1
|
Elliott MJ, Fiest KM, Love S, Birdsell D, Loth M, Dumka H, Rana B, Shommu N, Benterud E, Gil S, Acharya D, Harrison TG, Pannu N, James MT. Patient Preferences and Priorities for the Design of an Acute Kidney Injury Prevention Trial: Findings from a Consensus Workshop. KIDNEY360 2024; 5:1455-1465. [PMID: 39146029 PMCID: PMC11556923 DOI: 10.34067/kid.0000000000000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Key Points For AKI prevention trial recruitment, patients prioritized technology enabled prescreening and involvement of family members in the consent process. For trial intervention delivery, participants prioritized measures to facilitate ease of trial intervention administration and return visits. For AKI prevention trial outcomes, patient participants identified effects on kidney-related and other clinical outcomes as top priorities. Background High-quality clinical trials are needed to establish the efficacy and safety of novel therapies for AKI prevention. In this consensus workshop, we identified patient and caregiver priorities for recruitment, intervention delivery, and outcomes of a clinical trial of cilastatin to prevent nephrotoxic AKI. Methods We included adults with lived experience of AKI, CKD, or risk factors of AKI (e.g ., critical care hospitalization) and their caregivers. Using a modified nominal group technique approach, we conducted a series of hybrid in-person/virtual discussions covering three clinical trial topic areas: (1 ) consent and recruitment, (2 ) intervention delivery, and (3 ) trial outcomes. Participants voted on their top preferences in each topic area, and discussion transcripts were analyzed inductively using conventional content analysis. Results Thirteen individuals (11 patients, two caregivers) participated in the workshop. For consent and recruitment, participants prioritized technology enabled prescreening and involvement of family members in the consent process. For intervention delivery, participants prioritized measures to facilitate ease of intervention administration and return visits. For trial outcomes, participants identified kidney-related and other clinical outcomes (e.g ., AKI, CKD, cardiovascular events) as top priorities. Analysis of transcripts provided insight into care team and family involvement in trial-related decisions, implications of allocation to a placebo arm, and impact of participants' experiences of AKI and critical illness. Conclusions Findings from our workshop will directly inform development of a clinical trial protocol of cilastatin for nephrotoxic AKI prevention and can assist others in patient-centered approaches to AKI trial design.
Collapse
Affiliation(s)
- Meghan J. Elliott
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kirsten M. Fiest
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shannan Love
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dale Birdsell
- Nephrology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Maureena Loth
- Nephrology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Heather Dumka
- Nephrology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Benny Rana
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nusrat Shommu
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleanor Benterud
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Gil
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dilaram Acharya
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tyrone G. Harrison
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Neesh Pannu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew T. James
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Lee B, Kim YY, Jeong S, Lee SW, Lee SJ, Rho MC, Kim SH, Lee S. Oleanolic Acid Acetate Alleviates Cisplatin-Induced Nephrotoxicity via Inhibition of Apoptosis and Necroptosis In Vitro and In Vivo. TOXICS 2024; 12:301. [PMID: 38668524 PMCID: PMC11054587 DOI: 10.3390/toxics12040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Bori Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Yeon-Yong Kim
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seungwon Jeong
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung Woong Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung-Jae Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Mun-Chual Rho
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| |
Collapse
|
3
|
Legrand M, Bagshaw SM, Koyner JL, Schulman IH, Mathis MR, Bernholz J, Coca S, Gallagher M, Gaudry S, Liu KD, Mehta RL, Pirracchio R, Ryan A, Steubl D, Stockbridge N, Erlandsson F, Turan A, Wilson FP, Zarbock A, Bokoch MP, Casey JD, Rossignol P, Harhay MO. Optimizing the Design and Analysis of Future AKI Trials. J Am Soc Nephrol 2022; 33:1459-1470. [PMID: 35831022 PMCID: PMC9342638 DOI: 10.1681/asn.2021121605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AKI is a complex clinical syndrome associated with an increased risk of morbidity and mortality, particularly in critically ill and perioperative patient populations. Most AKI clinical trials have been inconclusive, failing to detect clinically important treatment effects at predetermined statistical thresholds. Heterogeneity in the pathobiology, etiology, presentation, and clinical course