1
|
Chen YC, Takada M, Nagornyuk A, Yu M, Yamada H, Nagashima T, Ohtsuka M, DeLuca JG, Markus SM, Takaku M, Suzuki A. Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells. eLife 2025; 13:RP104859. [PMID: 40439108 PMCID: PMC12122001 DOI: 10.7554/elife.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Microtubule-targeting agents (MTAs) are widely used as first- and second-line chemotherapies for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. Here, we demonstrate that inhibition of the p38 MAPK-MK2 signaling pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to its established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed normal cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of subclinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Aerica Nagornyuk
- Department of Biomedical Science, University of North Dakota School of Medicine and Health ScienceGrand ForksUnited States
| | - Muhan Yu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba UniversityChibaJapan
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health ScienceGrand ForksUnited States
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-MadisonMadisonUnited States
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-MadisonMadisonUnited States
- Carbone Comprehensive Cancer Center, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
2
|
Sethi S, Ghetti S, Cmentowski V, Guerriere TB, Stege P, Piano V, Musacchio A. Interplay of kinetochores and catalysts drives rapid assembly of the mitotic checkpoint complex. Nat Commun 2025; 16:4823. [PMID: 40410156 PMCID: PMC12102207 DOI: 10.1038/s41467-025-59970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
The spindle assembly checkpoint (SAC) ensures mitotic exit occurs only after sister chromatid biorientation, but how this coordination is mechanistically achieved remains unclear. Kinetochores, the megadalton complexes linking chromosomes to spindle microtubules, contribute to SAC signaling. However, whether they act solely as docking platforms or actively promote the co-orientation of SAC catalysts such as MAD1:MAD2 and BUB1:BUB3 remains unresolved. Here, we reconstitute kinetochores and SAC signaling in vitro to address this question. We engineer recombinant kinetochore particles that recruit core SAC components and trigger checkpoint signaling upon Rapamycin induction, and test their function using a panel of targeted mutants. At approximately physiological concentrations of SAC proteins, kinetochores are essential for efficient mitotic checkpoint complex (MCC) assembly, the key effector of SAC signaling. Our results suggest that kinetochores serve not only as structural hubs but also as catalytic platforms that concentrate and spatially organize SAC components to accelerate MCC formation and ensure timely checkpoint activation.
Collapse
Affiliation(s)
- Suruchi Sethi
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Eradigm Consulting, 6-7 St Cross St, London, EC1N 8UB, UK
| | - Sabrina Ghetti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Teresa Benedetta Guerriere
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Institute of Human Genetics, Center of Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch Str. 21 50931, Cologne, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Piano V. Multitasking Proteins: Exploring Noncanonical Functions of Proteins during Mitosis. Biochemistry 2025; 64:2123-2137. [PMID: 40315343 DOI: 10.1021/acs.biochem.5c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
This review provides a comprehensive overview of how mitotic cells drive the repurposing of proteins to fulfill mitosis-specific functions. To ensure the successful completion of cell division, the cell strategically reallocates its "workforce" by assigning additional functions to available proteins. Protein repurposing occurs at multiple levels of cellular organization and involves diverse mechanisms. At the protein level, proteins may gain mitosis-specific functions through post-translational modifications. At the structural level, proteins that typically maintain cellular architecture in interphase are co-opted to participate in mitotic spindle formation, chromosome condensation, and kinetochore assembly. Furthermore, the dynamic reorganization of the nuclear envelope and other organelles relies on the temporary reassignment of enzymes, structural proteins, and motor proteins to facilitate these changes. These adaptive mechanisms underscore the remarkable versatility of the cellular proteome in responding to the stringent requirements of mitosis. By leveraging the existing proteome for dual or multiple specialized roles, cells optimize resource usage while maintaining the precision needed to preserve genomic integrity and ensure the survival of the next generation of cells.
Collapse
Affiliation(s)
- Valentina Piano
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
4
|
Langeoire A, Kem-Seng A, Cladière D, Wassmann K, Buffin E. Prolonged metaphase II arrest weakens Aurora B/C-dependent error correction in mouse oocytes. Curr Biol 2025; 35:2019-2031.e4. [PMID: 40215962 DOI: 10.1016/j.cub.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 02/10/2025] [Accepted: 03/14/2025] [Indexed: 05/08/2025]
Abstract
Chromosome segregation during meiosis is highly error-prone in mammalian oocytes. The mechanisms controlling chromosome attachments and the spindle assembly checkpoint (SAC) have been extensively studied in meiosis I, but our knowledge of these mechanisms during meiosis II is rather limited. Although mammalian oocytes arrest in metaphase II for an extended period awaiting fertilization, some misattached chromosomes may persist. This suggests that the mechanism correcting misattachments is not fully functional during the arrest. In this study, we investigated whether low inter-kinetochore tension, which characterizes incorrect attachments, can be detected by Aurora B/C-dependent error correction in meiosis II. We found that low tension, induced by low dose of STLC in early metaphase II, does indeed mediate microtubule detachment by Aurora B/C and, consequently, anaphase II delay through SAC activation. Surprisingly, we also found that, during prolonged metaphase II arrest, Aurora B/C activity is no longer sufficient to detach low-tension attachments, correlating with high accumulation of PP2A at kinetochores. As a result, the SAC is not activated, and sister chromatids segregate in anaphase II without delay even in the presence of low tension. Hence, during the prolonged metaphase II arrest to await fertilization, oocytes become unable to discriminate between correct and incorrect attachments and may allow errors to persist.
Collapse
Affiliation(s)
- Antoine Langeoire
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Alison Kem-Seng
- Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Damien Cladière
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France
| | - Katja Wassmann
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France.
| | - Eulalie Buffin
- Université Paris Cité, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France; Sorbonne Université, Institut de Biologie Paris Seine, 9 quai St. Bernard, 75252 Paris, France; CNRS UMR7622, Developmental Biology Lab, Sorbonne Université, 9 quai St. Bernard, 75252 Paris, France.
| |
Collapse
|
5
|
Hao Q, Zhao W, Li Z, Lai Y, Wang Y, Yang Q, Zhang L. Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy. Eur J Med Chem 2025; 289:117465. [PMID: 40037064 DOI: 10.1016/j.ejmech.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Cyclin-dependent kinases (CDKs) are pivotal regulators of the cell cycle and transcriptional machinery, making them attractive targets for cancer therapy. While CDK inhibitors have demonstrated promising clinical outcomes, they also face challenges in enhancing efficacy, particularly in overcoming drug resistance. Combination therapies have emerged as a key strategy to augment the effectiveness of CDK inhibitors when used alongside other kinase inhibitors or non-kinase-targeted agents. Dual-target inhibitors that simultaneously inhibit CDKs and other oncogenic drivers are gaining attention, offering novel avenues to optimize cancer therapy. Based on the structural characterization and biological functions of CDKs, this review comprehensively examines the structure-activity relationship (SAR) of existing dual-target CDK inhibitors from a drug design perspective. We also thoroughly investigate the preclinical studies and clinical translational potential of combination therapies and dual-target inhibitors. Tailoring CDK inhibitors to specific cancer subtypes and therapeutic settings will inspire innovative approaches for the next generation of CDK-related therapies, ultimately improving patient survival.
