptake but inhibited N absorption, induced the expression of Pi responsive genes PT2 and SPX1 and repressed the N responsive genes NLP1 and NRT2.1. These results provide new clues about the mechanisms underlying the interaction between plant N and P starvation responses.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Luying Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yijian Liu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, China
| |
Collapse
|
17
|
Khan MMA, Afreen R, Quasar N, Khanam N, Uddin M. Steam-mediated foliar application of catechol and plant growth regulators enhances the growth attributes, photosynthesis, and essential oil production of lemongrass [Cymbopogon flexuosus (Steud.) Wats]. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Walker CH, Ware A, Šimura J, Ljung K, Wilson Z, Bennett T. Cytokinin signaling regulates two-stage inflorescence arrest in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:479-495. [PMID: 36331332 PMCID: PMC9806609 DOI: 10.1093/plphys/kiac514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2023]
Abstract
To maximize reproductive success, flowering plants must correctly time entry and exit from the reproductive phase. While much is known about mechanisms that regulate initiation of flowering, end-of-flowering remains largely uncharacterized. End-of-flowering in Arabidopsis (Arabidopsis thaliana) consists of quasi-synchronous arrest of inflorescences, but it is unclear how arrest is correctly timed with respect to environmental stimuli and reproductive success. Here, we showed that Arabidopsis inflorescence arrest is a complex developmental phenomenon, which includes the arrest of the inflorescence meristem (IM), coupled with a separable "floral arrest" of all unopened floral primordia; these events occur well before visible inflorescence arrest. We showed that global inflorescence removal delays both IM and floral arrest, but that local fruit removal only delays floral arrest, emphasizing their separability. We tested whether cytokinin regulates inflorescence arrest, and found that cytokinin signaling dynamics mirror IM activity, while cytokinin treatment can delay both IM and floral arrest. We further showed that gain-of-function cytokinin receptor mutants can delay IM and floral arrest; conversely, loss-of-function mutants prevented the extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest.
Collapse
Affiliation(s)
- Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexander Ware
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Zoe Wilson
- School of Biosciences, University of Nottingham, Loughborough, UK
| | | |
Collapse
|
19
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Wheeldon CD, Hamon-Josse M, Lund H, Yoneyama K, Bennett T. Environmental strigolactone drives early growth responses to neighboring plants and soil volume in pea. Curr Biol 2022; 32:3593-3600.e3. [PMID: 35839764 PMCID: PMC9616727 DOI: 10.1016/j.cub.2022.06.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
There has been a dramatic recent increase in the understanding of the mechanisms by which plants detect their neighbors,1 including by touch,2 reflected light,3 volatile organic chemicals, and root exudates.4,5 The importance of root exudates remains ill-defined because of confounding experimental variables6,7 and difficulties disentangling neighbor detection in shoot and roots.8-10 There is evidence that root exudates allow distinction between kin and non-kin neighbors,11-13 but identification of specific exudates that function in neighbor detection and/or kin recognition remain elusive.1 Strigolactones (SLs), which are exuded into the soil in significant quantities in flowering plants to promote recruitment of arbuscular mycorrhizal fungi (AMF),14 seem intuitive candidates to act as plant-plant signals, since they also act as hormones in plants,15-17 with dramatic effects on shoot growth18,19 and milder effects on root development.20 Here, using pea, we test whether SLs act as either cues or signals for neighbor detection. We show that peas detect neighbors early in the life cycle through their root systems, resulting in strong changes in shoot biomass and branching, and that this requires SL biosynthesis. We demonstrate that uptake and detection of SLs exuded by neighboring plants are needed for this early neighbor detection, and that plants that cannot exude SLs are outcompeted by neighboring plants and fail to adjust growth to their soil volume. We conclude that plants both exude SLs as signals to modulate neighbor growth and detect environmental SLs as a cue for neighbor presence; collectively, this allows plants to proactively adjust their shoot growth according to neighbor density.
