1
|
Liu Y, Shi S, Cheng T, Wang H, Wang H, Hu Y. The key role of miR‑378 in kidney diseases (Review). Mol Med Rep 2025; 31:101. [PMID: 39981929 PMCID: PMC11868772 DOI: 10.3892/mmr.2025.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
MicroRNAs (miRNAs/miRs) are endogenous, small non‑coding RNAs conserved across species that post‑transcriptionally regulate gene expression by both suppressing translation and inducing mRNA degradation. miRNAs are found in various tissues, exhibit variable expression and their dysregulation is implicated in numerous disease processes. Furthermore, miRNA expression levels have a key role in the normal development of kidney tissue and are key regulators of kidney function, modulating diverse biological processes across renal cell lineages. miR‑378 participates in pathological processes associated with kidney diseases, including kidney cancer, kidney transplantation and diabetic nephropathy. Despite its considerable effects on these conditions, a comprehensive summary of the roles of miR‑378 is unavailable. In the present review, the existing literature on miR‑378 in kidney diseases is consolidated, and its validated gene targets and biological effects in both malignant and non‑malignant conditions are highlighted, thereby providing a foundation for future research.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Cardiovascular Diseases, Sanming Integrated Medicine Hospital, Sanming, Fujian 365000, P.R. China
| | - Shuqing Shi
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Tao Cheng
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Haoshuo Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Huan Wang
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
2
|
Zhao S, Pan Q, Lin X, Li X, Qu L. Gastrodin ameliorates diabetic nephropathy by activating the AMPK/Nrf2 pathway. J Mol Histol 2024; 55:1327-1339. [PMID: 39520653 DOI: 10.1007/s10735-024-10273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage kidney failure, contributing to elevated morbidity and mortality rates in individuals with diabetes. Despite its potential renoprotective effects, the molecular mechanism by which gastrodin (GSTD) impacts DN remains unclear. To investigate this, mice were initially induced with DN via intraperitoneal streptozotocin (STZ) injection (50 mg/kg) and subsequently treated with varying doses of GSTD (5, 10, 20 mg/kg). Furthermore, the potential molecular mechanism of GSTD in mitigating DN was explored in vivo in conjunction with compound C, an inhibitor of 5'-AMP-activated protein kinase (AMPK). Subsequently, the blood weight, fasting blood glucose levels, and renal injury markers of DN-afflicted mice were assessed. Additionally, renal tissues were subjected to quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) to evaluate inflammatory factor levels, colorimetric assays to measure renal malondialdehyde (MDA) levels, and immunoblotting analysis to examine AMPK/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The results demonstrated that a 6-week GSTD regimen effectively improved metabolic manifestations associated with DN, including reductions in fasting blood glucose levels, 24-hour urine output, renal indices, amelioration of glomerular histopathological abnormalities, diminished glycogen accumulation, and fibrosis. Furthermore, DN-afflicted renal tissues exhibited decreased MDA levels and elevated expression of AMPK/Nrf2 pathway-associated proteins. The beneficial effects of GSTD on DN and its protein modulation were reversed upon co-intervention with compound C. Together, our findings imply that GSTD improves DN by activating the AMPK/Nrf2 pathway, thereby mitigating STZ-induced renal damage, inflammatory responses, and oxidative stress.
Collapse
Affiliation(s)
- Shuqin Zhao
- Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Qingyun Pan
- Department of Endocrinology, the Fifth Hospital in Wuhan, No. 122, Xianzheng Street, Hanyang District, Wuhan, Hubei, 430050, China
| | - Xiaolin Lin
- Department of Endocrinology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Xian Li
- Department of Endocrinology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Li Qu
- Department of Emergency, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China.
| |
Collapse
|
3
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
4
|
Tan Y, Zhang Z, Zhou P, Zhang Q, Li N, Yan Q, Huang L, Yu J. Efficacy and safety of Abelmoschus manihot capsule combined with ACEI/ARB on diabetic kidney disease: a systematic review and meta analysis. Front Pharmacol 2024; 14:1288159. [PMID: 38249351 PMCID: PMC10796716 DOI: 10.3389/fphar.2023.1288159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Diabetic kidney disease (DKD) is one of the most serious microvascular complications of diabetes, with the incidence rate increasing yearly, which is the leading cause of chronic kidney disease (CKD) and end-stage kidney disease. Abelmoschus Manihot capsule, as a proprietary Chinese patent medicine, is widely used for treating CKD in China. Currently, the combination of Abelmoschus Manihot (AM) capsule and renin-angiotensin-aldosterone system inhibitor (RASI) has gained popularity as a treatment option for DKD, with more and more randomized control trials (RCTs) in progress. However, the high-quality clinical evidence supporting its application in DKD is still insufficient. Aim of the study: To comprehensively and systematically evaluate the efficacy and safety of AM capsule combined with RASI in the treatment of DKD. Materials and methods: English and Chinese databases such as Pubmed, Cochrane Library, Embase, CNKI, SinoMed, WF, and VIP were searched to collect the RCTs of AM capsule in treatment of DKD. Then Two investigators independently reviewed and extracted data from the RCTs which met the inclusion criteria. The quality of the data was assessed using the Cochrane risk of bias assessment tool, and meta-analysis was performed using RevMan 5.4 software. Results: 32 RCTs with a total of 2,881 DKD patients (1,442 in the treatment group and 1,439 in the control group) were included. The study results showed that AM capsule combined with RASI could be more effective in decreasing 24h-UTP [MD = -442.05, 95% CI (-609.72, -274.38), p < 0.00001], UAER [MD = -30.53, 95% CI (-39.10, -21.96), p < 0.00001], UACR [MD = -157.93, 95% CI (-288.60, -27.25), p < 0.00001], Scr [MD = -6.80, 95% CI (-9.85, -3.74), p < 0.0001], and BUN [MD = -0.59, 95% CI (-1.07, -0.12), p = 0.01], compared to using RASI alone. According to the subgroup analyses, the combination of AM and ARB seems to be more effective in reducing UAER than the combination of ACEI, and the addition of AM may achieve a more significant clinical effect on decreasing Scr for DKD patients with 24h-UTP>2 g or Scr>110-133 μmol/L and >133 μmol/L. Furthermore, no additional adverse reactions were observed in the combination group [OR = 1.06; 95%CI: (0.66, 1.69), p = 0.82]. Conclusion: Combining AM with RASI may be a superior strategy for DKD treatment compared to RASI monotherapy. However, due to significant heterogeneity, the results should be interpreted with great caution, and more high-quality RCTs with multi-centers, different stages of DKD, large sample sizes, and long follow-up periods are still needed to improve the evidence quality of AM for DKD in the future. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails; Identifier CRD42022351422.
Collapse
Affiliation(s)
- Ying Tan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziqi Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiling Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Liji Huang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Rai B, Srivastava J, Saxena P. The Functional Role of microRNAs and mRNAs in Diabetic Kidney Disease: A Review. Curr Diabetes Rev 2024; 20:e201023222412. [PMID: 37867275 DOI: 10.2174/0115733998270983231009094216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Diabetes is a group of diseases marked by poor control of blood glucose levels. Diabetes mellitus (DM) occurs when pancreatic cells fail to make insulin, which is required to keep blood glucose levels stable, disorders, and so on. High glucose levels in the blood induce diabetic effects, which can cause catastrophic damage to bodily organs such as the eyes and lower extremities. Diabetes is classified into many forms, one of which is controlled by hyperglycemia or Diabetic Kidney Disease (DKD), and another that is not controlled by hyperglycemia (nondiabetic kidney disease or NDKD) and is caused by other factors such as hypertension, hereditary. DKD is associated with diabetic nephropathy (DN), a leading cause of chronic kidney disease (CKD) and end-stage renal failure. The disease is characterized by glomerular basement membrane thickening, glomerular sclerosis, and mesangial expansion, resulting in a progressive decrease in glomerular filtration rate, glomerular hypertension, and renal failure or nephrotic syndrome. It is also represented by some microvascular complications such as nerve ischemia produced by intracellular metabolic changes, microvascular illness, and the direct impact of excessive blood glucose on neuronal activity. Therefore, DKD-induced nephrotic failure is worse than NDKD. MicroRNAs (miRNAs) are important in the development and progression of several diseases, including diabetic kidney disease (DKD). These dysregulated miRNAs can impact various cellular processes, including inflammation, fibrosis, oxidative stress, and apoptosis, all of which are implicated during DKD. MiRNAs can alter the course of DKD by targeting several essential mechanisms. Understanding the miRNAs implicated in DKD and their involvement in disease development might lead to identifying possible therapeutic targets for DKD prevention and therapy. Therefore, this review focuses specifically on DKD-associated DN, as well as how in-silico approaches may aid in improving the management of the disease.