Collapse
Affiliation(s)
- Qi Hao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenzhe Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianqian Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
6
|
Akter M, Lyu X, Lu J, Wang X, Phonesavanh T, Wang H, Yu H, Kang J. Role of noncanonical histone H2A variant, H2A.Z, to maintain proper centromeric transcription and chromosome segregation. J Biol Chem 2025; 301:108464. [PMID: 40157539 PMCID: PMC12051535 DOI: 10.1016/j.jbc.2025.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
The genome stability of eukaryotic cells is ensured by proper regulation of histones and their variants. H2A.Z, a conserved and essential histone H2A variant, plays a crucial role in this process by regulating various chromatin-related processes such as gene expression, heterochromatin formation, DNA damage repair, and chromosome segregation. It has two isoforms, H2A.Z1 and H2A.Z2, also known as H2AFZ and H2AFV, respectively, which perform both redundant and nonredundant roles in maintaining genome stability. In this study, we investigated the isoform-specific mitotic functions of H2A.Z in HeLa cells. Our studies revealed that the depletion of H2AFV or H2AFZ did not alter the overall cell cycle profile. However, H2AFV depletion significantly increased the formation of micronuclei, indicating defects in chromosome segregation. Additionally, H2AFV depletion led to the accumulation of DNA damage at various nuclear loci including centromeres. Interestingly, we discovered that H2AFV depletion significantly increased centromeric transcription, which may interfere with proper centromere function. Furthermore, we discovered that a mitotic kinase, Aurora B, binds to both H2AFV and H2AFZ, but preferentially to H2AFV. Inhibition of Aurora B activity by hesperadin disrupted proper centromeric transcription but not significantly centromeric localization of H2A.Z. Collectively, these data demonstrated that the H2A.Z isoforms play distinctive regulatory roles in maintaining proper centromeric transcription and DNA repair, ensuring accurate chromosome segregation.
Collapse
Affiliation(s)
- Mahmuda Akter
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Xiaoai Lyu
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Jiaxing Lu
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Xiao Wang
- Arts and Science, New York University at Shanghai, Shanghai, China
| | | | - Hao Wang
- Arts and Science, New York University at Shanghai, Shanghai, China
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jungseog Kang
- Arts and Science, New York University at Shanghai, Shanghai, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.
| |
Collapse
|
7
|
Lima I, Borges F, Pombinho A, Chavarria D. The spindle assembly checkpoint: Molecular mechanisms and kinase-targeted drug discovery. Drug Discov Today 2025; 30:104355. [PMID: 40216293 DOI: 10.1016/j.drudis.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism required for the fidelity of chromosome segregation, ensuring that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. In cancer cells, SAC inactivation leads to aneuploidy beyond the cell's adaptation, culminating in cell death. This review provides a concise overview of the SAC signaling process and properties. Recent drug discovery strategies to selectively target kinases, particularly Aurora B and monopolar spindle kinase (MPS1), aimed at developing innovative anticancer agents able to override SAC are also presented.
Collapse
Affiliation(s)
- Inês Lima
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - António Pombinho
- i3S, Institute for Research and Innovation in Health, University of Porto 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, University of Porto 4200-135 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
8
|
Eykelenboom JK, Gierliński M, Yue Z, Tanaka TU. Nuclear exclusion of condensin I in prophase coordinates mitotic chromosome reorganization to ensure complete sister chromatid resolution. Curr Biol 2025; 35:1562-1575.e7. [PMID: 40107266 DOI: 10.1016/j.cub.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
During early mitosis, chromosomes transition from their unfolded interphase state to the distinct rod-shaped structures characteristic of mitosis. This process allows correct segregation of replicated sister chromatids to the opposite spindle poles during anaphase. Two protein complexes, named condensin I and condensin II, facilitate mitotic chromosome organization. Condensin II is important for achieving sister chromatid separation (resolution), while condensin I is required for chromosome condensation (folding). Although sister chromatid resolution occurs earlier than chromosome folding, it is not yet clear how these events are coordinated through time or whether this is important for correct chromosome segregation. In this study, we tested the hypothesis that temporal control is achieved through differential localization of the two condensin complexes; i.e., while condensin II localizes in the nucleus, condensin I is excluded from the nucleus in interphase and prophase. We engineered the localization of condensin I to the nucleus and monitored sister chromatid resolution and chromosome folding by real-time imaging. We found that localization of condensin I to the nucleus led to precocious chromosome folding during prophase, with similar timing to sister chromatid resolution. Furthermore, this change led to incomplete sister chromatid resolution in prometaphase/metaphase and frequent chromosome missegregation in anaphase, in which most missegregated chromosomes consisted of lagging chromosomes involving both sister chromatids. We conclude that, in a physiological context, the exclusion of condensin I from the nucleus during prophase delays chromosome folding and allows condensin II to complete sister chromatid resolution, which ensures correct chromosome segregation later in mitosis.
Collapse
Affiliation(s)
- John K Eykelenboom
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Marek Gierliński
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Data Analysis Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Zuojun Yue
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Tomoyuki U Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
9
|
Lama B, Park H, Saraf A, Hassebroek V, Keifenheim D, Saito-Fujita T, Saitoh N, Aksenova V, Arnaoutov A, Dasso M, Clarke DJ, Azuma Y. PICH impacts the spindle assembly checkpoint via its DNA translocase and SUMO-interaction activities. Life Sci Alliance 2025; 8:e202403140. [PMID: 39919802 PMCID: PMC11806350 DOI: 10.26508/lsa.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Either inhibiting or stabilizing SUMOylation in mitosis causes defects in chromosome segregation, suggesting that dynamic mitotic SUMOylation of proteins is critical to maintain integrity of the genome. Polo-like kinase 1-interacting checkpoint helicase (PICH), a mitotic chromatin remodeling enzyme, interacts with SUMOylated chromosomal proteins via three SUMO-interacting motifs (SIMs) to control their association with chromosomes. Using cell lines with conditional PICH depletion/PICH replacement, we revealed mitotic defects associated with compromised PICH functions toward SUMOylated chromosomal proteins. Defects in either remodeling activity or SIMs of PICH delayed mitotic progression caused by activation of the spindle assembly checkpoint (SAC) indicated by extended duration of Mad1 foci at centromeres. Proteomics analysis of chromosomal SUMOylated proteins whose abundance is controlled by PICH activity identified candidate proteins to explain the SAC activation phenotype. Among the identified candidates, Bub1 kinetochore abundance is increased upon loss of PICH. Our results demonstrated a novel relationship between PICH and the SAC, where PICH directly or indirectly affects Bub1 association at the kinetochore and impacts SAC activity to control mitosis.