Collapse
Affiliation(s)
- Cara D Wheeldon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Maxime Hamon-Josse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hannah Lund
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan; Japan Science and Technology, PRESTO, Kawaguchi, Japan
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Kawai M, Tabata R, Ohashi M, Honda H, Kamiya T, Kojima M, Takebayashi Y, Oishi S, Okamoto S, Hachiya T, Sakakibara H. Regulation of ammonium acquisition and use in Oryza longistaminata ramets under nitrogen source heterogeneity. PLANT PHYSIOLOGY 2022; 188:2364-2376. [PMID: 35134987 PMCID: PMC8968255 DOI: 10.1093/plphys/kiac025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/18/2021] [Indexed: 05/31/2023]
Abstract
Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We studied the response of ramet pairs to heterogeneous nitrogen availability using a split hydroponic system that allowed each ramet root to be exposed to different conditions. Ammonium uptake was compensatively enhanced in the sufficient-side root when roots of the ramet pairs were exposed to ammonium-sufficient and ammonium-deficient conditions. Comparative transcriptome analysis revealed that a gene regulatory network for effective ammonium assimilation and amino acid biosynthesis was activated in the sufficient-side roots. Allocation of absorbed nitrogen from the nitrogen-sufficient to the nitrogen-deficient ramets was rather limited. Nitrogen was preferentially used for newly growing axillary buds on the sufficient-side ramets. Biosynthesis of trans-zeatin (tZ), a cytokinin, was upregulated in response to the nitrogen supply, but tZ appeared not to target the compensatory regulation. Our results also implied that the O. longistaminata putative ortholog of rice (Oryza sativa) C-terminally encoded peptide1 plays a role as a nitrogen-deficient signal in inter-ramet communication, providing compensatory upregulation of nitrogen assimilatory genes. These results provide insights into the molecular basis for efficient growth strategies of asexually proliferating plants growing in areas where the distribution of ammonium ions is spatially heterogeneous.
Collapse
Affiliation(s)
- Misato Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Miwa Ohashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Haruno Honda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya464-8602, Japan
| | - Satoru Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Takushi Hachiya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Molecular and Function Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue 690-8504, Japan
| | | |
Collapse
|
22
|
Song C, Zhao J, Guichard M, Shi D, Grossmann G, Schmitt C, Jouannet V, Greb T. Strigo-D2-a bio-sensor for monitoring spatio-temporal strigolactone signaling patterns in intact plants. PLANT PHYSIOLOGY 2022; 188:97-110. [PMID: 34718781 PMCID: PMC8774841 DOI: 10.1093/plphys/kiab504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are a class of plant hormones that mediate biotic interactions and modulate developmental programs in response to endogenous and exogenous stimuli. However, a comprehensive view on the spatio-temporal pattern of SL signaling has not been established, and tools for a systematic in planta analysis do not exist. Here, we present Strigo-D2, a genetically encoded ratiometric SL signaling sensor that enables the examination of SL signaling distribution at cellular resolution and is capable of rapid response to altered SL levels in intact Arabidopsis (Arabidopsis thaliana) plants. By monitoring the abundance of a truncated and fluorescently labeled SUPPRESSOR OF MAX2 1-LIKE 6 (SMXL6) protein, a proteolytic target of the SL signaling machinery, we show that all cell types investigated have the capacity to respond to changes in SL levels but with very different dynamics. In particular, SL signaling is pronounced in vascular cells but low in guard cells and the meristematic region of the root. We also show that other hormones leave Strigo-D2 activity unchanged, indicating that initial SL signaling steps work in isolation from other hormonal signaling pathways. The specificity and spatio-temporal resolution of Strigo-D2 underline the value of the sensor for monitoring SL signaling in a broad range of biological contexts with highly instructive analytical depth.
Collapse
Affiliation(s)
- Changzheng Song
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jiao Zhao
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Marjorie Guichard
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-Yokohama 230-0045, Japan
| | - Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Virginie Jouannet
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Khuvung K, Silva Gutierrez FAO, Reinhardt D. How Strigolactone Shapes Shoot Architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:889045. [PMID: 35903239 PMCID: PMC9315439 DOI: 10.3389/fpls.2022.889045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 05/21/2023]
Abstract
Despite its central role in the control of plant architecture, strigolactone has been recognized as a phytohormone only 15 years ago. Together with auxin, it regulates shoot branching in response to genetically encoded programs, as well as environmental cues. A central determinant of shoot architecture is apical dominance, i.e., the tendency of the main shoot apex to inhibit the outgrowth of axillary buds. Hence, the execution of apical dominance requires long-distance communication between the shoot apex and all axillary meristems. While the role of strigolactone and auxin in apical dominance appears to be conserved among flowering plants, the mechanisms involved in bud activation may be more divergent, and include not only hormonal pathways but also sugar signaling. Here, we discuss how spatial aspects of SL biosynthesis, transport, and sensing may relate to apical dominance, and we consider the mechanisms acting locally in axillary buds during dormancy and bud activation.