Collapse
Affiliation(s)
- Bhuvnesh Rai
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Jyotika Srivastava
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Pragati Saxena
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
6
|
Sultan S, AlMalki S. Analysis of global DNA methylation and epigenetic modifiers (DNMTs and HDACs) in human foetal endothelium exposed to gestational and type 2 diabetes. Epigenetics 2023; 18:2201714. [PMID: 37066707 PMCID: PMC10114969 DOI: 10.1080/15592294.2023.2201714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Foetuses exposed to maternal gestational diabetes (GDM) and type 2 diabetes (T2D) have an increased risk of adverse perinatal outcomes. Epigenetic mechanisms, including DNA methylation and histone modifications, may act as mediators of persistent metabolic memory in endothelial cells (ECs) exposed to hyperglycaemia, even after glucose normalization. Therefore, we investigated alterations in global DNA methylation and epigenetic modifier expression (DNMT1, DNMT3a, DNMT3b, HDAC1, and HDAC2) in human umbilical vein ECs (HUVECs) from the umbilical cords of mothers with GDM (n = 8) and T2D (n = 3) compared to that of healthy mothers (n = 6). Global DNA alteration was measured using a 5-methylation cytosine colorimetric assay, followed by quantitative real-time polymerase chain reaction to measure DNA methyltransferase and histone acetylase transcript expression. We revealed that DNA hypermethylation occurs in both GDM- and T2D-HUVECs compared to that in Control-HUVECs. Furthermore, there was a significant increase in HDAC2 mRNA levels in GDM-HUVECs and increase in DNMT3b mRNA levels in T2D-HUVECs. Overall, our results suggest that GDM and T2D are associated with global DNA hypermethylation in foetal endothelial cells under normoglycemic conditions and the aberrant mRNA expression of HDAC2 and DNMT3b could play a role in this dysregulation.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultanh AlMalki
- Medical Laboratory Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Gondaliya P, Jash K, Srivastava A, Kalia K. MiR-29b modulates DNA methylation in promoter region of miR-130b in mouse model of Diabetic nephropathy. J Diabetes Metab Disord 2023; 22:1105-1115. [PMID: 37975134 PMCID: PMC10638230 DOI: 10.1007/s40200-023-01208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 11/19/2023]
Abstract
Epigenetic modifications play a role in Diabetic Nephropathy (DN). Downregulation of miR-29b leads to modulation of DNA methylation via DNA methyl transferases (DNMTs) and hence exaggerated renal fibrosis in DN. Therefore, the main aim of the study was to evaluate effect of miR-29b expression in vivo on DNMTs, renal fibrosis, glomerular and tubular damage as well as renal morphology in DN. In order to explore the role of miR-29b in DNA methylation of other miRNAs, methylation profiling study was performed. It revealed that miR-29b was involved in methylation on of miR-130b on the cytosine guanine dinucleotides rich DNA (CpG) island 1 located on promoter region. In conclusion, miR-29b expression was found to modulate DNA methylation via DNMTs and regulate methylation of miR-130b. The result of this study provides a future direction to unveil role of miRNA expression in DNA methylation and its consequent effect on other miRNAs in DN. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01208-2.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| |
Collapse
|
8
|
Sood A, Baishnab S, Gautam I, Choudhary P, Lang DK, Jaura RS, Singh TG. Exploring various novel diagnostic and therapeutic approaches in treating diabetic retinopathy. Inflammopharmacology 2023; 31:773-786. [PMID: 36745243 DOI: 10.1007/s10787-023-01143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy is regarded as a common manifestation of diabetes mellitus, being a prominent cause of visual impairment and blindness. This microvascular complication is marked by the appearance of microaneurysms, elevated vascular permeability, capillary blockage, and proliferation of neovasculature. The etiology behind retinopathy is ambiguous and the efficacy of current treatment strategies is minimal. Early diagnosis of this complication using a biomarker with high sensitivity and specificity is very essential for providing better therapeutic strategies. The current available therapeutic options are limited with various adverse effects. Laser treatment is not beneficial in all the situations, economic constraints being the major challenge. Surgical interventions are employed when pharmacotherapy and laser treatment fail. New pharmacological treatments are becoming a necessity for treating the condition. This review highlights the use of various diagnostic tools, emerging biomarkers for early detection of diabetic retinopathy, pathological mechanisms associated with the disease, current therapeutic approaches used and future strategies for more enhanced treatment options and more potent pharmacological actions.
Collapse
Affiliation(s)
- Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suman Baishnab
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Isha Gautam
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Priya Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | | | |
Collapse
|
9
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
10
|
Liu J, Zhang Y, Liu M, Shi F, Cheng B. AG1024, an IGF-1 receptor inhibitor, ameliorates renal injury in rats with diabetic nephropathy via the SOCS/JAK2/STAT pathway. Open Med (Wars) 2023; 18:20230683. [PMID: 37034500 PMCID: PMC10080708 DOI: 10.1515/med-2023-0683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Insulin-like-growth factor-1 (IGF-1) is the ligand for insulin-like growth factor-1 receptor (IGF-1R), and the roles of IGF-1/IGF-1R in diabetic nephropathy (DN) are well-characterized previously. However, the biological functions of AG1024 (an IGF-1R inhibitor) in DN remain unknown. This study investigates the roles and related mechanisms of AG-1024 in DN. The experimental DN was established via intraperitoneal injection of streptozotocin, and STZ-induced diabetic rats were treated with AG1024 (20 mg/kg/day) for 8 weeks. The 24 h proteinuria, blood glucose level, serum creatinine, and blood urea nitrogen were measured for biochemical analyses. The increase in 24 h proteinuria, blood glucose level, serum creatinine, and blood urea of DN rats were conspicuously abated by AG1024. After biochemical analyses, the renal tissue specimens were collected, and as revealed by hematoxylin and eosin staining and Masson staining, AG-1024 mitigated typical renal damage and interstitial fibrosis in DN rats. Then, the anti-inflammatory effect of AG-1024 was assessed by western blotting and ELISA. Mechanistically, AG-1024 upregulated SOCS1 and SOCS3 expression and decreased phosphorylated JAK2, STAT1, and STAT3, as shown by western blotting. Collectively, AG-1024 (an IGF-1R inhibitor) ameliorates renal injury in experimental DN by attenuating renal inflammation and fibrosis via the SOCS/JAK2/STAT pathway.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Yun Zhang
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Min Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Feng Shi
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Bo Cheng
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), No. 168, Hong Kong Road, Jiang’an District, Wuhan 430015, Hubei, China
| |
Collapse
|
11
|
Sakshi, Ragini, Saini A, Verma C, Mani I. Epigenetics in renal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:61-71. [DOI: 10.1016/bs.pmbts.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Cen Y, Wang P, Gao F, Jing M, Zhang Z, Yi P, Zhang G, Sun Y, Wang Y. Tetramethylpyrazine nitrone activates hypoxia-inducible factor and regulates iron homeostasis to improve renal anemia. Front Pharmacol 2022; 13:964234. [PMID: 36324690 PMCID: PMC9618660 DOI: 10.3389/fphar.2022.964234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 02/19/2024] Open
Abstract
Renal anemia is one of the most common complications of chronic kidney disease and diabetic kidney disease. Despite the progress made in recent years, there is still an urgent unmet clinical need for renal anemia treatment. In this research, we investigated the efficacy and mechanism of action of the novel tetramethylpyrazine nitrone (TBN). Animal models of anemia including the streptozotocin (STZ)-induced spontaneously hypertensive rats (SHR) and the cisplatin (CDDP)-induced C57BL/6J mice are established to study the TBN's effects on expression of hypoxia-inducible factor and erythropoietin. To explore the mechanism of TBN's therapeutic effect on renal anemia, cobalt chloride (CoCl2) is used in Hep3B/HepG2 cells to simulate a hypoxic environment. TBN is found to increase the expression of hypoxia-inducible factor HIF-1α and HIF-2α under hypoxic conditions and reverse the reduction of HIFs expression caused by saccharate ferric oxide (SFO). TBN also positively regulates the AMPK pathway. TBN stimulates nuclear transcription and translation of erythropoietin by enhancing the stability of HIF-1α expression. TBN has a significant regulatory effect on several major biomarkers of iron homeostasis, including ferritin, ferroportin (FPN), and divalent metal transporter-1 (DMT1). In conclusion, TBN regulates the AMPK/mTOR/4E-BP1/HIFs pathway, and activates the hypoxia-inducible factor and regulates iron homeostasis to improve renal anemia.
