1
|
Shen Z, Bi X, Jian L, Jiang Y, Yang Z, Li Z, Li B, Zhao P, Meng X. Photocatalytic activation of peroxymonocarbonate with a TiO 2 catalyst for water remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124871. [PMID: 40058041 DOI: 10.1016/j.jenvman.2025.124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
The novel advanced oxidation process was constructed to remove pollutants by activating in-situ generated peroxymonocarbonate (HCO4-) through photocatalysis, using commercially available rutile TiO2 as the photocatalyst. It demonstrated exceptional oxidative capacity, achieving complete degradation of acid red (AR73) within 30 min, and efficiently oxidizing various recalcitrant organic pollutants. Further, the photocatalytic system had a good resistance to interference and was smoothly conducted in a variety of water matrix with a wide range of pH (3-9). Moreover, a photocatalytic CO2-derived HCO4--based system was established to degrade pollutants. The photogenerated electrons facilitated the selective activation of HCO4- via the single electron transfer process to produce ·OH. This process enhanced the separation efficiency of electron-hole pairs, promoting h + VB to participate in the oxidative degradation of pollutants. The generated ·OH was the primary ROS responsible for the oxidative degradation of pollutants. This study explored the possibility of the photocatalytic selective activation of HCO4- and successfully established a photocatalytic HCO4--based system for environmental remediation.
Collapse
Affiliation(s)
- Zihan Shen
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuru Bi
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Liang Jian
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yiqian Jiang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihan Yang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Li
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Bo Li
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou, 730060, China.
| | - Peiqing Zhao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xu Meng
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Xin Y, Wang Y, Jiang Z, Deng B, Jiang ZJ. Advances in the Removal of Organic Pollutants from Water by Photocatalytic Activation of Persulfate: Photocatalyst Modification Strategy and Reaction Mechanism. CHEMSUSCHEM 2024; 17:e202400254. [PMID: 38743510 DOI: 10.1002/cssc.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Environmental pollution caused by persistent organic pollutants has imposed big threats to the health of human and ecological systems. The development of efficient methods to effectively degrade and remove these persistent organic pollutants is therefore of paramount importance. Photocatalytic persulfate-based advanced oxidation technologies (PS-AOTs), which depend on the highly reactive SO4 - radicals generated by the activation of PS to degrade persistent organic pollutants, have shown great promise. This work discusses the application and modification strategies of common photocatalysts in photocatalytic PS-AOTs, and compares the degradation performance of different catalysts for pollutants. Furthermore, essential elements impacting photocatalytic PS-AOTs are discussed, including the water matrix, reaction process mechanism, pollutant degradation pathway, singlet oxygen generation, and potential PS hazards. Finally, the existing issues and future challenges of photocatalytic PS-AOTs are summarized and prospected to encourage their practical application. In particular, by providing new insights into the PS-AOTs, this review sheds light on the opportunities and challenges for the development of photocatalysts with advanced features for the PS-AOTs, which will be of great interests to promote better fundamental understanding of the PS-AOTs and their practical applications.
Collapse
Affiliation(s)
- Yue Xin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Evazinejad-Galangashi R, Mohagheghian A, Shirzad-Siboni M. Catalytic wet air oxidation removal of tetracycline by La 2O 3 immobilized on recycled polyethylene terephthalate using the response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122043. [PMID: 39126841 DOI: 10.1016/j.jenvman.2024.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the removal of tetracycline from the aqueous solutions by lanthanum oxide nanoparticles covered with polyethylene terephthalate (PET) using a low-cost and facile co-precipitation method, via catalytic wet air oxidation process (CWAO) by response surface methodology (RSM). XRD, FTIR, SEM, and EDX-map techniques have been employed to investigate the crystal structure, functional groups on the surface, morphologic characteristics, and elemental composition, respectively. Under optimum conditions (pH= 9, initial TC concentration= 20 mg L-1, nanocomposite dosage= 1.5 g L-1, pressure= 4 bar, temperature= 70 °C, and time= 90 min), TC removal efficiency by La2O3-PET was achieved at about 99.9%. The environmental parameters were assessed to determine tetracycline catalytic wet air oxidation degradation rate, which included cleaning gases, hydrogen peroxide, type of organic compounds, anions, radical scavenger and reusability. The ANOVA results indicated that the polynomial model proves that the model is entirely meaningful (F-value> 0.001 and P-value< 0.0001) and has high coefficient values of adjusted R2 (0.7404) and predicted R2 (0.5940). The findings indicated that the variables of time, pH, temperature, dosage, and TC concentration have the greatest role in removing tetracycline, respectively. However, pressure as a factor does not have a considerable influence on the performance of the system. In general, due to the presence of the role of additional anionics, the effectiveness of this method for removing tetracycline from drinking water was 82.76%. The catalyst indicated pleasing stability and recycling power during eight testing cycles. Further, the estimated electrical energy per order consumption (EEO) for the CWAO/La2O3-PET system was calculated as 5.31 kWh m-3 with an operational cost (OC) utilization of 1.78 USD kg-1 and it has been shown that this process is feasible and economically comparable to other CWAO processes. The breakdown intermediate products of tetracycline in the CWAO were examined using gas chromatography/mass spectrometry (GC-MS) analysis. The toxicity analyses for the removal of TC were carried out using Daphnia magna and the CWAO process achieved a remarkable decrease in the presence of La2O3-PET nanocomposite (LC50 and toxicity unit (TU) 48 h equal to 0.634 and 157.72 vol percent).