of AKI remains a key challenge in successfully testing new approaches for AKI prevention and treatment. This article, derived from the "AKI" session of the "Kidney Disease Clinical Trialists" virtual workshop held in October 2021, reviews barriers to and strategies for improving the design and implementation of clinical trials in patients with, or at risk of, developing AKI. The novel approaches to trial design included in this review span adaptive trial designs that increase the knowledge gained from each trial participant; pragmatic trial designs that allow for the efficient enrollment of sufficiently large numbers of patients to detect small, but clinically significant, treatment effects; and platform trial designs that use one trial infrastructure to answer multiple clinical questions simultaneously. This review also covers novel approaches to clinical trial analysis, such as Bayesian analysis and assessing heterogeneity in the response to therapies among trial participants. We also propose a road map and actionable recommendations to facilitate the adoption of the reviewed approaches. We hope that the resulting road map will help guide future clinical trial planning, maximize learning from AKI trials, and reduce the risk of missing important signals of benefit (or harm) from trial interventions.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California San Francisco, San Francisco, California
- French Clinical Research Infrastructure Network, Investigation Network Initiative Cardiovascular and Renal Trialists, Nancy, France
| | - Sean M. Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jay L. Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ivonne H. Schulman
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael R. Mathis
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Steven Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Martin Gallagher
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Stéphane Gaudry
- French Clinical Research Infrastructure Network, Investigation Network Initiative Cardiovascular and Renal Trialists, Nancy, France
- Département de Réanimation, Medical and surgical intensive care unit, Assistance Publique-Hôpitaux de Paris Hôpital Avicenne, Bobigny, France
- Common and Rare Kidney Diseases, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1155, Paris, France
| | - Kathleen D. Liu
- Divisions of Nephrology and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Ravindra L. Mehta
- Department of Medicine, University of California San Diego, San Diego, California
| | - Romain Pirracchio
- Department of Anesthesia and Perioperative Medicine, University of California San Francisco, San Francisco, California
| | - Abigail Ryan
- Division of Chronic Care Management, Chronic Care Policy Group, Center for Medicare, Center for Medicare and Medicaid Services, Baltimore, Maryland
| | - Dominik Steubl
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Norman Stockbridge
- Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Alparslan Turan
- Department of Anesthesiology, Lerner College of Medicine of Case Western University, Cleveland, Ohio
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| | - F. Perry Wilson
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Michael P. Bokoch
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan D. Casey
- Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick Rossignol
- French Clinical Research Infrastructure Network, Investigation Network Initiative Cardiovascular and Renal Trialists, Nancy, France
- University of Lorraine, INSERM CIC 1433, Nancy, France
- Nancy CHRU, INSERM U1116, Nancy, French national institute of Health and Medical Research, unit 1116, Nancy, France
| | - Michael O. Harhay
- Clinical Trials Methods and Outcomes Laboratory, PAIR (Palliative and Advanced Illness Research) Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Coca SG. Acute Changes in Serum Creatinine Are Not a Meaningful Metric in Randomized Controlled Trials and Clinical Care. Nephron Clin Pract 2022; 147:57-60. [PMID: 35835005 DOI: 10.1159/000525521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Acute changes in serum creatinine are labeled clinically as acute kidney injury (AKI). However, not all acute changes in serum creatinine are deleterious and need to be acted upon. SUMMARY Intravenous fluids in response to AKI should be judiciously administered, and volume overload should be avoided. Since congestion is the driver of poor outcomes in patients with acute decompensated heart failure and must be managed, AKI that occurs at the expense of decongestion does not confer increased risk. We still do not have evidence of therapies that reduce AKI which will translate into any meaningful improvements in clinical outcomes. Finally, particularly in the setting of application of therapies designed to reduce cardiorenal risk, acute changes in serum creatinine are often in the opposite direction of the ultimate clinical outcomes, both renal and nonrenal. KEY MESSAGES Given the complexities and the nuance of acute changes in serum creatinine, it has ruled itself as an unreliable surrogate for randomized controlled trials and often hinders appropriate care in the clinical setting.