Collapse
Affiliation(s)
- Yun Cen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Peile Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Fangfang Gao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Mei Jing
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Peng Yi
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
13
|
Kushwaha K, Garg SS, Gupta J. Targeting epigenetic regulators for treating diabetic nephropathy. Biochimie 2022; 202:146-158. [PMID: 35985560 DOI: 10.1016/j.biochi.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Diabetes is accompanied by the worsening of kidney functions. The reasons for kidney dysfunction mainly include high blood pressure (BP), high blood sugar levels, and genetic makeup. Vascular complications are the leading cause of the end-stage renal disorder (ESRD) and death of diabetic patients. Epigenetics has emerged as a new area to explain the inheritance of non-mendelian conditions like diabetic kidney diseases. Aberrant post-translational histone modifications (PTHMs), DNA methylation (DNAme), and miRNA constitute major epigenetic mechanisms that progress diabetic nephropathy (DN). Increased blood sugar levels alter PTHMs, DNAme, and miRNA in kidney cells results in aberrant gene expression that causes fibrosis, accumulation of extracellular matrix (ECM), increase in reactive oxygen species (ROS), and renal injuries. Histone acetylation (HAc) and histone deacetylation (HDAC) are the most studied epigenetic modifications with implications in the occurrence of kidney disorders. miRNAs induced by hyperglycemia in renal cells are also responsible for ECM accumulation and dysfunction of the glomerulus. In this review, we highlight the role of epigenetic modifications in DN progression and current strategies employed to ameliorate DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara, Punjab, India
| | - Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
14
|
Rehman G, Sardar S, Alkhateeb MA, Mohamed RAEH, Al Galil FMA, Hamayun M, Shahjeer K, Iqbal T, Ahmed N, Nawaz T, Ullah R. Evaluation of Functional and Bioactive Properties of Crude Gill Extract of
Tor putitora
using Different Assays. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gauhar Rehman
- Department of Zoology Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan
| | - Sumbal Sardar
- Department of Zoology Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology College of Sciences, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Rania Ali El Hadi Mohamed
- Department of Biology College of Sciences, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | | | - Muhammad Hamayun
- Department of Botany Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan
| | - Kiran Shahjeer
- Department of Zoology Abdul Wali Khan University Mardan Khyber Pakhtunkhwa Pakistan
| | - Toheed Iqbal
- Department of Entomology, Faculty of crop protection sciences The University of Agriculture Peshawar‐Khyber Pakhtunkhwa‐ Pakistan
| | - Nazeer Ahmed
- Department of Agriculture University of Swabi Anbar 23561 Swabi‐Khyber Pakhtunkhwa Pakistan
| | - Taufiq Nawaz
- Department of Food Science and Technology The University of Agriculture Peshawar 25130 Pakistan
| | - Rafi Ullah
- Department of Agriculture University of Swabi Anbar 23561 Swabi‐Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
15
|
Lan J, Xu B, Shi X, Pan Q, Tao Q. WTAP-mediated N 6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett 2022; 27:51. [PMID: 35761192 PMCID: PMC9235192 DOI: 10.1186/s11658-022-00350-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Diabetic nephropathy (DN) is prevalent in patients with diabetes. N6-methyladenosine (m6A) methylation has been found to cause modification of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) 3, which is involved in cell pyroptosis and inflammation. WTAP is a key gene in modulating NLRP3 m6A. Methods In this study, WTAP was silenced or overexpressed in high glucose (HG)-treated HK-2 cells to determine its influence on pyroptosis, NLRP3 inflammasome-related proteins, and the release of pro-inflammatory cytokines. NLRP3 expression and m6A levels were assessed in the presence of WTAP shRNA (shWTAP). WTAP expression in HK-2 cells was examined with the introduction of C646, a histone acetyltransferase p300 inhibitor. Results We found that WTAP expression was enhanced in patients with DN and in HG-treated HK-2 cells. Knockdown of WTAP attenuated HG-induced cell pyroptosis and NLRP3-related pro-inflammatory cytokines in both HK-2 cells and db/db mice, whereas WTAP overexpression promoted these cellular processes in HK-2 cells. WTAP mediated the m6A of NLRP3 mRNA that was stabilized by insulin-like growth factor 2 mRNA binding protein 1. Histone acetyltransferase p300 regulated WTAP expression. WTAP mRNA levels were positively correlated with NLRP3 inflammasome components and pro-inflammatory cytokines. Conclusion Taken together, WTAP promotes the m6A methylation of NLRP3 mRNA to upregulate NLRP3 inflammasome activation, which further induces cell pyroptosis and inflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00350-8.
Collapse
Affiliation(s)
- Jianzi Lan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China.
| | - Bowen Xu
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Xin Shi
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qi Pan
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| | - Qing Tao
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Road, Pudong District, Shanghai, 200120, China
| |
Collapse
|
16
|
Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M, Zhou J. Protein Methylation in Diabetic Kidney Disease. Front Med (Lausanne) 2022; 9:736006. [PMID: 35647002 PMCID: PMC9133329 DOI: 10.3389/fmed.2022.736006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is defined by persistent urine aberrations, structural abnormalities, or impaired excretory renal function. Diabetes is the leading cause of CKD. Their common pathological manifestation is renal fibrosis. Approximately half of all patients with type 2 diabetes and one-third with type 1 diabetes will develop CKD. However, renal fibrosis mechanisms are still poorly understood, especially post-transcriptional and epigenetic regulation. And an unmet need remains for innovative treatment strategies for preventing, arresting, treating, and reversing diabetic kidney disease (DKD). People believe that protein methylation, including histone and non-histone, is an essential type of post-translational modification (PTM). However, prevalent reviews mainly focus on the causes such as DNA methylation. This review will take insights into the protein part. Furthermore, by emphasizing the close relationship between protein methylation and DKD, we will summarize the clinical research status and foresee the application prospect of protein methyltransferase (PMT) inhibitors in DKD treatment. In a nutshell, our review will contribute to a more profound understanding of DKD’s molecular mechanism and inspire people to dig into this field.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guodong Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People’s Hospital of Guangzhou, Guangzhou, China
| | - Youlin Fan
- Department of Anesthesiology, Guangzhou Panyu Central Hospital of Panyu District, Guangzhou, China
| | - Min Wang
- Department of Anesthesiology, The Gaoming People’s Hospital, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
17
|
Cardiovascular Characteristics of Zucker Fatty Diabetes Mellitus Rats, an Animal Model for Obesity and Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23084228. [PMID: 35457048 PMCID: PMC9027163 DOI: 10.3390/ijms23084228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Zucker fatty diabetes mellitus (ZFDM) rats harboring the missense mutation (fa) in a leptin receptor gene have been recently established as a novel animal model of obesity and type 2 diabetes (T2D). Here, we explored changes in cardiovascular dynamics including blood pressure and heart rate (HR) associated with the progression of obesity and T2D, as well as pathological changes in adipose tissue and kidney. There was no significant difference in systolic blood pressure (SBP) in ZFDM-Leprfa/fa (Homo) compared with ZFDM-Leprfa/+ (Hetero) rats, while HR and plasma adrenaline in Homo were significantly lower than Hetero. The mRNA expression of monocyte chemotactic protein-1 in perirenal white adipose tissue (WAT) from Homo was significantly higher than Hetero. Interscapular brown adipose tissue (BAT) in Homo was degenerated and whitened. The plasma blood urea nitrogen in Homo was significantly higher than Hetero. In summary, we demonstrated for the first time that HR and plasma adrenaline concentration but not SBP in Homo decrease with obesity and T2D. In addition, inflammation occurs in WAT from Homo, while whitening occurs in BAT. Further, renal function is impaired in Homo. In the future, ZFDM rats will be useful for investigating metabolic changes associated with the progression of obesity and T2D.
Collapse
|
18
|
Chen C, Liu D. Establishment of Zebrafish Models for Diabetes Mellitus and Its Microvascular Complications. J Vasc Res 2022; 59:251-260. [PMID: 35378543 DOI: 10.1159/000522471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease known to cause several microvascular complications, including diabetic retinopathy, diabetic nephropathy, and diabetic neuropathy. Hyperglycemia plays a key role in inducing diabetic microvascular complications. A cohort of diabetic animal models has been established to study diabetes-related vascular diseases. However, the zebrafish model offers unique advantages in this field. The tiny size and huge offspring numbers of zebrafish make it amenable to perform large-scale analysis or screening. The easily accessible strategies for gene manipulation with morpholino or CRISPR/Cas9 and chemical/drug treatment through microinjection or skin absorption allow establishing the zebrafish DM models by a variety of means. In addition, the transparency of zebrafish embryos makes it accessible to perform in vivo high-resolution imaging of the vascular system. In this review, we focus on the strategies to establish diabetic or hyperglycemic models with zebrafish and the achievements and disadvantages of using zebrafish as a model to study diabetic microvascular complications.
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Medical College, Nantong University, Nantong, China.,Co-Innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
19
|
Huang G, Li M, Li Y, Mao Y. OUP accepted manuscript. Lab Med 2022; 53:545-551. [PMID: 35748329 DOI: 10.1093/labmed/lmac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guoqing Huang
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo, China
| | - Yan Li
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Yushan Mao
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37:23. [PMID: 34429169 PMCID: PMC8385906 DOI: 10.1186/s42826-021-00101-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a very common and multifaceted metabolic disorder is considered as one of the fastest growing public health problems in the world. It is characterized by hyperglycemia, a condition with high glucose level in the blood plasma resulting from defects in insulin secretion or its action and in some cases both the impairment in secretion and also action of insulin coexist. Historically, animal models have played a critical role in exploring and describing malady pathophysiology and recognizable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we reviewed the experimental models employed for diabetes and for its related complications. This paper reviews briefly the broad chemical induction of alloxan and streptozotocin and its mechanisms associated with type 1 and type 2 diabetes. Also we highlighted the different models in other species and other animals.