Collapse
Affiliation(s)
| | - Azita Mohagheghian
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Shirzad-Siboni
- Department of Environmental Health Engineering, School of Health, Guilan University of Medical Sciences, Rasht, Iran; Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Sánchez-Silva JM, Ojeda-Galván HJ, Villabona-Leal EG, Labrada-Delgado GJ, Aguilar-Maruri SA, Fuentes-Ramírez R, González-Ortega O, López-Ramón MV, Ocampo-Pérez R. Synergistic photocatalysis of a hydrochar/CeO 2 composite for dye degradation under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16453-16472. [PMID: 38321273 DOI: 10.1007/s11356-024-32281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.
Collapse
Affiliation(s)
- Jonathan Michel Sánchez-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Hiram Joazet Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - Edgar Giovanny Villabona-Leal
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | | | - Saul Alejandro Aguilar-Maruri
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | | | - Omar González-Ortega
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, 78210, San Luis Potosí, Mexico
| | - María Victoria López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| |
Collapse
|
5
|
Hasham Firooz M, Naderi A, Moradi M, Kalantary RR. Enhanced tetracycline degradation with TiO 2/natural pyrite S-scheme photocatalyst. Sci Rep 2024; 14:4954. [PMID: 38418921 PMCID: PMC10902398 DOI: 10.1038/s41598-024-54549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
In this study, TiO2 nanoparticles were employed as a photocatalyst for the degradation of tetracycline (TC) under visible light irradiation. The TiO2 nanoparticles were decorated on natural pyrite (TiO2/NP) and characterized using XRD, FTIR, and SEM-EDX methods. This study evaluated the impacts of various operational parameters such as pH, catalyst dosage, initial TC concentration, and light intensity on TC removal. The findings revealed that under optimal conditions (pH 7, catalyst: 2 g/L, TC: 30 mg/L, and light intensity: 60 mW/cm2), 100% of TC and 84% of TOC were removed within 180 min. The kinetics of TC elimination followed a first-order model. The dominant oxidation species involved in the photocatalytic elimination of TC was found to be ·OH radicals in the TiO2/NP system. The reuse experiments showed the high capability of the catalyst after four consecutive cycles. This study confirmed that the TiO2/NP system has high performance in photocatalytic TC removal under optimized experimental conditions.
Collapse
Affiliation(s)
- Masoumeh Hasham Firooz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azra Naderi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sánchez-Silva JM, Aguilar-Aguilar A, Labrada-Delgado GJ, Villabona-Leal EG, Ojeda-Galván HJ, Sánchez-García JL, Collins-Martínez H, López-Ramón MV, Ocampo-Pérez R. Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO 2 for degradation of crystal violet by UV and visible radiation. ENVIRONMENTAL RESEARCH 2023; 231:116280. [PMID: 37257742 DOI: 10.1016/j.envres.2023.116280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.