Collapse
Affiliation(s)
- Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Liu Z, Li X, Li X, Li Z, Chen H, Gong S, Zhang M, Zhang Y, Li Z, Yang L, Liu H. The kidney-expressed transcription factor ZKSCAN3 is dispensable for autophagy transcriptional regulation and AKI progression in mouse. Mutat Res 2022; 825:111790. [PMID: 35841832 DOI: 10.1016/j.mrfmmm.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Acute kidney injury (AKI) is a common clinical disease that can cause serious harm to the kidneys, but it has no effective treatment till now. The modulation of autophagy pathway regulation is considered a potentially effective therapeutic approach in AKI prevention and treatment. ZKSCAN3 has been shown to be an important transcription factor that negatively regulates autophagy activity in cancer tissues. In order to determine whether autophagy could be activated by knocking out ZKSCAN3 to exert the renal protective effect of autophagy, we constructed AKI models with Zkscan3 knockout (KO) mice and detected renal pathological changes and renal function changes as well as autophagy-related indicators. We found that Zkscan3 KO had no significant effect on kidney development. Besides, no significant changes in autophagy activity were observed under normal physiological or AKI conditions. In non-tumor tissues, ZKSCAN3 did not mediate transcriptional regulation of autophagy-related genes. These findings suggest that because ZKSCAN3 may not function in the transcriptional regulation of autophagy-related genes in non-tumor tissues, it may not be used as a therapeutic target for AKI.
Collapse
Affiliation(s)
- Zejian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhihang Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou 215127, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
6
|
Abstract
Acute kidney injury (AKI) is a complex syndrome with a paucity of therapeutic development. One aspect that could explain the lack of implementation science in the AKI field is the vast heterogeneity of the AKI syndrome, which hinders precise therapeutic applications for specific AKI subpopulations. In this context, there is a consensual focus of the scientific community toward the development and validation of tools to better subphenotype AKI and therefore facilitate precision medicine approaches. The subphenotyping of AKI requires the use of specific methodologies suitable for interrogation of multimodal data inputs from different sources such as electronic health records, organ support devices, and/or biospecimens and tissues. Over the past years, the surge of artificial intelligence applied to health care has yielded novel machine learning methodologies for data acquisition, harmonization, and interrogation that can assist with subphenotyping of AKI. However, one should recognize that although risk classification and subphenotyping of AKI is critically important, testing their potential applications is even more important to promote implementation science. For example, risk-classification should support actionable interventions that could ameliorate or prevent the occurrence of the outcome being predicted. Furthermore, subphenotyping could be applied to predict therapeutic responses to support enrichment and adaptive platforms for pragmatic clinical trials.
Collapse
|
7
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
8
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
9
|
Pak ES, Uddin MJ, Ha H. Inhibition of Src Family Kinases Ameliorates LPS-Induced Acute Kidney Injury and Mitochondrial Dysfunction in Mice. Int J Mol Sci 2020; 21:ijms21218246. [PMID: 33153232 PMCID: PMC7662942 DOI: 10.3390/ijms21218246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury (AKI), a critical syndrome characterized by a rapid decrease of kidney function, is a global health problem. Src family kinases (SFK) are proto-oncogenes that regulate diverse biological functions including mitochondrial function. Since mitochondrial dysfunction plays an important role in the development of AKI, and since unbalanced SFK activity causes mitochondrial dysfunction, the present study examined the role of SFK in AKI. Lipopolysaccharides (LPS) inhibited mitochondrial biogenesis and upregulated the expression of NGAL, a marker of tubular epithelial cell injury, in mouse proximal tubular epithelial (mProx) cells. These alterations were prevented by PP2, a pan SFK inhibitor. Importantly, PP2 pretreatment significantly ameliorated LPS-induced loss of kidney function and injury including inflammation and oxidative stress. The attenuation of LPS-induced AKI by PP2 was accompanied by the maintenance of mitochondrial biogenesis. LPS upregulated SFK, especially Fyn and Src, in mouse kidney as well as in mProx cells. These data suggest that Fyn and Src kinases are involved in the pathogenesis of LPS-induced AKI, and that inhibition of Fyn and Src kinases may have a potential therapeutic effect, possibly via improving mitochondrial biogenesis.