Collapse
|
21
|
Ren X, Wang R, Yu XT, Cai B, Guo F. Regulation of histone H3 lysine 9 methylation in inflammation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1931477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xin Ren
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Rong Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiao-ting Yu
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Bo Cai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fei Guo
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
22
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
23
|
Yarahmadi A, Shahrokhi SZ, Mostafavi-Pour Z, Azarpira N. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment. Biochem Pharmacol 2020; 189:114301. [PMID: 33203517 DOI: 10.1016/j.bcp.2020.114301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Despite considerable investigation in diabetic nephropathy (DN) pathogenesis and possible treatments, current therapies still do not provide competent prevention from disease progression to end-stage renal disease (ESRD) in most patients. Therefore, investigating exact molecular mechanisms and important mediators underlying DN may help design better therapeutic approaches for proper treatment. MicroRNAs (MiRNAs) are a class of small non-coding RNAs that play a crucial role in post-transcriptional regulation of many gene expression within the cells and present an excellent opportunity for new therapeutic approaches because their profile is often changed during many diseases, including DN. This review discusses the most important signaling pathways involved in DN and changes in miRNAs profile in each signaling pathway. We also suggest possible approaches for miRNA derived interventions for designing better treatment of DN.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
24
|
Gene Expression Profiling of Multiple Histone Deacetylases ( HDAC) and Its Correlation with NRF2-Mediated Redox Regulation in the Pathogenesis of Diabetic Foot Ulcers. Biomolecules 2020; 10:biom10101466. [PMID: 33096729 PMCID: PMC7589955 DOI: 10.3390/biom10101466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein of the leucine zipper family, which mitigates inflammation and employs cytoprotective effects. Attempting to unravel the epigenetic regulation of type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU), we profiled the expression of eleven isoform-specific histone deacetylases (HDACs) and correlated them with NRF2 and cytokines. This study recruited a total of 60 subjects and categorized into DFU patients (n = 20), T2DM patients (n = 20), and healthy controls (n = 20). The DFU patients were subcategorized into uninfected and infected DFU (n = 10 each). We observed a progressive decline in the expression of NRF2 and its downstream targets among T2DM and DFU subjects. The inflammatory markers IL-6 and TNF-α were significantly upregulated, whereas anti-inflammatory marker IL-10 was significantly downregulated in DFU. Of note, a significant upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2,8, SIRT1, SIRT2, SIRT3, SIRT7 among DFU patients were observed. The significant positive correlation between NRF2 and SIRT1 in DFU patients suggested the vital role of NRF2/SIRT1 in redox homeostasis and angiogenesis. In contrast, the significant negative correlation between NRF2 and HDAC1, 3 and 4, implied an imbalance in NRF2-HDAC1, 3, 4 circuit. Furthermore, a significant positive correlation was observed between HDAC4 and IL-6, and the negative correlation between SIRT1 and IL-6 suggested the pro-inflammatory role of HDAC4 and the anti-inflammatory role of SIRT1 in NRF2 signaling. In conclusion, the epigenetic changes such as upregulation of HDAC1, 3, 4, 11, SIRT3 and downregulation of HDAC2, 8, SIRT1, SIRT2, SIRT6, SIRT7 and their association with NRF2 as well as inflammatory markers are suggestive of their roles in pathophysiology of T2DM and DFU.
Collapse
|
25
|
Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway. Eur J Pharmacol 2020; 886:173449. [PMID: 32758570 DOI: 10.1016/j.ejphar.2020.173449] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Geniposide (GE) can effectively inhibit diabetic nephropathy (DN), but its mechanism is unclear. The objective of this study was to explore the antidiabetic nephropathy effects of GE both in high fat diet/streptozotocin-induced DN mice and in high glucose-induced podocyte model. Renal function in DN mice was evaluated by levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Renal inflammation was appraised by pro-inflammatory cytokines: Tumor necrosis factor α (TNF-α), Interleukin 6 (IL-6) and IL-1β via ELISA assay. Renal histopathology analysis was conducted via hematoxylin and eosin, Masson and periodic acid-silver metheramine staining. Cellular viability was measured by Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Moreover, the related proteins p-NF-κB, ASC, Cleave-IL-1β, NLRP3, Cleave-Caspase-1 and GSDMD-N in AMPK/SIRT1/NF-κB pathway were assayed by Western blotting. In order to further investigate the effects of GE on podocytes, we also assessed these protein levels in AMPK/SIRT1/NF-κB pathway after siRNA-AMPK intervention by Western blotting. GE alleviated renal dysfunction as evidenced by decreased levels of Scr, BUN, TNF-α, IL-6 and IL-1β. Histological examination revealed GE effectively attenuated kidney damage, including glomerular basement membrane thickening and inflammatory cells infiltration. AMPK, p-AMPK and SIRT1 levels were obviously decreased both in DN mice and in podocyte model, but GE reversed these changes. The protein expressions in APMK/SIRT1/NF-κB pathway were significantly decreased by GE treatment. These results suggested that GE could efficiently block oxidative stress and inflammatory responses accompanied with pyroptosis, thus inhibiting the development of DN, and its mechanism might be related to APMK/SIRT1/NF-κB pathway.
Collapse
|
26
|
Dong C, Liu S, Cui Y, Guo Q. 12-Lipoxygenase as a key pharmacological target in the pathogenesis of diabetic nephropathy. Eur J Pharmacol 2020; 879:173122. [DOI: 10.1016/j.ejphar.2020.173122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
27
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
28
|
Shati AA. Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem 2020; 44:e13158. [PMID: 32030786 DOI: 10.1111/jfbc.13158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
This study investigated if the nephroprotective effect of Salidroside T1DM rats involves activation of AMPK/SIRT1. Rats were divided into control or T1DM and treated with vehicle or Salidroside (100 mg/kg) for 56 days. Mesangial cells were cultured in LG or HG media with or without Salidroside (100 µM/L) for 24 hr. Also, HG + Salidroside-treated cells were pre-incubated with EX-527 or compound C (CC) for 1 hr. With reducing glucose levels, Salidroside improved kidney structure/function in the T1DM rat. It also increased GSH and Bcl-2 levels in control and T1DM rats and inhibited ROS, increased activation of AMPK and nuclear SIRT1, and lowered acetylation of P53 and FOXO-1 in control and T1DM rats and in LG and HG-treated cells. These effects were abolished by EX-527 and CC. Also, CC decreased the nuclear levels of SIRT1. In conclusion, Salidroside attenuates DN in T1DM rats by activation of AMPK and subsequently, SIRT1. PRACTICAL APPLICATIONS: This animal and pre-clinical study shows that Salidroside is able to ameliorate DN in T1DM-induced rats and showed that it mainly acts by a hypoglycemic effect and activation of renal AMPK/SIRT1 axis. Given the wide tissue stimulatory effect of AMPK on peripheral glucose utilization, lipogenesis, and other cell signaling pathways, these data are encouraging to investigate the anti-diabetic effect of glycoside in more clinical trials.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, Science College, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Benito-Martínez S, Lucio-Cazaña FJ, Marina ML. A Non-Targeted Capillary Electrophoresis-Mass Spectrometry Strategy to Study Metabolic Differences in an In vitro Model of High-Glucose Induced Changes in Human Proximal Tubular HK-2 Cells. Molecules 2020; 25:molecules25030512. [PMID: 31991659 PMCID: PMC7037647 DOI: 10.3390/molecules25030512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy is characterized by the chronic loss of kidney function due to high glucose renal levels. HK-2 proximal tubular cells are good candidates to study this disease. The aim of this work was to study an in vitro model of high glucose-induced metabolic alterations in HK-2 cells to contribute to the pathogenesis of this diabetic complication. An untargeted metabolomics strategy based on CE-MS was developed to find metabolites affected under high glucose conditions. Intracellular and extracellular fluids from HK-2 cells treated with 25 mM glucose (high glucose group), with 5.5 mM glucose (normal glucose group), and with 5.5 mM glucose and 19.5 mM mannitol (osmotic control group) were analyzed. The main changes induced by high glucose were found in the extracellular medium where increased levels of four amino acids were detected. Three of them (alanine, proline, and glutamic acid) were exported from HK-2 cells to the extracellular medium. Other affected metabolites include Amadori products and cysteine, which are more likely cause and consequence, respectively, of the oxidative stress induced by high glucose in HK-2 cells. The developed CE-MS platform provides valuable insight into high glucose-induced metabolic alterations in proximal tubular cells and allows identifying discriminative molecules of diabetic nephropathy.
Collapse
Affiliation(s)
- Samuel Bernardo-Bermejo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
| | - Elena Sánchez-López
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Selma Benito-Martínez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-M.); (F.J.L.-C.)