Collapse
Affiliation(s)
- Bunu Lama
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Anita Saraf
- Mass Spectrometry and Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS, USA
| | - Victoria Hassebroek
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Tomoko Saito-Fujita
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Duncan J Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
10
|
Reza MH, Aggarwal R, Verma J, Podh NK, Chowdhury R, Mehta G, Manjithaya R, Sanyal K. Autophagy-related protein Atg11 is essential for microtubule-mediated chromosome segregation. PLoS Biol 2025; 23:e3003069. [PMID: 40173187 PMCID: PMC11984983 DOI: 10.1371/journal.pbio.3003069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 04/10/2025] [Accepted: 02/13/2025] [Indexed: 04/04/2025] Open
Abstract
Emerging studies hint at the roles of autophagy-related proteins in various cellular processes. To understand if autophagy-related proteins influence genome stability, we sought to examine a cohort of 35 autophagy mutants in Saccharomyces cerevisiae. We observe cells lacking Atg11 show poor mitotic stability of minichromosomes. Single-molecule tracking assays and live cell microscopy reveal that Atg11 molecules dynamically localize to the spindle pole bodies (SPBs) in a microtubule (MT)-dependent manner. Loss of Atg11 leads to a delayed cell cycle progression. Such cells accumulate at metaphase at an elevated temperature that is relieved when the spindle assembly checkpoint (SAC) is inactivated. Indeed, atg11∆ cells have stabilized securin levels, that prevent anaphase onset. Ipl1-mediated activation of SAC also confirms that atg11∆ mutants are defective in chromosome biorientation. Atg11 functions in the Kar9-dependent spindle positioning pathway. Stabilized Clb4 levels in atg11∆ cells suggest that Atg11 maintains Kar9 asymmetry by facilitating proper dynamic instability of astral microtubules (aMTs). Loss of Spc72 asymmetry contributes to non-random SPB inheritance in atg11∆ cells. Overall, this study uncovers an essential non-canonical role of Atg11 in the MT-mediated process of chromosome segregation.
Collapse
Affiliation(s)
- Md. Hashim Reza
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Jigyasa Verma
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
| | - Nitesh Kumar Podh
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Gunjan Mehta
- Laboratory of Chromosome Dynamics and Gene Regulation, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Kirsch-Volders M, Mišík M, Fenech M. Tetraploidy in normal tissues and diseases: mechanisms and consequences. Chromosoma 2025; 134:3. [PMID: 40117022 PMCID: PMC11928420 DOI: 10.1007/s00412-025-00829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Tetraploidisation plays a crucial role in evolution, development, stress adaptation, and disease, but its beneficial or pathological effects in different tissues remain unclear. This study aims to compare physiological and unphysiological tetraploidy in eight steps: 1) mechanisms of diploidy-to-tetraploidy transition, 2) induction and elimination of unphysiological tetraploidy, 3) tetraploid cell characteristics, 4) stress-induced unphysiological tetraploidy, 5) comparison of physiological vs. unphysiological tetraploidy, 6) consequences of unphysiological stress-induced tetraploidy, 7) nutritional or pharmacological prevention strategies of tetraploidisation, and 8) knowledge gaps and future perspectives. Unphysiological tetraploidy is an adaptive stress response at a given threshold, often involving mitotic slippage. If tetraploid cells evade elimination through apoptosis or immune surveillance, they may re-enter the cell cycle, causing genetic instability, micronuclei formation, aneuploidy, modification of the epigenome and the development of diseases. The potential contributions of unphysiological tetraploidy to neurodegenerative, cardiovascular and diabetes related diseases are summarized in schematic figures and contrasted with its role in cancer development. The mechanisms responsible for the transition from physiological to unphysiological tetraploidy and the tolerance to tetraploidisation in unphysiological tetraploidy are not fully understood. Understanding these mechanisms is of critical importance to allow the development of targeted nutritional and pharmacological prevention strategies and therapies.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia
| |
Collapse
|
12
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
13
|
Lane KA, Harrod A, Wu L, Roumeliotis TI, Feng H, Foo S, Begg KAG, Schiavoni F, Amin N, Zenke FT, Melcher AA, Choudhary JS, Downs JA. PBRM1 directs PBAF to pericentromeres and protects centromere integrity. Nat Commun 2025; 16:1980. [PMID: 40011561 PMCID: PMC11865495 DOI: 10.1038/s41467-025-57277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
The specialised structure of the centromere is critical for effective chromosome segregation, but its repetitive nature makes it vulnerable to rearrangements. Centromere fragility can drive tumorigenesis, but protective mechanisms preventing fragility are still not fully understood. The PBAF chromatin remodelling complex is frequently misregulated in cancer, but its role in cancer is incompletely characterized. Here, we identify PBAF as a protector of centromere and pericentromere structure with profound consequences for genome stability. A conserved feature of isogenic cell lines lacking PBRM1, a subunit of PBAF, is compromised centromere and pericentromere integrity. PBAF is present at these regions, and binding patterns of PBAF and H3K9 methylation change when PBRM1 is absent. PBRM1 loss creates a dependence on the spindle assembly checkpoint, which represents a therapeutic vulnerability. Importantly, we find that even in the absence of any perturbations, PBRM1 loss leads to centromere fragility, thus identifying a key player in centromere protection.