Collapse
Affiliation(s)
- J M Sánchez-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | | | - E G Villabona-Leal
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - H J Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina (CICSAB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78210, Mexico
| | - J L Sánchez-García
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - H Collins-Martínez
- Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C, Chihuahua, 31136, Mexico
| | - M V López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, 23071, Spain
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
7
|
Zhou Y, Wang J. Detection and removal technologies for ammonium and antibiotics in agricultural wastewater: Recent advances and prospective. CHEMOSPHERE 2023; 334:139027. [PMID: 37236277 DOI: 10.1016/j.chemosphere.2023.139027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
With the extensive development of industrial livestock and poultry production, a considerable part of agricultural wastewater containing tremendous ammonium and antibiotics have been indiscriminately released into the aquatic systems, causing serious harms to ecosystem and human health. In this review, ammonium detection technologies, including spectroscopy and fluorescence methods, and sensors were systematically summarized. Antibiotics analysis methodologies were critically reviewed, including chromatographic methods coupled with mass spectrometry, electrochemical sensors, fluorescence sensors, and biosensors. Current progress in remediation methods for ammonium removal were discussed and analyzed, including chemical precipitation, breakpoint chlorination, air stripping, reverse osmosis, adsorption, advanced oxidation processes (AOPs), and biological methods. Antibiotics removal approaches were comprehensively reviewed, including physical, AOPs, and biological processes. Furthermore, the simultaneous removal strategies for ammonium and antibiotics were reviewed and discussed, including physical adsorption processes, AOPs, biological processes. Finally, research gaps and the future perspectives were discussed. Through conducting comprehensive review, future research priorities include: (1) to improve the stabilities and adaptabilities of detection and analysis techniques for ammonium and antibiotics, (2) to develop innovative, efficient, and low cost approaches for simultaneous removal of ammonium and antibiotics, and (3) to explore the underlying mechanisms that governs the simultaneous removal of ammonium and antibiotics. This review could facilitate the evolution of innovative and efficient technologies for ammonium and antibiotics treatment in agricultural wastewater.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
8
|
Pietrzyk P, Borowska EI, Hejduk P, Camargo BC, Warczak M, Nguyen TP, Pregowska A, Gniadek M, Szczytko J, Wilczewski S, Osial M. Green composites based on volcanic red algae Cyanidiales, cellulose, and coffee waste biomass modified with magnetic nanoparticles for the removal of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62689-62703. [PMID: 36944836 PMCID: PMC10167190 DOI: 10.1007/s11356-023-26425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
In this paper, green nanocomposites based on biomass and superparamagnetic nanoparticles were synthesized and used as adsorbents to remove methylene blue (MB) from water with magnetic separation. The adsorbents were synthesized through the wet co-precipitation technique, in which iron-oxide nanoparticles coated the cores based on coffee, cellulose, and red volcanic algae waste. The procedure resulted in materials that could be easily separated from aqueous solutions with magnets. The morphology and chemical composition of the nanocomposites were characterized by SEM, FT-IR, and XPS methods. The adsorption studies of MB removal with UV-vis spectrometry showed that the adsorption performance of the prepared materials strongly depended on their morphology and the type of the organic adsorbent. The adsorption studies presented the highest effectiveness in neutral pH with only a slight effect on ionic strength. The MB removal undergoes pseudo-second kinetics for all adsorbents. The maximal adsorption capacity for the coffee@Fe3O4-2, cellulose@Fe3O4-1, and algae@Fe3O4-1 is 38.23 mg g-1, 41.61 mg g-1, and 48.41 mg g-1, respectively. The mechanism of MB adsorption follows the Langmuir model using coffee@Fe3O4 and cellulose@Fe3O4, while for algae@Fe3O4 the process fits to the Redlich-Peterson model. The removal efficiency analysis based on UV-vis adsorption spectra revealed that the adsorption effectiveness of the nanocomposites increased as follows: coffee@Fe3O4-2 > cellulose@Fe3O4-1 > algae@Fe3O4-1, demonstrating an MB removal efficiency of up to 90%.
Collapse
Affiliation(s)
- Paulina Pietrzyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Ewa Izabela Borowska
- The College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP), University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Patrycja Hejduk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Bruno Cury Camargo
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Magdalena Warczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Thu Phuong Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, 10000, Vietnam
| | - Agnieszka Pregowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| | | | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Sławomir Wilczewski
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland.