- “Ramón y Cajal” Health Research Institute (IRYCIS), Universidad de Alcalá, 28871 Madrid, Spain
| | - Francisco Javier Lucio-Cazaña
- Departamento de Biología de Sistemas, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-M.); (F.J.L.-C.)
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; (S.B.-B.); (E.S.-L.); (M.C.-P.)
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
- Correspondence: ; Tel.: +34-91-885-4935; Fax: +34-91-885-4971
| |
Collapse
|
30
|
Zhu XJ, Gong Z, Li SJ, Jia HP, Li DL. Long non-coding RNA Hottip modulates high-glucose-induced inflammation and ECM accumulation through miR-455-3p/WNT2B in mouse mesangial cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2435-2445. [PMID: 31934070 PMCID: PMC6949587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/20/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of various diseases, including diabetic nephropathy (DN). However, the detailed mechanism is still largely unknown. High-glucose treated SV40-MES13 cells was used to mimic diabetic nephropathy in vitro. qRT-PCR was introduced to measure Hottip, collagen type I (Col. I), collagen type IV (Col. IV), fibronectin (FN), PAI-1, miR-455-3p and Wnt2B, IL-6, TNF-α mRNA level. Ellisa was used to examine the expression level of IL-6, TNF-α in the cell culture medium. Western blotting was employed to detect the protein level of Col. I, Col. IV, FN, PAI-1, Wnt2B, β-catenin and cyclin D1. Cell viability was examined by MTT assay, luciferase reporter assay were used to determine the relationship between Hottip, miR-455-3p and Wnt2B. In the results, Hottip and Wnt2B was upregulated in db/db DN mice and high-glucose treated mouse mesangial cells (MMCs) while miR-455-3p was downregulated. High glucose treatment could enhance cell proliferation, and inflammation, increase fibrosis-related protein expression and active Wnt2B/β-catenin/cyclin D1 pathway, while Hottip silencing reversed all the effects caused by high-glucose treatment. miR-455-3p was a sponge target of Hottip while Wnt2B was a downstream target of miR-445-3p. miR-445-3p inhibitor could suppress the effect of Hottip knockdown in cell proliferation, inflammation and fibrosis-related protein expression. Our data supported lncRNA Hottip/miR-455-3p/Wnt2B axis plays an important role in cell proliferation, inflammation, and extracellular matrix (ECM) accumulation in diabetic nephropathy.
Collapse
Affiliation(s)
- Xiang-Jun Zhu
- Department of Nephrology, Yancheng City No. 1 People's Hospital Yancheng, Jiangsu, China
| | - Zhaung Gong
- Department of Nephrology, Yancheng City No. 1 People's Hospital Yancheng, Jiangsu, China
| | - Shu-Juan Li
- Department of Nephrology, Yancheng City No. 1 People's Hospital Yancheng, Jiangsu, China
| | - Hai-Ping Jia
- Department of Nephrology, Yancheng City No. 1 People's Hospital Yancheng, Jiangsu, China
| | - Da-Lin Li
- Department of Nephrology, Yancheng City No. 1 People's Hospital Yancheng, Jiangsu, China
| |
Collapse
|
31
|
Stefan-Lifshitz M, Karakose E, Cui L, Ettela A, Yi Z, Zhang W, Tomer Y. Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes. JCI Insight 2019; 4:126663. [PMID: 30721151 DOI: 10.1172/jci.insight.126663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β cells. Mounting evidence supports a central role for β cell alterations in triggering the activation of self-reactive T cells in T1D. However, the early deleterious events that occur in β cells, underpinning islet autoimmunity, are not known. We hypothesized that epigenetic modifications induced in β cells by inflammatory mediators play a key role in initiating the autoimmune response. We analyzed DNA methylation (DNAm) patterns and gene expression in human islets exposed to IFN-α, a cytokine associated with T1D development. We found that IFN-α triggers DNA demethylation and increases expression of genes controlling inflammatory and immune pathways. We then demonstrated that DNA demethylation was caused by upregulation of the exoribonuclease, PNPase old-35 (PNPT1), which caused degradation of miR-26a. This in turn promoted the upregulation of ten-eleven translocation 2 (TET2) enzyme and increased 5-hydroxymethylcytosine levels in human islets and pancreatic β cells. Moreover, we showed that specific IFN-α expression in the β cells of IFNα-INS1CreERT2 transgenic mice led to development of T1D that was preceded by increased islet DNA hydroxymethylation through a PNPT1/TET2-dependent mechanism. Our results suggest a new mechanism through which IFN-α regulates DNAm in β cells, leading to changes in expression of genes in inflammatory and immune pathways that can initiate islet autoimmunity in T1D.
Collapse
Affiliation(s)
- Mihaela Stefan-Lifshitz
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Lingguang Cui
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Abora Ettela
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yaron Tomer
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
32
|
Szrejder M, Piwkowska A. AMPK signalling: Implications for podocyte biology in diabetic nephropathy. Biol Cell 2019; 111:109-120. [DOI: 10.1111/boc.201800077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| |
Collapse
|
33
|
Assmann TS, Recamonde-Mendoza M, Costa AR, Puñales M, Tschiedel B, Canani LH, Bauer AC, Crispim D. Circulating miRNAs in diabetic kidney disease: case-control study and in silico analyses. Acta Diabetol 2019; 56:55-65. [PMID: 30167868 DOI: 10.1007/s00592-018-1216-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to investigate a miRNA expression profile in type 1 diabetes mellitus (T1DM) patients with DKD (cases) or without this complication (controls). METHODS Expression of 48 miRNAs was screened in plasma of 58 T1DM patients (23 controls, 18 with moderate DKD, and 17 with severe DKD) using TaqMan Low Density Array cards (Thermo Fisher Scientific). Then, five of the dysregulated miRNAs were selected for validation in an independent sample of 10 T1DM controls and 19 patients with DKD (10 with moderate DKD and 9 with severe DKD), using RT-qPCR. Bioinformatic analyses were performed to explore the putative target genes and biological pathways regulated by the validated miRNAs. RESULTS Among the 48 miRNAs investigated in the screening analysis, 9 miRNAs were differentially expressed between DKD cases and T1DM controls. Among them, the five most dysregulated miRNAs were chosen for validation in an independent sample. In the validation sample, miR-21-3p and miR-378-3p were confirmed to be upregulated in patients with severe DKD, while miR-16-5p and miR-29a-3p were downregulated in this group compared to T1DM controls and patients with moderate DKD. MiR-503-3p expression was not validated. Bioinformatic analyses indicate that the four validated miRNAs regulate genes from PI3K/Akt, fluid shear stress and atherosclerosis, AGE-RAGE, TGF-β1, and relaxin signaling pathways. CONCLUSIONS Our study found four miRNAs differentially expressed in patients with severe DKD, providing significant information about the biological pathways in which they are involved.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Aline R Costa
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Márcia Puñales
- Instituto da Criança com Diabetes, Hospital Nossa Senhora da Conceição, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Balduíno Tschiedel
- Instituto da Criança com Diabetes, Hospital Nossa Senhora da Conceição, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Luís H Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street 2350, Building 12; 4th floor, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
- Postgraduation Program in Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
34
|
A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:49-79. [PMID: 31399961 DOI: 10.1007/978-981-13-8871-2_4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a common kidney disease in people with diabetes, which is also a serious microvascular complication of diabetes and the main cause of end-stage renal disease (ESRD) in developed and developing countries. Renal fibrosis is a finally pathological change in DN. Nevertheless, the relevant mechanism of cause to renal fibrosis in DN is still complex. In this review, we summarized that the role of cell growth factors, epithelial-mesenchymal transition (EMT) in the renal fibrosis of DN, we also highlighted the miRNA and inflammatory cells, such as macrophage, T lymphocyte, and mastocyte modulate the progression of DN. In addition, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules, such as Notch, Wnt, mTOR, Epac-Rap-1 pathway, may play a pivotal role in the modulation of ECM accumulation and renal fibrosis in DN. This review aims to elucidate the mechanism of renal fibrosis in DN and has provided new insights into possible therapeutic interventions to inhibit renal fibrosis and delay the development of DN.
