1
|
Feng X, Luo Z, Zhang W, Wan R, Chen Y, Li F, He Y, Lin Z, Hui JH, Conde J, Chen S, Zhao Z, Wang X. Zn‐DHM Nanozymes Enhance Muscle Regeneration Through ROS Scavenging and Macrophage Polarization in Volumetric Muscle Loss Revealed by Single‐Cell Profiling. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202506476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Indexed: 04/23/2025]
Abstract
Abstract
Volumetric muscle loss (VML) is a severe condition in which the loss of skeletal muscle surpasses the body's intrinsic repair capabilities, leading to irreversible functional deficits and potential disability, with persistent inflammation and impaired myogenic differentiation. To address these challenges, a novel zinc‐dihydromyricetin (Zn‐DHM) nanozyme with superoxide dismutase (SOD)‐like activity is developed, designed to neutralize excessive reactive oxygen species (ROS) and restore oxidative balance. Zn‐DHM mitigates oxidative stress and promotes polarization of macrophages from the proinflammatory M1 phenotype to the anti‐inflammatory M2 phenotype, thereby reducing chronic inflammation and creating a conducive environment for muscle repair. Further, Zn‐DHM significantly enhances the myogenic differentiation of C2C12 cells, accelerating wound healing processes. These studies confirm the biosafety and low toxicity of Zn‐DHM. As per a murine tibialis anterior VML model, Zn‐DHM effectively suppresses inflammation and markedly improves skeletal muscle repair outcomes. Single‐cell RNA sequencing reveals that Zn‐DHM treatment increases the expression of M2 macrophage markers and enhances the proliferation and differentiation capacity of muscle stem cells (MuSCs). In addition, intercellular communication analysis reveals interactions between MuSCs and macrophages in the Zn‐DHM treatment group, suggesting that these interactions may drive tissue regeneration through the activation of the GAS and Notch signaling pathways.
Collapse
Affiliation(s)
- Xinting Feng
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - Wei Zhang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yisheng Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Fangqi Li
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Yanwei He
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhiheng Lin
- Department of Gynecology Longhua Hospital Shanghai University of Traditional Chinese Medicine Shanghai 200032 China
| | - James Hoipo Hui
- Department of Orthopaedic Surgery Yong Loo Lin School of Medicine National University of Singapore Singapore 119228 Singapore
| | - João Conde
- Comprehensive Health Research Centre (CHRC) NOVA Medical School Faculdade de Ciências Médicas NMS FCM Universidade NOVA de Lisboa Lisboa 1169‐056 Portugal
| | - Shiyi Chen
- Department of Sports Medicine Huashan Hospital Fudan University Shanghai 200040 China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xianwen Wang
- School of Biomedical Engineering Anhui Medical University Hefei 230032 China
| |
Collapse
|
2
|
Oishi Y, Koike H, Kumagami N, Nakagawa Y, Araki M, Taketomi Y, Miki Y, Matsuda S, Kim H, Matsuzaka T, Ozawa H, Shimano H, Murakami M, Manabe I. Macrophage SREBP1 regulates skeletal muscle regeneration. Front Immunol 2024; 14:1251784. [PMID: 38259495 PMCID: PMC10800357 DOI: 10.3389/fimmu.2023.1251784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.