Collapse
Affiliation(s)
- Karen A Lane
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Alison Harrod
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Lillian Wu
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Theodoros I Roumeliotis
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Hugang Feng
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
- The Francis Crick Institute; London, London, UK
| | - Shane Foo
- Division of Radiotherapy and Imaging, The Institute of Cancer Research; London, London, UK
| | - Katheryn A G Begg
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Federica Schiavoni
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Noa Amin
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Alan A Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research; London, London, UK
| | - Jyoti S Choudhary
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Jessica A Downs
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK.
| |
Collapse
|
14
|
Macaluso F, Bos T, Chiroli E, Bonaiuti P, Apuan JC, Gross F, Pompei S, Rice LM, Ciliberto A. Evolutionary adaptation to hyperstable microtubules selectively targets tubulins and is empowered by the spindle assembly checkpoint. Cell Rep 2025; 44:115323. [PMID: 39955777 DOI: 10.1016/j.celrep.2025.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Microtubules are polymers required for chromosome segregation. Their drug-induced hyperstabilization impairs chromosome segregation and is an established anti-cancer therapy. How cells respond to microtubule hyperstabilization, however, is incompletely understood. To study this, we evolved budding yeast cells expressing a microtubule-hyperstabilizing tubulin mutant and isolated adapted strains. Aneuploidy of specific chromosomes carrying the microtubule regulators STU2 and VIK1/KAR3 was the first observable adaptation. In the longer run, aneuploidies were outcompeted by mutations in α- or β-tubulin, partially overlapping with mutations in cancer patients. Thus, compensation of microtubule hyperstabilization follows a restrained and reproducible path where new mutations combine with the original offending mutation on the same carrier. While partly compensatory, several mutations failed to re-establish fully normal microtubule dynamics. Sustained growth relied on the mitotic checkpoint, indicating that extended mitotic timing limits the genomic instability caused by reduced microtubule dynamics. Our results predict a potential vulnerability of cells resistant to microtubule-hyperstabilizing agents.
Collapse
Affiliation(s)
- Francesca Macaluso
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tasia Bos
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elena Chiroli
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paolo Bonaiuti
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Jason C Apuan
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fridolin Gross
- ImmunoConcEpT, CNRS UMR5164, Université de Bordeaux, 33076 Bordeaux, France
| | - Simone Pompei
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrea Ciliberto
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary.
| |
Collapse
|
15
|
He Y, Tang X, Fu H, Tang Y, Lin H, Deng X. Arabidopsis KNL1 recruits type one protein phosphatase to kinetochores to silence the spindle assembly checkpoint. SCIENCE ADVANCES 2025; 11:eadq4033. [PMID: 39908360 PMCID: PMC11797493 DOI: 10.1126/sciadv.adq4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Proper chromosome segregation during cell division is essential for genomic integrity and organismal development. This process is monitored by the spindle assembly checkpoint (SAC), which delays anaphase onset until all chromosomes are properly attached to the mitotic spindle. The kinetochore protein KNL1 plays a critical role in recruiting SAC proteins. Here, we reveal that Arabidopsis KNL1 regulates SAC silencing through the direct recruitment of type one protein phosphatase (TOPP) to kinetochores. We show that KNL1 interacts with all nine TOPPs via a conserved RVSF motif in its N terminus, and this interaction is required for the proper localization of TOPPs to kinetochores during mitosis. Disrupting KNL1-TOPP interaction leads to persistent SAC activation, resulting in a severe metaphase arrest and defects in plant growth and development. Our findings highlight the evolutionary conservation of KNL1 in coordinating kinetochore-localized phosphatase to ensure timely SAC silencing and faithful chromosome segregation in Arabidopsis.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Gadgil P, Ballew O, Sullivan TJ, Lacefield S. Aneuploidy of specific chromosomes is beneficial to cells lacking spindle checkpoint protein Bub3. PLoS Genet 2025; 21:e1011576. [PMID: 39903784 PMCID: PMC11819610 DOI: 10.1371/journal.pgen.1011576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the gain of specific genes through aneuploidy may provide a survival advantage to strains with poor chromosome segregation fidelity.
Collapse
Affiliation(s)
- Pallavi Gadgil
- Department of Biochemistry and Cell Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Olivia Ballew
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, United States of America
| |
Collapse
|
17
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
18
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
19
|
Kozgunova E. Recent advances in plant kinetochore research. Front Cell Dev Biol 2025; 12:1510019. [PMID: 39911184 PMCID: PMC11794483 DOI: 10.3389/fcell.2024.1510019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Faithful chromosome segregation is crucial for cell division in eukaryotes, facilitated by the kinetochore, a multi-subunit protein complex that connects chromosomes to the spindle microtubules. Recent research has significantly advanced our understanding of kinetochore function in plants, including surprising findings about spindle assembly checkpoint, the composition of the inner kinetochore and unique kinetochore arrangement in holocentric Cuscuta species. Additionally, some kinetochore proteins in plants have been implicated in roles beyond chromosome segregation, such as cytokinesis regulation and involvement in developmental processes. This review summarizes recent insights into plant kinetochore biology, compares plant kinetochores with those of animals and fungi, and highlights key open questions and potential future directions in the field.
Collapse
Affiliation(s)
- Elena Kozgunova
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Perra M, Castangia I, Aroffu M, Fulgheri F, Abi-Rached R, Manca ML, Cortés H, Del Prado-Audelo ML, Nomura-Contreras C, Romero-Montero A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J, Calina D. Maytansinoids in cancer therapy: advancements in antibody-drug conjugates and nanotechnology-enhanced drug delivery systems. Discov Oncol 2025; 16:73. [PMID: 39838217 PMCID: PMC11751265 DOI: 10.1007/s12672-025-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.
Collapse
Affiliation(s)
- Matteo Perra
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Ines Castangia
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Matteo Aroffu
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Federica Fulgheri
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Rita Abi-Rached
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy
| | - Maria Letizia Manca
- DISVA-Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. DeMonserrato-Sestu Km 0.700, 09042 CA, Monserrato, Italy.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | | | | | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
21
|
Maggs LR, McVey M. REV7: a small but mighty regulator of genome maintenance and cancer development. Front Oncol 2025; 14:1516165. [PMID: 39839778 PMCID: PMC11747621 DOI: 10.3389/fonc.2024.1516165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator. Additionally, REV7 supports genome integrity by directing double-strand break repair pathway choice as part of the recently characterized mammalian shieldin complex. Given that genome instability is a hallmark of cancer, it is unsurprising that REV7, with its numerous genome maintenance roles, is implicated in multiple malignancies, including ovarian cancer, glioma, breast cancer, malignant melanoma, and small-cell lung cancer. Moreover, high REV7 expression is associated with poor prognoses and treatment resistance in these and other cancers. Promisingly, early studies indicate that REV7 suppression enhances sensitivity to chemotherapeutics, including cisplatin. This review aims to provide a comprehensive overview of REV7's myriad roles in genome maintenance and other functions as well as offer an updated summary of its connections to cancer and treatment resistance.
Collapse
Affiliation(s)
- Lara R. Maggs
- Department of Biology, Tufts University, Medford, MA, United States
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, United States
| |
Collapse
|
22
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. PLoS Genet 2025; 21:e1011400. [PMID: 39879252 PMCID: PMC11809923 DOI: 10.1371/journal.pgen.1011400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/10/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes do not induce increased SAC protein localization. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is not functional. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal from kinetochores and movement towards spindle poles, termed "streaming," is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that Spindly is required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G. Shapiro
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N. Joshi
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
23
|
Huda M, Caydasi AK. Determination of Anaphase Duration by Time-Lapse Microscopy in Budding Yeast. Methods Mol Biol 2025; 2874:61-75. [PMID: 39614047 DOI: 10.1007/978-1-0716-4236-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Time-lapse microscopy is a valuable, widely employed technique for investigating cell cycle dynamics. This chapter will guide you in using this tool to determine the duration of anaphase as a measure of mitotic exit kinetics in budding yeast cells. The methodology explained here is based on monitoring the mitotic spindle and provides a comprehensive guide covering all aspects, from sample preparation and microscopy to data analysis.