| |
Collapse
|
9
|
Bian X, Li F, Zhang J, Zhong M, Yang Y, Khan S. Photocatalytic degradation of tetracycline antibiotics in swine wastewater using Fe3+-loaded NaBiO3 coupled with sodium persulfate. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Cong Y, Chen X, Ye L, Li X, Lv SW. A newly-designed free-standing NiCo 2O 4 nanosheet array as effective mediator to activate peroxymonosulfate for rapid degradation of emerging organic pollutant with high concentration. CHEMOSPHERE 2022; 307:136073. [PMID: 35987267 DOI: 10.1016/j.chemosphere.2022.136073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nowadays effective treatment of high concentration organic wastewater is still a formidable task facing human beings. Herein, for the first time, a well-defined ZIF-67-derived NiCo2O4 nanosheet array was successfully prepared by a feasible method. In comparison with ordinary NiCo2O4 nanosphere, the formation of nanosheet structure could offer more opportunities to exposure internal active sites of NiCo2O4, thereby resulting in smaller interface resistance and higher charge transfer efficiency. As expected, ZIF-67-derived NiCo2O4 nanosheet array displayed great performance in peroxymonosulfate (PMS) activation. More importantly, recyclable redox couples of Co3+/Co2+ and Ni3+/Ni2+ endowed the stable catalytic activity of NiCo2O4 nanosheet. Interestingly, developed NiCo2O4-1/PMS oxidation system could achieve the effective degradation of antibiotics with high concentration in a short time. Both radical and nonradical pathways were involved into PMS activation, wherein SO4-, OH, O2- and 1O2 were major reactive oxygen species. The formation paths of reactive oxygen species and effects of inorganic anions were also investigated. Electrochemical analyses revealed that NiCo2O4-1 with nanosheet structure mediated the electron transfer between PMS and tetracycline (TC), which played a vital role in TC degradation. Furthermore, developed NiCo2O4-1/PMS oxidation system displayed great removal ability towards TC in actual water samples, and degradation products were low toxicity or no toxicity. In short, current work not only developed an effective oxidation system for completing the rapid degradation of antibiotic with high concentration, but also shared some novel insights into the activation mechanism of SR-AOPs.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingjie Ye
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shi-Wen Lv
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Hung CM, Chen CW, Huang CP, Dong CD. Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119984. [PMID: 35985431 DOI: 10.1016/j.envpol.2022.119984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B-N, B-C, and B2O3 species). Radical quenching tests revealed SO4•-, HO•, and 1O2 being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR-CAOP combined with bioprocesses for removing STZ from aqueous environments.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Mehregan S, Hayati F, Mehregan M, Isari AA, Jonidi Jafari A, Giannakis S, Kakavandi B. Exploring the visible light-assisted conversion of CO 2 into methane and methanol, using direct Z-scheme TiO 2@g-C 3N 4 nanosheets: synthesis and photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74951-74966. [PMID: 35648354 DOI: 10.1007/s11356-022-21048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of carbon dioxide (CO2) emissions raises concern about the possible consequences of atmospheric CO2 increase, such as global warming and greenhouse effect. Photocatalytic CO2 conversion has attracted researchers' interests to find a sustainable route for its elimination. In the present study, a direct Z-scheme TiO2/g-C3N4 composite (T-GCN) was fabricated via a facile hydrothermal route for the photocatalytic reduction of CO2 into methane (CH4) and methanol (CH3OH), under visible light irradiation without an electron mediator. The microstructure of the as-obtained TiO2/g-C3N4 nanocomposites was fully characterized for its physicochemical, structural, charge separation, electronic, and photo-excited carrier separation properties. The effect of CO2 and H2O partial pressure was studied to find the best operational conditions for obtaining maximum photocatalytic efficiency; the PCO2 and PH2O were 75.8 and 15.5 kPa, respectively, whereas, by increasing the light intensity from 20 to 80 mW/cm2, a remarkable improvement in the reduction rate takes place (from 11.04 to 32.49 μmol.gcat-1.h-1 methane production, respectively). Finally, under the most favorable light, PCO2 and PH2O conditions, high methanol and methane rates were obtained from the CO2 photocatalytic reduction through T-GCN (1.44 μmol.gcat.-1.h-1 and 32.49 μmol.gcat.-1.h-1, respectively) and an integrated proposition for the Z-scheme mechanism of photocatalytic reduction was proposed. This study offers a promising strategy to synthesize a Z-scheme T-GCN heterojunction with high photocatalytic performance for effective CO2 conversion.