Collapse
Affiliation(s)
| | | | - Hunjoo Ha
- Correspondence: ; Tel.: +82-2-3277-4075; Fax: +82-2-3277-2851
| |
Collapse
|
10
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
11
|
Menshikh A, Scarfe L, Delgado R, Finney C, Zhu Y, Yang H, de Caestecker MP. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Am J Physiol Renal Physiol 2019; 317:F1383-F1397. [PMID: 31509009 PMCID: PMC6879932 DOI: 10.1152/ajprenal.00366.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.
Collapse
Affiliation(s)
- Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haichun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
Scarfe L, Menshikh A, Newton E, Zhu Y, Delgado R, Finney C, de Caestecker MP. Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2019; 317:F1068-F1080. [PMID: 31411074 PMCID: PMC7132317 DOI: 10.1152/ajprenal.00305.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Severe acute kidney injury has a high mortality and is a risk factor for progressive chronic kidney disease. None of the potential therapies that have been identified in preclinical studies have successfully improved clinical outcomes. This failure is partly because animal models rarely reflect the complexity of human disease: most preclinical studies are short term and are commonly performed in healthy, young, male mice. Therapies that are effective in preclinical models that share common clinical features seen in patients with acute kidney injury, including genetic diversity, different sexes, and comorbidities, and evaluate long-term outcomes are more likely to predict success in the clinic. Here, we evaluated susceptibility to chronic kidney disease after ischemia-reperfusion injury with delayed nephrectomy by monitoring long-term functional and histological responses to injury. We defined conditions required to induce long-term postinjury renal dysfunction and fibrosis without increased mortality in a reproducible way and evaluate effect of mouse strains, sexes, and preexisting diabetes on these responses.
Collapse
Affiliation(s)
- Lauren Scarfe
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Menshikh
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Newton
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuantee Zhu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Rachel Delgado
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Charlene Finney
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Zhao L, Hu C, Zhang P, Jiang H, Chen J. Mesenchymal stem cell therapy targeting mitochondrial dysfunction in acute kidney injury. J Transl Med 2019; 17:142. [PMID: 31046805 PMCID: PMC6498508 DOI: 10.1186/s12967-019-1893-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria take part in a network of cellular processes that regulate cell homeostasis. Defects in mitochondrial function are key pathophysiological changes during acute kidney injury (AKI). Mesenchymal stem cells (MSCs) have shown promising regenerative effects in experimental AKI models, but the specific mechanism is still unclear. Some studies have demonstrated that MSCs are able to target mitochondrial dysfunction during AKI. In this review, we summarize these articles, providing an integral and updated view of MSC therapy targeting mitochondrial dysfunction during AKI, which is aimed at promoting the therapeutic effect of MSCs in AKI patients.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Hua Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
14
|
Sutherland SM. Big Data and Pediatric Acute Kidney Injury: The Promise of Electronic Health Record Systems. Front Pediatr 2019; 7:536. [PMID: 31993409 PMCID: PMC6970974 DOI: 10.3389/fped.2019.00536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Over the last decade, our understanding of acute kidney injury (AKI) has evolved considerably. The development of a consensus definition standardized the approach to identifying and investigating AKI in children. As a result, pediatric AKI epidemiology has been refined and the consequences of renal injury are better established. Similarly, "big data" methodologies experienced a dramatic evolution and maturation, leading the critical care community to explore potential AKI/big data synergies. One such concept with tremendous potential is electronic health record (EHR) enabled informatics. Much of the promise surrounding these approaches is due to the unique position of the EHR which sits at the intersection of data accumulation and care delivery. EHR data is generated simply via the provision of routine clinical care and should be considered "big" from the standpoint of volume, variety, and velocity as a myriad of diverse elements accumulate rapidly in real time, spontaneously generating an immense dataset. This massive dataset interfaces directly with providers which creates tremendous opportunity. AKI can be diagnosed more accurately, AKI-related care can be optimized, and subsequent outcomes can be improved. Although applying big data concepts to the EHR has proven more challenging than originally thought, we have seen much success and continue to explore its potential. In this review article, we will discuss the EHR in the context of big data concepts, describe approaches applied to date, examine the challenges surrounding optimal application, and explore future directions.