Collapse
Affiliation(s)
- Mariam Huda
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
| |
Collapse
|
24
|
Gorji R, Borjian-Boroujeni P, Bazrgar M. Pathogenic variants of BUB1 and BUBR1 genes are not prioritized in screening tests of couples with aborted aneuploid fetuses. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:143-147. [PMID: 40028477 PMCID: PMC11865931 DOI: 10.22099/mbrc.2024.51170.2037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chromosome aberrations certainly aneuploidie are the cause of the majority of spontaneous abortions in humans. BUB1 (budding uninhibited by benzimidazole 1) and BUBR1 (BUB1 mitotic checkpoint serine/threonine kinase B) are two key proteins mediating spindle-checkpoint activation that play a role in the inhibition of the anaphase-promoting complex/ cyclosome (APC/C), delaying the onset of anaphase and ensuring proper chromosome segregation. This study aimed to evaluate the probable roles of BUB1 and BUBR1 pathogenic variants in abortion of the fetuses with aneuploidy. Fifty aborted fetuses with approved aneuploidy using array comparative genomic hybridization (aCGH) were included. BUB1 and BUBR1 genes were studied using the Sanger sequencing for the single nucleotide variant (SNV) detection, certainly rs121909055 and rs28989185 as the pathogenic target variants. The sequencing results were analyzed by finch TV software.Neither homozygous nor heterozygous variant of the targeted SNVs was observed in the samples. No other SNV was detectable in the analyzed parts of the BUB1 and BUBR1 genes in all samples. Since the allele frequencies of the variants of interest were zero in 50 studied samples, these SNVs would not be prioritized for screening in the parents with a history of miscarriage due to aneuploidy.
Collapse
Affiliation(s)
- Raziyeh Gorji
- Department of Molecular Genetics, Faculty of Basic Sciences and advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parnaz Borjian-Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Mayah A, Arenas RB, Bastida A, Bolanos-Garcia VM. The Use of APC/C Antagonists to Promote Mitotic Catastrophe in Cancer Cells. Methods Mol Biol 2025; 2874:207-213. [PMID: 39614058 DOI: 10.1007/978-1-0716-4236-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The multiprotein subunit E3 ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) plays a key role in the control of mitosis progression. APC/C is the ultimate effector of the Spindle Assembly Checkpoint (SAC), the signaling system of higher organisms including the human that monitors the proper attachment of chromosomes to microtubules during cell division. Defects in this process result in genome instability, aneuploidy, premature aging, and cancer. APC/C roles in the SAC require its activation by the protein Cdc20. Interfering with APC/C activation by Cdc20 impairs APC/C substrate recognition, resulting in a delayed mitotic exit and eventually inducing cell death. This may be advantageous for the treatment of cancer and malignancies associated with SAC dysregulation. Here we describe a protocol to interfere with mitotic exit through the use of commercially available (Apcin, proTAME) as well as innovative small molecules we have developed that function as antagonists of APC/C activation by Cdc20. We show that the use of these molecules alone and in combination is effective to promote mitotic catastrophe and suppress cell expansion in 2D and 3D (spheroids) cancer cells of different tissue origin, including breast, cervical, and ovarian cancer.
Collapse
Affiliation(s)
- Ammar Mayah
- Oxford Target Therapeutics (OTT), Bioinnovation Hub, Oxford, UK
| | | | - Agatha Bastida
- Departamento de Química Bio-orgánica, IQOG, Madrid, Spain.
| | - Victor M Bolanos-Garcia
- Oxford Target Therapeutics (OTT), Bioinnovation Hub, Oxford, UK.
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
26
|
Polisetty SD, Bhat K, Das K, Clark I, Hardwick KG, Sanyal K. The dependence of shugoshin on Bub1-kinase activity is dispensable for the maintenance of spindle assembly checkpoint response in Cryptococcus neoformans. PLoS Genet 2025; 21:e1011552. [PMID: 39804939 PMCID: PMC11774493 DOI: 10.1371/journal.pgen.1011552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/28/2025] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans. Sgo1 maintains optimum levels of Aurora B kinase Ipl1 and protein phosphatase 1 (PP1) at kinetochores. The absence of Sgo1 results in the loss of Aurora BIpl1 with a concomitant increase in PP1 levels at kinetochores. This leads to a premature reduction in the kinetochore-bound Bub1 levels and early termination of the SAC signals. Intriguingly, the kinase function of Bub1 is dispensable for shugoshin's subcellular localization. Sgo1 is predominantly localized to spindle pole bodies (SPBs) and along the mitotic spindle with a minor pool at kinetochores. In the absence of proper kinetochore-microtubule attachments, Sgo1 reinforces the Aurora B kinaseIpl1-PP1 phosphatase balance, which is critical for prolonged maintenance of the SAC response.
Collapse
Affiliation(s)
- Satya Dev Polisetty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Krishna Bhat
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ivan Clark
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin G. Hardwick
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
27
|
Bolanos-Garcia VM. Production of SAC Proteins in a Baculovirus-Based Heterologous Gene Expression System. Methods Mol Biol 2025; 2874:33-45. [PMID: 39614045 DOI: 10.1007/978-1-0716-4236-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The overproduction of certain protein components of the Spindle Assembly Checkpoint (SAC) such as human BUB3, CDH1, and CDC20 either in isolation or associated with other proteins in prokaryotic heterologue gene expression systems remains a technical challenge. Recent advances in virus engineering methods and the development of genetically modified insect cells have been exploited to overproduce these SAC proteins as natively folded, functional molecules. One widely used baculovirus-based expression system is flashBac, which exhibits several advantages over other insect cells-based expression systems such as the straightforward production of recombinant baculoviruses through homologous recombination and the positive selection of recombinant clones.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
28
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
30
|
Mohd Amin AS, Eastwood S, Pilcher C, Truong JQ, Foitzik R, Boag J, Gorringe KL, Holien JK. KIF18A inhibition: the next big player in the search for cancer therapeutics. Cancer Metastasis Rev 2024; 44:3. [PMID: 39580563 DOI: 10.1007/s10555-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024]
Abstract
Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression. Although preclinical studies have demonstrated that KIF18A is not essential for normal somatic cell division, it appears to be crucial for the survival and division of cancer cells, particularly those exhibiting chromosomal instability. This dependency makes KIF18A a promising target for developing new therapeutic strategies aimed at treating chromosomally unstable cancers. This review delves into the structural and functional aspects of KIF18A, and its role in cancer development, and evaluates current and emerging approaches to targeting KIF18A with innovative cancer treatments.