Collapse
Affiliation(s)
- Shima Mehregan
- Department of Chemistry, City of Columbia, University of Missouri, Columbia, USA
| | - Farzan Hayati
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran
| | - Mahya Mehregan
- Department of Chemistry, City of Columbia, University of Missouri, Columbia, USA
| | - Ali Akbar Isari
- Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Rome, Italy
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía Y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, S28040, Madrid, Spain
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
13
|
Sharma M, Mandal MK, Pandey S, Kumar R, Dubey KK. Visible-Light-Driven Photocatalytic Degradation of Tetracycline Using Heterostructured Cu 2O-TiO 2 Nanotubes, Kinetics, and Toxicity Evaluation of Degraded Products on Cell Lines. ACS OMEGA 2022; 7:33572-33586. [PMID: 36157782 PMCID: PMC9494644 DOI: 10.1021/acsomega.2c04576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
This study first reports on the tetracycline photodegradation with the synthesized heterostructured titanium oxide nanotubes coupled with cuprous oxide photocatalyst. The large surface area and more active sites on TiO2 nanotubes with a reduced band gap (coupling of Cu2O) provide faster photodegradation of tetracycline under visible light conditions. Cytotoxicity experiments performed on the RAW 264.7 (mouse macrophage) and THP-1 (human monocytes) cell lines of tetracycline and the photodegraded products of tetracycline as well as quenching experiments were also performed. The effects of different parameters like pH, photocatalyst loading concentration, cuprous oxide concentration, and tetracycline load on the photodegradation rate were investigated. With an enhanced surface area of nanotubes and a reduced band gap of 2.58 eV, 1.5 g/L concentration of 10% C-TAC showed the highest efficiency of visible-light-driven photodegradation (∼100% photodegradation rate in 60 min) of tetracycline at pH 5, 7, and 9. The photodegradation efficiency is not depleted up to five consecutive batch cycles. Quenching experiments confirmed that superoxide radicals and hydroxyl radicals are the most involved reactive species in the photodegradation of tetracycline, while valance band electrons are the least involved reactive species. The cytotoxicity percentage of tetracycline and its degraded products on RAW 264.7 (-0.932) as well as THP-1 (-0.931) showed a negative correlation with the degradation percentage with a p-value of 0.01. The toxicity-free effluent of photodegradation suggests the application of the synthesized photocatalyst in wastewater treatment.
Collapse
Affiliation(s)
- Manisha Sharma
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Mrinal Kanti Mandal
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Shailesh Pandey
- Department
of Chemical Engineering, National Institute
of Technology, Durgapur, West Bengal 713209, India
| | - Ravi Kumar
- Department
of Biotechnology, Central University of
Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess
Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New
Delhi 110067, India
| |
Collapse
|
14
|
Liu M, Jiang J, Tan H, Chen B, Ou J, Wang H, Sun J, Liu L, Wang F, Gao J, Liu C, Peng F, Liu Y, Tu Y. Light-driven Au-ZnO nanorod motors for enhanced photocatalytic degradation of tetracycline. NANOSCALE 2022; 14:12804-12813. [PMID: 36018319 DOI: 10.1039/d2nr02441a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The abuse of antibiotics in human medicine and animal husbandry leads to the enrichment of antibiotic residues in aquatic environments, which has been a major problem of environmental pollution over the past decades. Therefore, it is urgent to develop a highly efficient approach to remove antibiotics from aquatic environments. Inspired by the motion characteristics of semiconductor-based micro-/nanomotors, a light-driven Au-ZnO nanomotor system based on vertically aligned ZnO arrays is successfully developed for the enhanced photocatalytic degradation of tetracycline (TC). Under UV light (λ = 365 nm) illumination, these Au-ZnO nanomotors exhibit a high speed in deionized water and TC solution. Due to their efficient motion capability and Au-enhanced charge separation, these light-driven Au-ZnO nanomotors removed almost all TC (40 mg L-1) within 30 min and displayed stable photocatalytic activity for four cycles without any apparent deactivation. The as-developed motor-based strategy for enhanced antibiotic degradation has excellent potential in environmental governance.
Collapse
Affiliation(s)
- Meihuan Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiamiao Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Haixin Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Juanfeng Ou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jia Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lu Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chang Liu
- Sport Science College, Beijing Sport University, Beijing 100091, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yun Liu
- School of Pharmacy, Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, 523808, China.