Collapse
|
35
|
Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: Systematic review and bioinformatic analysis. Mol Cell Endocrinol 2018; 477:90-102. [PMID: 29902497 DOI: 10.1016/j.mce.2018.06.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Emerging evidence has suggested a role for miRNAs in the development of diabetic kidney disease (DKD), indicating that miRNAs may represent potential biomarkers of this disease. However, results are still inconclusive. Therefore, we performed a systematic review of the literature on the subject, followed by bioinformatic analysis. PubMed and EMBASE were searched to identify all studies that compared miRNA expressions between patients with DKD and diabetic patients without this complication or healthy subjects. MiRNA expressions were analyzed in kidney biopsies, urine/urinary exosomes or total blood/plasma/serum. MiRNAs consistently dysregulated in DKD patients were submitted to bioinformatic analysis to retrieve their putative target genes and identify potentially affected pathways under their regulation. As result, twenty-seven studies were included in the systematic review. Among 151 dysregulated miRNAs reported in these studies, 6 miRNAs were consistently dysregulated in DKD patients compared to controls: miR-21-5p, miR-29a-3p, miR-126-3p, miR-192-5p, miR-214-3p, and miR-342-3p. Bioinformatic analysis indicated that these 6 miRNAs are involved in pathways related to DKD pathogenesis, such as apoptosis, fibrosis, and extracellular matrix accumulation. In conclusion, six miRNAs seem to be dysregulated in patients with different stages of DKD, constituting potential biomarkers of this disease.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Bioinformatics Core, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Postgraduation Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
36
|
Gondaliya P, Dasare A, Srivastava A, Kalia K. miR29b regulates aberrant methylation in In-Vitro diabetic nephropathy model of renal proximal tubular cells. PLoS One 2018; 13:e0208044. [PMID: 30496316 PMCID: PMC6264835 DOI: 10.1371/journal.pone.0208044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of DNA methylation has not been enough explored in pathophysiology of diabetic nephropathy (DN). However, according to recent reports it has been inferred that hypermethylation could be one of the principle cause associated with the enhancement of DN. An interrelationship between miR29b and DNA methylation has been studied via in-silico analysis. We have validated that miR29b prominently targets DNA methyl transferase (DNMT), specifically DNMT1, DNMT3A and DNMT3B. We have developed in vitro DN model using renal proximal tubule epithelial cells (RPTECs), contributed to a significant alleviation in RNA and protein expression levels of DNMT3A, DNMT3B and DNMT1. The developed model has also demonstrated downregulation in expression of miR29b. Our studies have also suggested that miR29b targets DNMT1 via targeting its transcription factor SP1. In addition to this, downregulation of a specific biomarker for kidney injury, tubular kidney injury molecule-1 (KIM-1) and fibrosis causing glycoprotein i.e. fibronectin, was also demonstrated. Hence, the developed model revealed that hypermethylation is a key factor incorporated in DN, and miR29b could effectively ameliorate defensive actions in DN pathogenesis.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad
| | - Aishwarya Dasare
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research- Ahmedabad
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad
| |
Collapse
|
37
|
Yan Y, Ye D, Yang L, Ye W, Zhan D, Zhang L, Xiao J, Zeng Y, Chen Q. A meta-analysis of the association between diabetic patients and AVF failure in dialysis. Ren Fail 2018; 40:379-383. [PMID: 29724122 PMCID: PMC6014481 DOI: 10.1080/0886022x.2018.1456464] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2017] [Accepted: 03/15/2018] [Indexed: 01/29/2023] Open
Abstract
PURPOSE The most preferable vascular access for patients with end-stage renal failure needing hemodialysis is native arteriovenous fistula (AVF) on account of its access longevity, patient morbidity, hospitalization costs, lower risks of infection and fewer incidence of thrombotic complications. Meanwhile, according to National Kidney Foundation (NKF)̸Dialysis Out-comes Quality Initiative (DOQI) guidelines, AVF is more used than before. However, a significant percentage of AVF fails to support dialysis therapy due to lack of adequate maturity. Among all factors, the presence of diabetes mellitus was shown to be one of the risk factors for the development of vascular access failure by some authors. Therefore, this review evaluates the current evidence concerning the correlation of diabetes and AVF failure. METHODS A search was conducted using MEDLINE, SCIENCE DIRECT, SPRINGER, WILEY-BLACKWELL, KARGER, EMbase, CNKI and WanFang Data from the establishment time of databases to January 2016. The analysis involved studies that contained subgroups of diabetic patients and compared their outcomes with those of non-diabetic adults. In total, 23 articles were retrieved and included in the review. RESULTS The meta-analysis revealed a statistically significantly higher rate of AVF failure in diabetic patients compared with non-diabetic patients (OR = 1.682; 95% CI, 1.429-1.981, Test of OR = 1: z = 6.25, p <.001). CONCLUSIONS This review found an increased risk of AVF failure in diabetes patients. If confirmed by further prospective studies, preventive measure should be considered when planning AVF in diabetic patients.
Collapse
Affiliation(s)
- Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Dan Ye
- Jiangxi Medical College of Nanchang University, Jiangxi, People’s Republic of China
| | - Liu Yang
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Wen Ye
- Jiangxi Medical College of Nanchang University, Jiangxi, People’s Republic of China
| | - Dandan Zhan
- Jiangxi Medical College of Nanchang University, Jiangxi, People’s Republic of China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jun Xiao
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yan Zeng
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Qinkai Chen
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
38
|
Hu X, Liu W, Yan Y, Liu H, Huang Q, Xiao Y, Gong Z, Du J. Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. Eur J Pharmacol 2018; 845:91-98. [PMID: 30287151 DOI: 10.1016/j.ejphar.2018.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been suggested to harbor multiple biological activities, among them the potential of vitamin D in the protection of diabetic nephropathy (DN) has attracted special attention. Both animal studies and clinical trials have documented an inverse correlation between low vitamin D levels and DN risk, and supplementation with vitamin D or its active derivatives has been demonstrated to improve endothelial cell injury, reduce proteinuria, attenuate renal fibrosis, and resultantly retard DN progression. Vitamin D exerts its pharmacological effects primarily via vitamin D receptor, whose activation inhibits the renin-angiotensin system, a key culprit for DN under hyperglycemia. The anti-DN benefit of vitamin D can be enhanced when administrated in combination with angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. Mechanistic studies reveal that pathways relevant to inflammation participate in the pathogenesis of DN, however, consumption of vitamin D-related products negatively regulates inflammatory response at multiple levels, indicated by inhibiting macrophage infiltration, nuclear factor-kappa B (NF-κB) activation, and production of such inflammatory mediators as transforming growth factor-β(TGF-β), monocyte chemoattractant protein 1(MCP-1), and regulated upon activation normal T cell expressed and secreted protein(RANTES). The robust anti-inflammatory property of vitamin D-related products allows them with a promising renoprotective therapeutic option for DN. This review summarizes new advances in our understanding of vitamin D-related products in the DN management.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wanli Liu
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 410013, Henan, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
39
|
Abstract
Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. Given the increasing incidence of diabetes, many experts hold the view that DN will eventually progress toward pandemic proportions. Whilst hyperglycaemia-induced vascular dysfunction is the primary initiating mechanism in DN, its progression is also driven by a heterogeneous set of pathological mechanisms, including oxidative stress, inflammation and fibrosis. Current treatment strategies for DN are targeted against the fundamental dysregulation of glycaemia and hypertension. Unfortunately, these standards of care can delay but do not prevent disease progression or the significant emotional, physical and financial costs associated with this disease. As such, there is a pressing need to develop novel therapeutics that are both effective and safe. Set against the genomic era, numerous potential target pathways in DN have been identified. However, the clinical translation of basic DN research has been met with a number of challenges. Moreover, the notion of DN as a purely vascular disease is outdated and it has become clear that DN is a multi-dimensional, multi-cellular condition. The review will highlight the current therapeutic approaches for DN and provide an insight into how the inherent complexity of DN is shaping the research pathways toward the development and clinical translation of novel therapeutic strategies.
Collapse
|
40
|
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 2018; 51:9. [PMID: 29604956 PMCID: PMC5878418 DOI: 10.1186/s40659-018-0157-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, contributing to severe morbidity and mortality in diabetic patients. Berberine (BBR) has been well characterized to exert renoprotective effects in DN progression. However, the action mechanism of BBR in DN remains to be fully understood. METHODS The DN rat model was generated by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) while 30 mM high glucose (HG)-treated podocytes were used as an in vitro DN model. The fasting blood glucose level and ratio of kidney weight to body weight were measured after BBR treatment (50, 100, or 200 mg/kg) in STZ-induced DN rats. The renal injury parameters including 24-h urinary protein, blood urea nitrogen and serum creatinine were assessed. qRT-PCR was performed to detect the transcript amounts of inflammatory factors. The concentrations of inflammatory factors were evaluated by ELISA kits. Western blot analysis was conducted to measure the amounts of TLR4/NF-κB-related proteins. The apoptotic rate of podocytes was analyzed by flow cytometry using Annexin V/propidium iodide. RESULTS Berberine reduced renal injury in STZ-induced DN rat model, as evidenced by the decrease in fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, and blood urine nitrogen. BBR attenuated the systemic and renal cortex inflammatory response and inhibited TLR4/NF-κB pathway in STZ-induced DN rats and HG-induced podocytes. Also, HG-induced apoptosis of podocytes was lowered by BBR administration. Furthermore, blockade of TLR4/NF-κB pathway by resatorvid (TAK-242) or pyrrolidine dithiocarbamate aggravated the inhibitory effect of BBR on HG-induced inflammatory response and apoptosis in podocytes. CONCLUSIONS Berberine ameliorated DN through relieving STZ-induced renal injury, inflammatory response, and podocyte HG-induced apoptosis via inactivating TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Jiakai Han
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Rongrong Yuan
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Lei Xue
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China
| | - Wuyan Pang
- Department of Endocrinology, Huaihe Hospital of Henan University, No.115 Ximen Street, Gulou District, Kaifeng, 475000, China.