Collapse
Affiliation(s)
| | - Sarah Eastwood
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Courtney Pilcher
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Jia Q Truong
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia
| | - Richard Foitzik
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Inosi Therapeutics Pty Ltd, 655 Elizabeth St, Melbourne, VIC, 3000, Australia
| | - Joanne Boag
- Oncology One Pty Ltd, 305 Grattan St, Melbourne, VIC, 3000, Australia
- The Walter and Eliza Hall Institute of Medical Research, 4 Research Avenue, Bundoora, VIC, 3083, Australia
- Ternarx Pty Ltd, 4 Research Avenue, Bundoora, VIC, 3083, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
- Department of Oncology, Sir Peter MacCallum, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia
| | - Jessica K Holien
- STEM College, RMIT University, 225-245 Plenty Rd, Bundoora, VIC, 3083, Australia.
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Grattan St, Parkville, VIC, 3010, Australia.
- St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3052, Australia.
| |
Collapse
|
31
|
Chen YC, Takada M, Nagornyuk A, Muhan W, Yamada H, Nagashima T, Ohtsuka M, DeLuca JG, Markus S, Takaku M, Suzuki A. Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621816. [PMID: 39574707 PMCID: PMC11580888 DOI: 10.1101/2024.11.04.621816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Microtubule-targeting agents (MTAs) have been successfully translated from basic research into clinical therapies and have been widely used as first- and second-line chemotherapy drugs for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. In this study, we demonstrate that inhibition of the p38-MK2 (MAP kinase-activated protein kinase 2) pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus-end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed RPE1 cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of sub-clinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- These authors contributed equally
| | - Aerica Nagornyuk
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Wu Muhan
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Lara-Gonzalez P, Variyar S, Moghareh S, Nguyen ACN, Kizhedathu A, Budrewicz J, Schlientz A, Varshney N, Bellaart A, Oegema K, Bardwell L, Desai A. Cyclin B3 is a dominant fast-acting cyclin that drives rapid early embryonic mitoses. J Cell Biol 2024; 223:e202308034. [PMID: 39105756 PMCID: PMC11303871 DOI: 10.1083/jcb.202308034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Mitosis in early embryos often proceeds at a rapid pace, but how this pace is achieved is not understood. Here, we show that cyclin B3 is the dominant driver of rapid embryonic mitoses in the C. elegans embryo. Cyclins B1 and B2 support slow mitosis (NEBD to anaphase ∼600 s), but the presence of cyclin B3 dominantly drives the approximately threefold faster mitosis observed in wildtype. Multiple mitotic events are slowed down in cyclin B1 and B2-driven mitosis, and cyclin B3-associated Cdk1 H1 kinase activity is ∼25-fold more active than cyclin B1-associated Cdk1. Addition of cyclin B1 to fast cyclin B3-only mitosis introduces an ∼60-s delay between completion of chromosome alignment and anaphase onset; this delay, which is important for segregation fidelity, is dependent on inhibitory phosphorylation of the anaphase activator Cdc20. Thus, cyclin B3 dominance, coupled to a cyclin B1-dependent delay that acts via Cdc20 phosphorylation, sets the rapid pace and ensures mitotic fidelity in the early C. elegans embryo.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Smriti Variyar
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Shabnam Moghareh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Anh Cao Ngoc Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Amrutha Kizhedathu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Aleesa Schlientz
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Neha Varshney
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Andrew Bellaart
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
33
|
Coats JT, Li S, Tanaka TU, Tauro S, Sutherland C, Saurin AT. Elraglusib Induces Cytotoxicity via Direct Microtubule Destabilization Independently of GSK3 Inhibition. CANCER RESEARCH COMMUNICATIONS 2024; 4:3013-3024. [PMID: 39470360 PMCID: PMC11586712 DOI: 10.1158/2767-9764.crc-24-0408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
SIGNIFICANCE Elraglusib was designed as a GSK3 inhibitor and is currently in clinical trials for several cancers. We show conclusively that the target of elraglusib that leads to cytotoxicity is MTs and not GSK3. This has significant implications for ongoing clinical trials of the compound and will help in understanding off-target side effects, inform future clinical trial design, and facilitate the development of biomarkers to predict response.
Collapse
Affiliation(s)
- Josh T. Coats
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Shuyu Li
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tomoyuki U. Tanaka
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sudhir Tauro
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Calum Sutherland
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adrian T. Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
Valles SY, Bural S, Godek KM, Compton DA. Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression. Mol Biol Cell 2024; 35:ar141. [PMID: 39356777 PMCID: PMC11617097 DOI: 10.1091/mbc.e23-12-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
Collapse
Affiliation(s)
- Sarah Y. Valles
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Shrea Bural
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Kristina M. Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Duane A. Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| |
Collapse
|
35
|
Tang X, He Y, Tang Y, Chen K, Lin H, Liu B, Deng X. A kinetochore-associated kinesin-7 motor cooperates with BUB3.3 to regulate mitotic chromosome congression in Arabidopsis thaliana. NATURE PLANTS 2024; 10:1724-1736. [PMID: 39414927 DOI: 10.1038/s41477-024-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Faithful genome partition during cell division relies on proper congression of chromosomes to the spindle equator before sister chromatid segregation. Here we uncover a kinesin-7 motor, kinetochore-associated kinesin 1 (KAK1), that is required for mitotic chromosome congression in Arabidopsis. KAK1 associates dynamically with kinetochores throughout mitosis. Loss of KAK1 results in severe defects in chromosome congression at metaphase, yet segregation errors at anaphase are rarely observed. KAK1 specifically interacts with the spindle assembly checkpoint protein BUB3.3 and both proteins show interdependent kinetochore localization. Chromosome misalignment in BUB3.3-depleted plants can be rescued by artificial tethering of KAK1 to kinetochores but not vice versa, demonstrating that KAK1 acts downstream of BUB3.3 to orchestrate microtubule-based chromosome transport at kinetochores. Moreover, we show that KAK1's motor activity is essential for driving chromosome congression to the metaphase plate. Thus, our findings reveal that plants have repurposed BUB3.3 to interface with a specialized kinesin adapted to integrate proper chromosome congression and checkpoint control through a distinct kinetochore design.