Collapse
|
24
|
Wang J, Haapalainen M, Nissinen AI, Pirhonen M. Dual Transcriptional Profiling of Carrot and ' Candidatus Liberibacter solanacearum' at Different Stages of Infection Suggests Complex Host-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1281-1297. [PMID: 34319773 DOI: 10.1094/mpmi-10-20-0274-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reduced mobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylase were expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinhui Wang
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Minna Haapalainen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Anne I Nissinen
- Natural Resources Institute Finland (Luke), Natural Resources, Tietotie 2C, FI-31600 Jokioinen, Finland
| | - Minna Pirhonen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
25
|
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJN. Beyond transport: cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. PLANTA 2021; 254:45. [PMID: 34365553 DOI: 10.1007/s00425-021-03693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Riboside type cytokinins are key components in cytokinin metabolism, transport, and sensitivity, making them important functional signals in plant growth and development and environmental stress responses. Cytokinin (CKs) are phytohormones that regulate multiple processes in plants and are critical for agronomy, as they are involved in seed filling and plant responses to biotic and abiotic stress. Among the over 30 identified CKs, there is uncertainty about the roles of many of the individual CK structural forms. Cytokinin free bases (CKFBs), have been studied in great detail, but, by comparison, roles of riboside-type CKs (CKRs) in CK metabolism and associated signaling pathways and their distal impacts on plant physiology remain largely unknown. Here, recent findings on CKR abundance, transport and localization, are summarized, and their importance in planta is discussed. The history of CKR analyses is reviewed, in the context of the determination of CK metabolic pathways, and research on CKR affinity for CK receptors, all of which yield essential insights into their functions. Recent studies suggest that CKR forms are a lot more than a group of transport CKs and, beyond this, they play important roles in plant development and responses to environmental stress. In this context, this review discusses the involvement of CKRs in plant development, and highlight the less anticipated functions of CKRs in abiotic stress tolerance. Based on this, possible mechanisms for CKR modes of action are proposed and experimental approaches to further uncover their roles and future biotechnological applications are suggested.
Collapse
Affiliation(s)
- Hai Ngoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Thien Quoc Nguyen
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
26
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
27
|
Boot KJM, Hille SC, Korthout HAAJ, Libbenga KR, van Duijn B. Extracting relevant physiological information from polar auxin transport data in Panax ginseng. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153436. [PMID: 34029983 DOI: 10.1016/j.jplph.2021.153436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Measuring polar auxin transport (PAT) in plants and drawing conclusions from the observed transport data is only meaningful if these data are being analysed with a mathematical model which describes PAT. In this report we studied the polar auxin transport in Panax ginseng stems of different age and grown on different substrates. METHODS We measured polar IAA transport in stems using a radio labelled IAA and analysed the transport data with a mathematical model we developed for Arabidopsis. RESULTS We found that PAT in ginseng stems, as compared to Arabidopsis inflorescence stems, has a 2-fold lower transport velocity and a 3-fold lower steady state auxin flux. CONCLUSION We were able to pinpoint two physiological parameters that influenced the observed transport characteristics in ginseng which differ from Arabidopsis, namely an increase in immobilization together with a reduced reflux of IAA from the surrounding tissue back to the transporting cells.
Collapse
Affiliation(s)
- Kees J M Boot
- Plant Biodynamics Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; Fytagoras, 2333 BE, Leiden, the Netherlands
| | - Sander C Hille
- Plant Biodynamics Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; Mathematical Institute, Leiden University, 2333 CA, Leiden, the Netherlands
| | | | - Kees R Libbenga
- Plant Biodynamics Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Bert van Duijn
- Plant Biodynamics Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands; Fytagoras, 2333 BE, Leiden, the Netherlands.
| |
Collapse
|
28
|
Chen L, Zhao J, Song J, Jameson PE. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:878-896. [PMID: 33811433 PMCID: PMC8131048 DOI: 10.1111/pbi.13595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/28/2021] [Indexed: 05/05/2023]
Abstract
The cytokinins, which are N6 -substituted adenine derivatives, control key aspects of crop productivity. Cytokinin levels are controlled via biosynthesis by isopentenyl transferase (IPT), destruction by cytokinin oxidase/dehydrogenase (CKX), and inactivation via glucosylation by cytokinin glucosyl transferases (CGTs). While both yield components and tolerance to drought and related abiotic stressors have been positively addressed via manipulation of IPT and/or CKX expression, much less attention has been paid to the CGTs. As naming of the CGTs has been unclear, we suggest COGT, CNGT, CONGT and CNOGT to describe the O-, N- and dual function CGTs. As specific CGT mutants of both rice and arabidopsis showed impacts on yield components, we interrogated the wheat genome database, IWGSC RefSeq v1.0 & v2.0, to investigate wheat CGTs. Besides providing unambiguous names for the 53 wheat CGTs, we show their expression patterns in 70 developmental tissues and their response characteristics to various stress conditions by reviewing more than 1000 RNA-seq data sets. These revealed various patterns of responses and showed expression generally being more limited in reproductive tissues than in vegetative tissues. Multiple cis-regulatory elements are present in the 3 kb upstream of the start codons of the 53 CGTs. Elements associated with abscisic acid, light and methyl jasmonate are particularly over-represented, indicative of the responsiveness of CGTs to the environment. These data sets indicate that CGTs have potential value for wheat improvement and that these could be targeted in TILLING or gene editing wheat breeding programmes.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | - Jing Zhao
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
29
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|