| |
Collapse
|
41
|
Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. Front Med 2017; 11:319-332. [PMID: 28871454 DOI: 10.1007/s11684-017-0569-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial-mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte-endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanyu Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, 100853, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
42
|
Krishnananthasivam S, Jayathilaka N, Sathkumara HD, Corea E, Natesan M, De Silva AD. Host gene expression analysis in Sri Lankan melioidosis patients. PLoS Negl Trop Dis 2017; 11:e0005643. [PMID: 28628607 PMCID: PMC5498071 DOI: 10.1371/journal.pntd.0005643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/05/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Melioidosis is a life threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei predominantly found in southeast Asia and northern Australia. Studying the host transcription profiles in response to infection is crucial for understanding disease pathogenesis and correlates of disease severity, which may help improve therapeutic intervention and survival. The aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease biomarkers, compared to healthy individuals and patients with sepsis caused by other pathogens. METHODS The study population consisted of 30 melioidosis cases, 10 healthy controls and 10 sepsis cases caused by other pathogens. Total RNA was extracted from peripheral blood mononuclear cells (PBMC's) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by real time quantitative polymerase chain reaction (RT-qPCR). PRINCIPAL FINDINGS Inflammatory response genes; TLR4, late onset inflammatory mediator HMGB1, genes associated with antigen presentation; MICB, PSMB2, PSMB8, PSME2, epigenetic regulators; DNMT3B, HDAC1, HDAC2 were significantly down regulated, whereas the anti-inflammatory gene; IL4 was up regulated in melioidosis patients compared to sepsis cases caused by other pathogens. Septicaemic melioidosis cases showed significant down regulation of IL8 compared to sepsis cases caused by other pathogens. HMGB1, MICB, PSMB8, PSMB2, PSME2, HDAC1, HDAC2 and DNMT3B showed consistent down regulation of gene expression in melioidosis patients compared to other sepsis infection, irrespective of comorbidities such as diabetes, duration of clinical symptoms and antibiotic treatment. SIGNIFICANCE Specific immune response genes and epigenetic regulators are differentially expressed among melioidosis patients and patients with sepsis caused by other pathogens. Therefore, these genes may serve as biomarkers for disease diagnosis to distinguish melioidosis from cases of sepsis due to other infections and therapeutic intervention for melioidosis.
Collapse
Affiliation(s)
| | - Nimanthi Jayathilaka
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Enoka Corea
- Department of Microbiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Mohan Natesan
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Aruna Dharshan De Silva
- Genetech Research Institute, Colombo, Sri Lanka
- Division of Vaccine Discovery, La Jolla Institute of Allergy and Immunology, La Jolla, CA, United States of America
| |
Collapse
|
43
|
Gene Expression Profile of Human Cytokines in Response to Burkholderia pseudomallei Infection. mSphere 2017; 2:mSphere00121-17. [PMID: 28435890 PMCID: PMC5397567 DOI: 10.1128/msphere.00121-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Melioidosis is an underreported infectious disease, caused by the Gram-negative bacterium Burkholderia pseudomallei. Understanding the disease susceptibility and pathogenesis is crucial for developing newer diagnostic and therapeutic strategies for this life-threatening infection. In this study, we aimed to analyze the gene expression levels of important cytokines in melioidosis patients and establish useful correlates with disease biomarkers compared to cases of sepsis infection caused by other pathogens and healthy individuals. A Qiagen common human cytokines array profiling the gene expression of 84 important cytokines by real-time quantitative PCR (RT-qPCR) was used. We analyzed 26 melioidosis cases, 5 healthy controls, and 10 cases of sepsis infection caused by other pathogens. Our results showed consistently upregulated expression of interleukins (IL) interleukin-4 (IL-4), interleukin-17 alpha (IL-17A), IL-23A, and IL-24, interferons (IFN) interferon alpha 1 (IFNA1) and interferon beta 1 (IFNB1), tumor necrosis factor (TNF) superfamily 4 (TNFSF4), transforming growth factor (TGF) superfamily, bone morphogenetic proteins 3 and 6 (BMP3 and BMP6), transforming growth factor beta 1 (TGFB1), and other growth factors, including macrophage colony-stimulating factor (M-CSF), C-fos-induced growth factor (FIGF), and platelet-derived growth factor alpha (PDGFA) polypeptide, in melioidosis patients compared to their expression in other sepsis cases, irrespective of comorbidities, duration of fever/clinical symptoms, and antibiotic treatment. Our findings indicate a dominant Th2- and Th17-type-cytokine response, suggesting that their dysregulation at initial stages of infection may play an important role in disease pathogenesis. IL-1A, interleukin-1 beta (IL-1B), and IL-8 were significantly downregulated in septicemic melioidosis patients compared to their expression in other sepsis cases. These differentially expressed genes may serve as biomarkers for melioidosis diagnosis and targets for therapeutic intervention and may help us understand immune response mechanisms. IMPORTANCE Melioidosis is a life-threatening infectious disease caused by a soil-associated Gram-negative bacterium, B. pseudomallei. Melioidosis is endemic in Southeast Asia and northern Australia; however, the global distribution of B. pseudomallei and the disease burden of melioidosisis are still poorly understood. Melioidosis is difficult to treat, as B. pseudomallei is intrinsically resistant to many antibiotics and requires a long course of antibiotic treatment. The mortality rates remain high in areas of endemicity, with reoccurrence being common. Therefore, it is imperative to diagnose the disease at an early stage and provide vital clinical care to reduce the mortality rate. With limitations in treatment and lack of a vaccine, it is crucial to study the immune response mechanisms to this infection to get a better understanding of disease susceptibility and pathogenesis. Therefore, this study aimed to analyze the gene expression levels of important cytokines to establish useful correlations for diagnostic and therapeutic purposes.
Collapse
|
44
|
Sharma I, Dutta RK, Singh NK, Kanwar YS. High Glucose-Induced Hypomethylation Promotes Binding of Sp-1 to Myo-Inositol Oxygenase: Implication in the Pathobiology of Diabetic Tubulopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:724-739. [PMID: 28208054 DOI: 10.1016/j.ajpath.2016.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/24/2022]
Abstract
The catabolic enzyme myo-inositol oxygenase (MIOX) is expressed in proximal tubules and up-regulated in the diabetic state. Previously, we reported its transcriptional and translation regulation by high glucose (HG), osmolytes, and fatty acids. However, its epigenetic regulation is unknown. Bisulfite sequencing revealed that both human and mouse MIOX promoters, enriched with CpG sites, are hypomethylated and unmethylated under HG ambience and hyperglycemic states associated with increased MIOX expression. Eletrophoretic mobility shift assays revealed increased binding of unmethylated oligos with nucleoproteins of cells maintained under HG. In addition, a strong binding of specificity protein (Sp)-1 transcription factor with MIOX promoter was observed under HG, especially with unmethylated Sp-1 oligo. Specificity of binding was established by supershift assays and treatment with the Sp-1 inhibitor mithramycin. Promoter analysis revealed an increase in luciferase activity under HG, which was reduced after mutation of the Sp-1-binding site. Sp1 siRNA treatment reduced mRNA and protein expression of Sp-1 and MIOX and generation of reactive oxygen species derived from NADPH oxidase (NOX)-4 and mitochondrial sources. In addition, there was reduced expression of hypoxia-inducible factor-1α relevant in the pathogenesis of diabetic nephropathy. Sp1 siRNA treatment reduced fibronectin expression, an extracellular matrix protein that is increased in diabetic nephropathy and tubulopathy. HG-induced MIOX expression was also reduced with the treatment of apelin-13, which deacetylates histones. Overall, these findings highlight the epigenetic regulation of MIOX in the pathogenesis of diabetic tubulopathy.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Rajesh K Dutta
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Neel K Singh
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois; Department of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
45
|
Li F, Zhang N, Li Z, Deng L, Zhang J, Zhou Y. Toll-like receptor 2 agonist exacerbates renal injury in diabetic mice. Exp Ther Med 2017; 13:495-502. [PMID: 28352321 PMCID: PMC5348689 DOI: 10.3892/etm.2017.4031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation is implicated in the pathogenesis of diabetic nephropathy (DN). Toll-like receptor 2 (TLR2) is a ligand-activated membrane-bound receptor, which induces an inflammatory response, thus serving a crucial role in the pathogenesis of DN. The present study aimed to determine whether a TLR2 agonist, Pam3CysSK4, modulates the development of DN. A mouse model of DN was induced using streptozotocin (STZ) and, following the confirmation of hyperglycemia, mice were treated with or without Pam3CysSK4. Pathological and functional markers, including the activation of nuclear factor (NF)-κB, expression of TLR2, inflammatory infiltration, myeloid differentiation primary response gene 88 and monocyte chemoattractant protein-1 were assessed. STZ-treated mice exhibited elevated blood glucose levels and increased serum creatinine levels, which increased further following Pam3CysSK4 treatment. In addition, Pam3CysSK4 treatment was observed to increase podocyte foot process formation. Furthermore, STZ-induced renal glomerular sclerosis was significantly exacerbated in Pam3CysSK4-treated mice. Pam3CysSK4-treated mice also exhibited increased levels of collagen IV following renal immunostaining, associated with increased macrophage infiltration. Renal expression of TLR2 was markedly elevated in STZ-induced mice; this was further increased in Pam3CysSK4-treated mice, accompanied by upregulation of proinflammatory genes and activation of NF-κB. This indicates that enhanced renal expression of TLR2 is associated with inflammatory infiltration in DN and demonstrates that renal injury was exacerbated by the TLR2 agonist in diabetic mice.