Collapse
Affiliation(s)
- Yumiko Oishi
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Naoki Kumagami
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yoshimi Nakagawa
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Masaya Araki
- Division of Complex Bioscience Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Matsuda
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
3
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
4
|
Millozzi F, Papait A, Bouché M, Parolini O, Palacios D. Nano-Immunomodulation: A New Strategy for Skeletal Muscle Diseases and Aging? Int J Mol Sci 2023; 24:1175. [PMID: 36674691 PMCID: PMC9862642 DOI: 10.3390/ijms24021175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
The skeletal muscle has a very remarkable ability to regenerate upon injury under physiological conditions; however, this regenerative capacity is strongly diminished in physio-pathological conditions, such as those present in diseased or aged muscles. Many muscular dystrophies (MDs) are characterized by aberrant inflammation due to the deregulation of both the lymphoid and myeloid cell populations and the production of pro-inflammatory cytokines. Pathological inflammation is also observed in old muscles due to a systemic change in the immune system, known as "inflammaging". Immunomodulation represents, therefore, a promising therapeutic opportunity for different skeletal muscle conditions. However, the use of immunomodulatory drugs in the clinics presents several caveats, including their low stability in vivo, the need for high doses to obtain therapeutically relevant effects, and the presence of strong side effects. Within this context, the emerging field of nanomedicine provides the powerful tools needed to control the immune response. Nano-scale materials are currently being explored as biocarriers to release immunomodulatory agents in the damaged tissues, allowing therapeutic doses with limited off-target effects. In addition, the intrinsic immunomodulatory properties of some nanomaterials offer further opportunities for intervention that still need to be systematically explored. Here we exhaustively review the state-of-the-art regarding the use of nano-sized materials to modulate the aberrant immune response that characterizes some physio-pathological muscle conditions, such as MDs or sarcopenia (the age-dependent loss of muscle mass). Based on our learnings from cancer and immune tolerance induction, we also discuss further opportunities, challenges, and limitations of the emerging field of nano-immunomodulation.
Collapse
Affiliation(s)
- Francesco Millozzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Andrea Papait
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Marina Bouché
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| | - Daniela Palacios
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Vito, 1, 00168 Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Vito, 1, 00168 Rome, Italy
| |
Collapse
|
5
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
6
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
7
|
Luo Z, Qi B, Sun Y, Chen Y, Lin J, Qin H, Wang N, Shi R, Shang X, Chen S, Chen J. Engineering Bioactive M2 Macrophage-Polarized, Anti-inflammatory, miRNA-Based Liposomes for Functional Muscle Repair: From Exosomal Mechanisms to Biomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201957. [PMID: 35802903 DOI: 10.1002/smll.202201957] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Indexed: 02/05/2023]
Abstract
Severe inflammation and myogenic differentiation disorder are the major obstacles to skeletal muscle healing after injury. MicroRNAs (miRNAs) play an important role as regulatory molecules during the process of muscle healing, but the detailed mechanism of miRNA-mediated intercellular communication between myoblasts and macrophages remains unclear. Here, it is reported that myoblasts secrete miRNAs-enriched exosomes in the inflammatory environment, through which miR-224 is transferred into macrophages to inhibit M2 polarization. Further data demonstrate that WNT-9a may be a direct target of miR-224 for macrophage polarization. In turn, the secretome of M1 macrophages impairs myogenic differentiation and promotes proliferation. Single-cell integration analysis suggests that the elevation of exosome-derived miR-224 is caused by the activation of the key factor E2F1 in myoblasts and demonstrates the RB/E2F1/miR-224/WNT-9a axis. In vivo results show that treatment with antagomir-224 or liposomes containing miR-224 inhibitors suppresses fibrosis and improves muscle recovery. These findings indicate the importance of the crosstalk between myoblasts and macrophages via miRNA-containing exosomes in the regulation of macrophage polarization and myogenic differentiation/proliferation during muscle healing. This study provides a strategy for treating muscle injury through designing an M2 polarization-enabling anti-inflammatory and miRNA-based bioactive material.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200433, P. R. China
| | - Ning Wang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiliang Shang
- Department of Ophthalmology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| |
Collapse
|
8
|
Balenine, Imidazole Dipeptide Promotes Skeletal Muscle Regeneration by Regulating Phagocytosis Properties of Immune Cells. Mar Drugs 2022; 20:md20050313. [PMID: 35621964 PMCID: PMC9146453 DOI: 10.3390/md20050313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Balenine is one of the endogenous imidazole dipeptides derived from marine products. It is composed of beta-alanine and 3-methyl-L-histidine, which exist mainly in the muscles of marine organisms. The physiological functions of dietary balenine are not well-known. In this study, we investigated whether the supplementation of dietary balenine was associated with muscle function in a cardiotoxin-indued muscle degeneration/regeneration model. Through morphological observation, we found that the supplementation of balenine-enriched extract promoted the regeneration stage. In addition, the expression of regeneration-related myogenic marker genes, such as paired box protein 7, MyoD1, myogenin, and Myh3, in a group of mice fed a balenine-enriched extract diet was higher than that in a group fed a normal diet. Moreover, the supplementation of balenine-enriched extract promoted the expression of anti-inflammatory cytokines as well as pro-inflammatory cytokines at the degeneration stage. Interestingly, phagocytic activity in the balenine group was significantly higher than that in the control group in vitro. These results suggest that balenine may promote the progress of muscle regeneration by increasing the phagocytic activity of macrophages.