Collapse
Affiliation(s)
- Xiaoya Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yihang Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Keqi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
37
|
Copeland SE, Snow SM, Wan J, Matkowskyj KA, Halberg RB, Weaver BA. MAD1 upregulation sensitizes to inflammation-mediated tumor formation. PLoS Genet 2024; 20:e1011437. [PMID: 39374311 PMCID: PMC11486420 DOI: 10.1371/journal.pgen.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Mitotic Arrest Deficient 1 (gene name MAD1L1), an essential component of the mitotic spindle assembly checkpoint, is frequently overexpressed in colon cancer, which correlates with poor disease-free survival. MAD1 upregulation induces two phenotypes associated with tumor promotion in tissue culture cells-low rates of chromosomal instability (CIN) and destabilization of the tumor suppressor p53. Using CRISPR/Cas9 gene editing, we generated a novel mouse model by inserting a doxycycline (dox)-inducible promoter and HA tag into the endogenous mouse Mad1l1 gene, enabling inducible expression of HA-MAD1 following exposure to dox in the presence of the reverse tet transactivator (rtTA). A modest 2-fold overexpression of MAD1 in murine colon resulted in decreased p53 expression and increased mitotic defects consistent with CIN. After exposure to the colon-specific inflammatory agent dextran sulfate sodium (DSS), 31% of mice developed colon lesions, including a mucinous adenocarcinoma, while none formed in control animals. Lesion incidence was particularly high in male mice, 57% of which developed at least one hyperplastic polyp, adenoma or adenocarcinoma in the colon. Notably, mice expressing HA-MAD1 also developed lesions in tissues in which DSS is not expected to induce inflammation. These findings demonstrate that MAD1 upregulation is sufficient to promote colon tumorigenesis in the context of inflammation in immune-competent mice.
Collapse
Affiliation(s)
- Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Santina M. Snow
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
38
|
Cirillo L, Young R, Veerapathiran S, Roberti A, Martin M, Abubacar A, Perosa C, Coates C, Muhammad R, Roumeliotis TI, Choudhary JS, Alfieri C, Pines J. Spatial control of the APC/C ensures the rapid degradation of cyclin B1. EMBO J 2024; 43:4324-4355. [PMID: 39143240 PMCID: PMC11445581 DOI: 10.1038/s44318-024-00194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
The proper control of mitosis depends on the ubiquitin-mediated degradation of the right mitotic regulator at the right time. This is effected by the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase that is regulated by the Spindle Assembly Checkpoint (SAC). The SAC prevents the APC/C from recognising Cyclin B1, the essential anaphase and cytokinesis inhibitor, until all chromosomes are attached to the spindle. Once chromosomes are attached, Cyclin B1 is rapidly degraded to enable chromosome segregation and cytokinesis. We have a good understanding of how the SAC inhibits the APC/C, but relatively little is known about how the APC/C recognises Cyclin B1 as soon as the SAC is turned off. Here, by combining live-cell imaging, in vitro reconstitution biochemistry, and structural analysis by cryo-electron microscopy, we provide evidence that the rapid recognition of Cyclin B1 in metaphase requires spatial regulation of the APC/C. Using fluorescence cross-correlation spectroscopy, we find that Cyclin B1 and the APC/C primarily interact at the mitotic apparatus. We show that this is because Cyclin B1, like the APC/C, binds to nucleosomes, and identify an 'arginine-anchor' in the N-terminus as necessary and sufficient for binding to the nucleosome. Mutating the arginine anchor on Cyclin B1 reduces its interaction with the APC/C and delays its degradation: cells with the mutant, non-nucleosome-binding Cyclin B1 become aneuploid, demonstrating the physiological relevance of our findings. Together, our data demonstrate that mitotic chromosomes promote the efficient interaction between Cyclin B1 and the APC/C to ensure the timely degradation of Cyclin B1 and genomic stability.
Collapse
Affiliation(s)
- Luca Cirillo
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Rose Young
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | | | - Annalisa Roberti
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Molly Martin
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Azzah Abubacar
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Camilla Perosa
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Catherine Coates
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Reyhan Muhammad
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Jyoti S Choudhary
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Claudio Alfieri
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| | - Jonathon Pines
- The Institute of Cancer Research Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
39
|
Gadgil P, Ballew O, Sullivan TJ, Lacefield S. Aneuploidy of Specific Chromosomes is Beneficial to Cells Lacking Spindle Checkpoint Protein Bub3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610809. [PMID: 39282354 PMCID: PMC11398392 DOI: 10.1101/2024.09.02.610809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the upregulation of specific genes through aneuploidy may provide a survival and growth advantage to strains with poor chromosome segregation fidelity.
Collapse
Affiliation(s)
- Pallavi Gadgil
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Olivia Ballew
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Soni Lacefield
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
40
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
41
|
Zanini E, Forster-Gross N, Bachmann F, Brüngger A, McSheehy P, Litherland K, Burger K, Groner AC, Roceri M, Bury L, Stieger M, Willemsen-Seegers N, de Man J, Vu-Pham D, van Riel HWE, Zaman GJR, Buijsman RC, Kellenberger L, Lane HA. Dual TTK/PLK1 inhibition has potent anticancer activity in TNBC as monotherapy and in combination. Front Oncol 2024; 14:1447807. [PMID: 39184047 PMCID: PMC11341980 DOI: 10.3389/fonc.2024.1447807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background Threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1) are common essential kinases that collaborate in activating the spindle assembly checkpoint (SAC) at the kinetochore, ensuring appropriate chromosome alignment and segregation prior to mitotic exit. Targeting of either TTK or PLK1 has been clinically evaluated in cancer patients; however, dual inhibitors have not yet been pursued. Here we present the in vitro and in vivo characterization of a first in class, dual TTK/PLK1 inhibitor (BAL0891). Methods Mechanism of action studies utilized biochemical kinase and proteomics-based target-engagement assays. Cellular end-point assays included immunoblot- and flow cytometry-based cell cycle analyses and SAC integrity evaluation using immunoprecipitation and immunofluorescence approaches. Anticancer activity was assessed in vitro using cell growth assays and efficacy was evaluated, alone and in combination with paclitaxel and carboplatin, using mouse models of triple negative breast cancer (TNBC). Results BAL0891 elicits a prolonged effect on TTK, with a transient activity on PLK1. This unique profile potentiates SAC disruption, forcing tumor cells to aberrantly exit mitosis with faster kinetics than observed with a TTK-specific inhibitor. Broad anti-proliferative activity was demonstrated across solid tumor cell lines in vitro. Moreover, intermittent intravenous single-agent BAL0891 treatment of the MDA-MB-231 mouse model of TNBC induced profound tumor regressions associated with prolonged TTK and transient PLK1 in-tumor target occupancy. Furthermore, differential tumor responses across a panel of thirteen TNBC patient-derived xenograft models indicated profound anticancer activity in a subset (~40%). Using a flexible dosing approach, pathologically confirmed cures were observed in combination with paclitaxel, whereas synergy with carboplatin was schedule dependent. Conclusions Dual TTK/PLK1 inhibition represents a novel approach for the treatment of human cancer, including TNBC patients, with a potential for potent anticancer activity and a favorable therapeutic index. Moreover, combination approaches may provide an avenue to expand responsive patient populations.