Collapse
Affiliation(s)
- Fanglin Li
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China; Division of Internal Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Ningyu Zhang
- Division of Internal Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Zhiming Li
- Division of Internal Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Lihua Deng
- Division of Internal Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Jianjie Zhang
- Division of Internal Medicine, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518001, P.R. China
| | - Yunfeng Zhou
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
46
|
Sun J, Wang Y, Cui W, Lou Y, Sun G, Zhang D, Miao L. Role of Epigenetic Histone Modifications in Diabetic Kidney Disease Involving Renal Fibrosis. J Diabetes Res 2017; 2017:7242384. [PMID: 28695133 PMCID: PMC5485509 DOI: 10.1155/2017/7242384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
One of the commonest causes of end-stage renal disease is diabetic kidney disease (DKD). Renal fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins in glomerular basement membranes and the tubulointerstitium, is the final manifestation of DKD. The TGF-β pathway triggers epithelial-to-mesenchymal transition (EMT), which plays a key role in the accumulation of ECM proteins in DKD. DCCT/EDIC studies have shown that DKD often persists and progresses despite glycemic control in diabetes once DKD sets in due to prior exposure to hyperglycemia called "metabolic memory." These imply that epigenetic factors modulate kidney gene expression. There is evidence to suggest that in diabetes and hyperglycemia, epigenetic histone modifications have a significant effect in modulating renal fibrotic and ECM gene expression induced by TGF-β1, as well as its downstream profibrotic genes. Histone modifications are also implicated in renal fibrosis through its ability to regulate the EMT process triggered by TGF-β signaling. In view of this, efforts are being made to develop HAT, HDAC, and HMT inhibitors to delay, stop, or even reverse DKD. In this review, we outline the latest advances that are being made to regulate histone modifications involved in DKD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Guangdong Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Dongmei Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
- *Lining Miao:
| |
Collapse
|
47
|
Abstract
Bioactive electrophiles generated from the oxidation of endogenous and exogenous compounds are a contributing factor in numerous disease states. Their toxicity is largely attributed to the covalent modification of cellular nucleophiles, including protein and DNA. With regard to protein modification, the side-chains of Cys, His, Lys, and Arg residues are critical targets. This results in the generation of undesired protein post-translational modifications (PTMs) that can trigger dire cellular consequences. Notably, histones are Lys- and Arg-rich proteins, providing a fertile source for adduction by both exogenous and endogenous electrophiles. The regulation of histone PTMs plays a critical role in the regulation of chromatin structure and thus gene expression. This perspective focuses on the role of electrophilic protein adduction within the context of chromatin and its potential consequences on cellular law and order.
Collapse
Affiliation(s)
- James J Galligan
- Department of Biochemistry, ‡Department of Chemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Lawrence J Marnett
- Department of Biochemistry, ‡Department of Chemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
48
|
Lizotte F, Denhez B, Guay A, Gévry N, Côté AM, Geraldes P. Persistent Insulin Resistance in Podocytes Caused by Epigenetic Changes of SHP-1 in Diabetes. Diabetes 2016; 65:3705-3717. [PMID: 27585521 DOI: 10.2337/db16-0254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022]
Abstract
Poor glycemic control profoundly affects protein expression and the cell signaling action that contributes to glycemic memory and irreversible progression of diabetic nephropathy (DN). We demonstrate that SHP-1 is elevated in podocytes of diabetic mice, causing insulin unresponsiveness and DN. Thus, sustained SHP-1 expression caused by hyperglycemia despite systemic glucose normalization could contribute to the glycemic memory effect in DN. Microalbuminuria, glomerular filtration rate, mesangial cell expansion, and collagen type IV and transforming growth factor-β expression were significantly increased in diabetic Ins2+/C96Y mice compared with nondiabetic Ins2+/+ mice and remained elevated despite glucose normalization with insulin implants. A persistent increase of SHP-1 expression in podocytes despite normalization of systemic glucose levels was associated with sustained inhibition of the insulin signaling pathways. In cultured podocytes, high glucose levels increased mRNA, protein expression, and phosphatase activity of SHP-1, which remained elevated despite glucose concentration returning to normal, causing persistent insulin receptor-β inhibition. Histone posttranslational modification analysis showed that the promoter region of SHP-1 was enriched with H3K4me1 and H3K9/14ac in diabetic glomeruli and podocytes, which remained elevated despite glucose level normalization. Hyperglycemia induces SHP-1 promoter epigenetic modifications, causing its persistent expression and activity and leading to insulin resistance, podocyte dysfunction, and DN.
Collapse
MESH Headings
- Animals
- Cell Line
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Epigenesis, Genetic/genetics
- Glomerular Filtration Rate/physiology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Immunohistochemistry
- Insulin Resistance/genetics
- Insulin Resistance/physiology
- Kidney Glomerulus/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Podocytes/metabolism
- Promoter Regions, Genetic/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Farah Lizotte
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Denhez
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andréanne Guay
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anne Marie Côté
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Nephrology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Geraldes
- Research Center of CHU de Sherbrooke and Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Division of Endocrinology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
49
|
Cui Y, Liu N, Ma F, Sun W, Wu H, Xu Z, Yuan H. Role of histone modification in 12‑lipoxygenase‑associated p21 gene regulation. Mol Med Rep 2016; 14:3978-84. [PMID: 27600103 DOI: 10.3892/mmr.2016.5724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/21/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to examine the impacts and mechanisms of 12‑lipoxygenase (12‑LO) and its metabolites on the acetylation and methylation of histone‑3‑lysine (H3K) in the p21 gene. Rat mesangial cells (MCs) were selected for use in the present study. A chromatin immunoprecipitation assay, reverse transcription‑quantitative polymerase chain reaction analysis and a luciferase assay were used to detect transcriptional activities, the acetylation (Ac) of H3K (H3KAc), p21 promoter methylation (Me) and the transcription regions induced by 12 (S)‑hydroxyeicosatetraenoic acid (HETE). The cells were transfected to induce the overexpression of p300 to examine changes in 12 (S)‑HETE‑associated p21 regulation and epigenetic modifications. 12 (S)‑HETE enhanced p21 transcriptional activity and mRNA expression. In the promoter regions, P1 and P2, and the T1 transcription region, 12 (S)‑HETE induced significant H3K9 Ac and H3K4 Me1 epigenetic modifications, however, no changes were observed in the T2 region. By contrast, 12 (S)‑HETE treatment markedly prevented H3K9Me3 at the p21 promoter, suggesting that complex Me was involved in 12 (S)‑HETE‑associated p21 regulation. Furthermore, the overexpression of p300 markedly enhanced basal and 12 (S)‑HETE‑associated p21 transcriptional regulation in the MCs. 12 (S)‑HETE treatment also induced histone acetyltransferase p300 occupancy in the p21 promoter, and reduced the nuclear expression and occupancy of lysine‑specific demethylase (LSD1) in the p21 promoter. 12 (S)‑HETE induced p300 occupancy, and reduced the nuclear expression and occupancy of LSD1 in the p21 promoter. Therefore, enhanced H3K9Ac and H3K4Me1 in the p21 promoter and transcription regions, and decreased H3K9Me3 in the p21 promoter increased the expression of p21.
Collapse
Affiliation(s)
- Yingchun Cui
- Department of Nephrology, Second Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nian Liu
- Center of Urology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fuzhe Ma
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weixia Sun
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hao Wu
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonggao Xu
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hang Yuan
- Department of Nephrology, First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
50
|
Morris JL, Bridson TL, Alim MA, Rush CM, Rudd DM, Govan BL, Ketheesan N. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes. Biol Open 2016; 5:1149-62. [PMID: 27402965 PMCID: PMC5004603 DOI: 10.1242/bio.016790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D.
Collapse
Affiliation(s)
- Jodie L Morris
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Tahnee L Bridson
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Md Abdul Alim
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Catherine M Rush
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Donna M Rudd
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Brenda L Govan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Natkunam Ketheesan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|