Collapse
|
9
|
Theret M, Rempel L, Hashimoto J, Ritso M, Tung LW, Li FF, Messing M, Hughes M, McNagny K, Rossi F. Elevated numbers of infiltrating eosinophils accelerate the progression of Duchenne muscular dystrophy pathology in mdx mice. Development 2022; 149:274824. [DOI: 10.1242/dev.200112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
ABSTRACT
Eosinophils, best known for their role in anti-parasitic responses, have recently been shown to actively participate in tissue homeostasis and repair. Their regulation must be tightly controlled, as their absence or hyperplasia is associated with chronic disease (e.g. asthma or inflammatory bowel disease). In the context of skeletal muscle, eosinophils play a supportive role after acute damage. Indeed, their depletion leads to strong defects in skeletal muscle regeneration and, in the absence of eosinophil-secreted interleukin (IL) 4 and IL13, fibro-adipogenic progenitors fail to support muscle stem cell proliferation. However, the role of eosinophils in muscular dystrophy remains elusive. Although it has been shown that eosinophils are present in higher numbers in muscles from mdx mice (a mouse model for Duchenne muscular dystrophy), their depletion does not affect muscle histopathology at an early age. Here, we evaluated the impact of hyper-eosinophilia on the development of fibrofatty infiltration in aged mdx mice and found that muscle eosinophilia leads to defects in muscle homeostasis, regeneration and repair, and eventually hastens death.
Collapse
Affiliation(s)
- Marine Theret
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lucas Rempel
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Joshua Hashimoto
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Morten Ritso
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lin Wei Tung
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fang Fang Li
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Melina Messing
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael Hughes
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kelly McNagny
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fabio Rossi
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Patsalos A, Halasz L, Medina-Serpas MA, Berger WK, Daniel B, Tzerpos P, Kiss M, Nagy G, Fischer C, Simandi Z, Varga T, Nagy L. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15. J Exp Med 2022; 219:e20210420. [PMID: 34846534 PMCID: PMC8635277 DOI: 10.1084/jem.20210420] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-β superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).
Collapse
Affiliation(s)
- Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Miguel A. Medina-Serpas
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bence Daniel
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Kiss
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltan Simandi
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL
| | - Tamas Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Singh P, Chazaud B. Benefits and pathologies associated with the inflammatory response. Exp Cell Res 2021; 409:112905. [PMID: 34736921 DOI: 10.1016/j.yexcr.2021.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 10/20/2022]
Abstract
Adult skeletal muscle regenerates completely after a damage, thanks to the satellite cells, or muscle stem cells (MuSCs), that implement the adult myogenic program. This program is sustained by both robust intrinsic mechanisms and extrinsic cues coming from the close neighborhood of MuSCs during muscle regeneration. Among the various cell types present in the regenerating muscle, immune cells, and particularly macrophages, exert numerous functions and provide sequential transient niches to support the myogenic program. The adequate orchestration of the delivery of these cues ensures efficient muscle regeneration and full functional recovery. The situation is very different in muscular dystrophies where asynchronous and permanent microinjuries occur, triggering contradictory regenerating cues at the same time in a specific area, that lead to chronic inflammation and fibrogenesis. Here we review the beneficial effects that leukocytes, and particularly macrophages, exert on their neighboring cells during skeletal muscle regeneration after an acute injury. Then, the more complicated (and less beneficial) roles of leukocytes during muscular dystrophies are presented. Finally, we discuss how the inflammatory compartment may be a target to improve muscle regeneration in both acute muscle injury and muscle diseases.
Collapse
Affiliation(s)
- Pawandeep Singh
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Faculté de Médecine, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
12
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|