Collapse
Affiliation(s)
- Scott M Sutherland
- Division of Nephrology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
da Hora Passos R, Ramos JGR, Gobatto A, Caldas J, Macedo E, Batista PB. Inclusion and definition of acute renal dysfunction in critically ill patients in randomized controlled trials: a systematic review. Crit Care 2018; 22:106. [PMID: 29690893 PMCID: PMC5979001 DOI: 10.1186/s13054-018-2009-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In evidence-based medicine, multicenter, prospective, randomized controlled trials (RCTs) are the gold standard for evaluating treatment benefits and ensuring the effectiveness of interventions. Patient-centered outcomes, such as mortality, are most often the preferred evaluated outcomes. While there is currently agreement on how to classify renal dysfunction in critically ill patients , the application frequency of this new classification system in RCTs has not previously been evaluated. In this study, we aim to assess the definition of renal dysfunction in multicenter RCTs involving critically ill patients that included mortality as a primary endpoint. METHODS A comprehensive search was conducted for publications reporting multicenter randomized controlled trials (RCTs) involving adult patients in intensive care units (ICUs) that included mortality as a primary outcome. MEDLINE and PUBMED were queried for relevant articles in core clinical journals published between May 2004 and December 2017. RESULTS Of 418 articles reviewed, 46 multicenter RCTs with a primary endpoint related to mortality were included. Thirty-six (78.3%) of the trial reports provided information on renal function in the participants. Only seven articles (15.2%) included mean or median serum creatinine levels, mean creatinine clearance or estimated glomerular filtration rates. Sequential organ failure assessment (SOFA) score was the most commonly used definition of renal dysfunction (20 studies; 43.5%). Risk, Injury, Failure, Loss, End-stage renal disease (RIFLE), Acute Kidney Injury Network (AKIN) and Kidney Disease Improving Global Outcomes (KDIGO) criteria were used in five (10.9%) trials. In thirteen trials (28.3%), no renal dysfunction criteria were reported. Only one trial excluded patients with renal dysfunction, and it used urinary output or need for renal replacement therapy (RRT) as criteria for this diagnosis. CONCLUSION The presence of renal dysfunction was included as a baseline patient characteristic in most RCTs. The RIFLE, AKIN and KDIGO classification systems were infrequently used; renal dysfunction was generally defined using the SOFA score.
Collapse
Affiliation(s)
- Rogerio da Hora Passos
- Critical Care Unit, Hospital São Rafael, Av São Rafael, Salvador, 2152, Brazil.
- Critical Care Unit, Nephrology Department, Hospital Portugues, Salvador, Brazil.