Collapse
Affiliation(s)
- Elisa Zanini
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Felix Bachmann
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Adrian Brüngger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Paul McSheehy
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Karin Burger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Anna C. Groner
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Mila Roceri
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Luc Bury
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | - Martin Stieger
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| | | | - Jos de Man
- Crossfire Oncology B.V., Oss, Netherlands
| | | | | | | | | | | | - Heidi A. Lane
- Basilea Pharmaceutica International Ltd, Allschwil, Switzerland
| |
Collapse
|
42
|
Singh S, Gleason CE, Fang M, Laimon YN, Khivansara V, Xie S, Durmaz YT, Sarkar A, Ngo K, Savla V, Li Y, Abu-Remaileh M, Li X, Tuladhar B, Odeh R, Hamkins-Indik F, He D, Membreno MW, Nosrati M, Gushwa NN, Leung SSF, Fraga-Walton B, Hernandez L, Baldomero MP, Lent BM, Spellmeyer D, Luna JF, Hoang D, Gritsenko Y, Chand M, DeMart MK, Metobo S, Bhatt C, Shapiro JA, Yang K, Dupper NJ, Bockus AT, Doench JG, Aggen JB, Liu LF, Levin B, Wang EW, Vendrell I, Fischer R, Kessler B, Gokhale PC, Signoretti S, Spektor A, Kreatsoulas C, Singh R, Earp DJ, Garcia PD, Nijhawan D, Oser MG. Cyclin A/B RxL Macrocyclic Inhibitors to Treat Cancers with High E2F Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605889. [PMID: 39211113 PMCID: PMC11360997 DOI: 10.1101/2024.08.01.605889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
Collapse
|
43
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
44
|
Houston J, Vissotsky C, Deep A, Hakozaki H, Crews E, Oegema K, Corbett KD, Lara-Gonzalez P, Kim T, Desai A. Phospho-KNL-1 recognition by a TPR domain targets the BUB-1-BUB-3 complex to C. elegans kinetochores. J Cell Biol 2024; 223:e202402036. [PMID: 38578284 PMCID: PMC10996584 DOI: 10.1083/jcb.202402036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | | | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Enice Crews
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D. Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Li X, Bruckmann A, Dresselhaus T, Begcy K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. PLANT PHYSIOLOGY 2024; 195:2111-2128. [PMID: 38366643 PMCID: PMC11213256 DOI: 10.1093/plphys/kiae087] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
For successful double fertilization in flowering plants (angiosperms), pollen tubes deliver 2 nonmotile sperm cells toward female gametes (egg and central cell, respectively). Heatwaves, especially during the reproduction period, threaten male gametophyte (pollen) development, resulting in severe yield losses. Using maize (Zea mays) as a crop and grass model system, we found strong seed set reduction when moderate heat stress was applied for 2 d during the uni- and bicellular stages of pollen development. We show that heat stress accelerates pollen development and impairs pollen germination capabilities when applied at the unicellular stage. Heat stress at the bicellular stage impairs sperm cell development and transport into pollen tubes. To understand the course of the latter defects, we used marker lines and analyzed the transcriptomes of isolated sperm cells. Heat stress affected the expression of genes associated with transcription, RNA processing and translation, DNA replication, and the cell cycle. This included the genes encoding centromeric histone 3 (CENH3) and α-tubulin. Most genes that were misregulated encode proteins involved in the transition from metaphase to anaphase during pollen mitosis II. Heat stress also activated spindle assembly check point and meta- to anaphase transition genes in sperm cells. In summary, misregulation of the identified genes during heat stress at the bicellular stage results in sperm cell development and transport defects ultimately leading to sterility.
Collapse
Affiliation(s)
- Xingli Li
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL32611, USA
| |
Collapse
|
46
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
47
|
Ballmer D, Carter W, van Hooff JJE, Tromer EC, Ishii M, Ludzia P, Akiyoshi B. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3 proteins. Open Biol 2024; 14:240025. [PMID: 38862021 PMCID: PMC11286163 DOI: 10.1098/rsob.240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.
Collapse
Affiliation(s)
- Daniel Ballmer
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - William Carter
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Jolien J. E. van Hooff
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 HB Wageningen, The Netherlands
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, UK
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
48
|
Yatskevich S, Yang J, Bellini D, Zhang Z, Barford D. Structure of the human outer kinetochore KMN network complex. Nat Struct Mol Biol 2024; 31:874-883. [PMID: 38459127 PMCID: PMC11189301 DOI: 10.1038/s41594-024-01249-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C. Here, we determined a high-resolution cryo-EM structure of the human KMN network. This showed an intricate and extensive assembly of KMN subunits, with the central MIS12C forming rigid interfaces with NDC80C and KNL1C, augmented by multiple peptidic inter-subunit connections. We also observed that unphosphorylated MIS12C exists in an auto-inhibited state that suppresses its capacity to interact with CCAN. Ser100 and Ser109 of the N-terminal segment of the MIS12C subunit Dsn1, two key targets of Aurora B kinase, directly stabilize this auto-inhibition. Our study indicates how selectively relieving this auto-inhibition through Ser100 and Ser109 phosphorylation might restrict outer kinetochore assembly to functional centromeres during cell division.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Genentech, South San Francisco, CA, USA.
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
49
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
50
|
Ly J, Xiang K, Su KC, Sissoko GB, Bartel DP, Cheeseman IM. Nuclear release of eIF1 globally increases stringency of start-codon selection to preserve mitotic arrest physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588385. [PMID: 38617206 PMCID: PMC11014515 DOI: 10.1101/2024.04.06.588385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulated start-codon selection has the potential to reshape the proteome through the differential production of uORFs, canonical proteins, and alternative translational isoforms. However, conditions under which start-codon selection is altered remain poorly defined. Here, using transcriptome-wide translation initiation site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This increased stringency of start-codon selection during mitosis results from increased interactions between the key regulator of start-codon selection, eIF1, and the 40S ribosome. We find that increased eIF1-40S ribosome interactions during mitosis are mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the changes to translational stringency during mitosis, resulting in altered mitotic proteome composition. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage following treatment with anti-mitotic chemotherapeutics. Thus, cells globally control translation initiation stringency with critical roles during the mammalian cell cycle to preserve mitotic cell physiology.
Collapse
|