| | | | - André Gobatto
- Critical Care Unit, Hospital São Rafael, Av São Rafael, Salvador, 2152, Brazil
| | - Juliana Caldas
- Critical Care Unit, Hospital São Rafael, Av São Rafael, Salvador, 2152, Brazil
| | - Etienne Macedo
- Department of Medicine, Division of Nephrology, University of California, San Diego, USA
| | | |
Collapse
|
16
|
Abstract
No therapies have been shown to improve outcomes in patients with acute kidney injury (AKI). Given the high morbidity and mortality associated with AKI this represents an important unmet medical need. A common feature of all of the therapeutic development efforts for AKI is that none were driven by target selection or preclinical modeling that was based primarily on human data. This is important when considering a heterogeneous and dynamic condition such as AKI, in which in the absence of more accurate molecular classifications, clinical cohorts are likely to include patients with different types of injury at different stages in the injury and repair continuum. The National Institutes of Health precision medicine initiative offers an opportunity to address this. By creating a molecular tissue atlas of AKI, defining patient subgroups, and identifying critical cells and pathways involved in human AKI, this initiative has the potential to transform our current approach to therapeutic discovery. In this review, we discuss the opportunities and challenges that this initiative presents, with a specific focus on AKI, what additional efforts will be needed to apply these discoveries to therapeutic development, and how we believe this effort might lead to the development of new therapeutics for subsets of patients with AKI.
Collapse
Affiliation(s)
- Mark de Caestecker
- Nephrology Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Raymond Harris
- Nephrology Division, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
Sutherland SM, Goldstein SL, Bagshaw SM. Leveraging Big Data and Electronic Health Records to Enhance Novel Approaches to Acute Kidney Injury Research and Care. Blood Purif 2017; 44:68-76. [PMID: 28268210 DOI: 10.1159/000458751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
While acute kidney injury (AKI) has been poorly defined historically, a decade of effort has culminated in a standardized, consensus definition. In parallel, electronic health records (EHRs) have been adopted with greater regularity, clinical informatics approaches have been refined, and the field of EHR-enabled care improvement and research has burgeoned. Although both fields have matured in isolation, uniting the 2 has the capacity to redefine AKI-related care and research. This article describes how the application of a consistent AKI definition to the EHR dataset can accurately and rapidly diagnose and identify AKI events. Furthermore, this electronic, automated diagnostic strategy creates the opportunity to develop predictive approaches, optimize AKI alerts, and trace AKI events across institutions, care platforms, and administrative datasets.
Collapse
Affiliation(s)
- Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
18
|
Abstract
The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.
Collapse
Affiliation(s)
- Pu Duann
- Department of Surgery, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Surgery, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Gallagher KM, O'neill S, Harrison EM, Ross JA, Wigmore SJ, Hughes J. Recent early clinical drug development for acute kidney injury. Expert Opin Investig Drugs 2016; 26:141-154. [PMID: 27997816 DOI: 10.1080/13543784.2017.1274730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Despite significant need and historical trials, there are no effective drugs in use for the prevention or treatment of acute kidney injury (AKI). There are several promising agents in early clinical development for AKI and two trials have recently been terminated. There are also exciting new findings in pre-clinical AKI research. There is a need to take stock of current progress in the field to guide future drug development for AKI. Areas covered: The main clinical trial registries, PubMed and pharmaceutical company website searches were used to extract the most recent clinical trials for sterile, transplant and sepsis-associated AKI. We summarise the development of the agents recently in clinical trial, update on their trial progress, consider reasons for failed efficacy of two agents, and discuss new paradigms in pre-clinical targets for AKI. Agents covered include- QPI-1002, THR-184, BB-3, heme arginate, human recombinant alkaline phosphatase (recAP), ciclosporin A, AB103, levosimendan, AC607 and ABT-719. Expert opinion: Due to the heterogenous nature of AKI, agents with the widest pleiotropic effects on multiple pathophysiological pathways are likely to be most effective. Linking preclinical models to clinical indication and improving AKI definition and diagnosis are key areas for improvement in future clinical trials.
Collapse
Affiliation(s)
- Kevin M Gallagher
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Stephen O'neill
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Ewen M Harrison
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - James A Ross
- b MRC Centre for Regenerative Medicine, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Stephen J Wigmore
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| | - Jeremy Hughes
- a MRC Centre for Inflammation Research, Royal Infirmary of Edinburgh , University of Edinburgh , Edinburgh , UK
| |
Collapse
|