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
15
|
Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Xu L, Liu NP, An HL, Ju WT, Liu B, Wang XF, Wang X. Preparation of Ag 3PO 4/CoWO 4 S-scheme heterojunction and study on sonocatalytic degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2022; 89:106147. [PMID: 36087545 PMCID: PMC9465027 DOI: 10.1016/j.ultsonch.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
In this study, 0.6Ag3PO4/CoWO4 composites were synthesized by hydrothermal method. The prepared materials were systematically characterized by techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, and UV-vis diffuse reflectance spectrum (DRS). Furthermore, the sonocatalytic degradation performance of 0.6Ag3PO4/CoWO4 composites towards tetracycline (TC) was investigated under ultrasonic radiation. The results showed that, combined with potassium persulfate (K2S2O8), the 0.6Ag3PO4/CoWO4 composites achieved a high sonocatalytic degradation efficiency of 97.89 % within 10 min, which was much better than bare Ag3PO4 or CoWO4. By measuring the electrochemical properties, it was proposed that the degradation mechanism of 0.6Ag3PO4/CoWO4 is the formation of S-scheme heterojunction, which increases the separation efficiency of electron-hole pairs (e--h+) and generates more electrons and holes, thereby enhancing the degradation activity. The scavenger experiments confirmed that hole (h+) was the primary active substance in degrading TC, and free radicals (OH) and superoxide anion radical (O2-) were auxiliary active substances. The results indicated that 0.6Ag3PO4/CoWO4 nanocomposites could be used as an efficient and reliable sonocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ni-Ping Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Hui-Li An
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao-Fang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
17
|
Ternary CuS@Ag/BiVO4 composite for enhanced photo-catalytic and sono-photocatalytic performance under visible light. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
S-scheme heterojunction g-C3N4/Ag/AgNCO for efficient tetracycline removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Liu L, Yu M, Li Y, Han C, Ding G, Liu S, Xie Y, Liu J. Microwave (MW)-assisted design of cobalt anchored 2D graphene-like carbon nanosheets (Co@GCNs) as peroxymonosulfate activator for tetracycline degradation and insight into the catalytic mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Flores-Terreros RR, Serna-Galvis EA, Navarro-Laboulais J, Torres-Palma RA, Nieto-Juárez JI. An alternative approach to the kinetic modeling of pharmaceuticals degradation in high saline water by electrogenerated active chlorine species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115119. [PMID: 35500483 DOI: 10.1016/j.jenvman.2022.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
A semiempirical approach considering the rate of reactive chlorine species-RCS- production (ΦE) as a function of current and Cl- concentration for the modeling of acetaminophen (ACE) degradation is presented. A filter-press reactor having a Ti/RuO2-ZrO2 (Sb2O3 doped) anode, NaCl (0.04-0.1 mol L-1) as supporting electrolyte, and operated in continuous mode, was considered. A current of 100 mA and a flow of 11 mL min-1 favored the electrogeneration of RCS and ACE degradation. Hydraulic retention time and ΦE were the most relevant parameters for the RCS production. These two parameters, plus the pollutant concentration, were very determinant for the ACE degradation. The model successfully reproduced the ACE removal in distilled water at different concentrations (10, 20, 40, and 60 mg L-1). The electrochemical system achieved removals between 80 and 100% of ACE in distilled water. The ACE treatment in actual seawater (a chloride-rich matrix, 0.539 mol L-1 of Cl-) was assessed, and the degradation was simulated using the developed model. The competing role toward electrogenerated RCS by intrinsic organic matter (3.2 mg L-1) in the seawater was a critical point, and the simulated values fitted well with the experimental data. Finally, the action of the electrochemical system on ciprofloxacin (CIP) in real seawater and its antimicrobial activity was tested. CIP removal (100% at 120 s) was faster than that observed for ACE (100% of degradation after 180 s) due to CIP has amine groups that are more reactive toward RCS than phenol moiety on ACE. Moreover, the system removed 100% of the antimicrobial activity associated with CIP, indicating a positive environmental effect of the treatment.
Collapse
Affiliation(s)
- Ruth R Flores-Terreros
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru No 210, Rímac, Lima, Peru
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Javier Navarro-Laboulais
- Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Jessica I Nieto-Juárez
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru No 210, Rímac, Lima, Peru.
| |
Collapse
|
21
|
Preparation of a Novel Composite Material Aluminum-Based MOF(DUT-5)/Bi2MoO6 for Degradation of Tetracycline. Catal Letters 2022. [DOI: 10.1007/s10562-022-04091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Sargazi S, ER S, Sacide Gelen S, Rahdar A, Bilal M, Arshad R, Ajalli N, Farhan Ali Khan M, Pandey S. Application of titanium dioxide nanoparticles in photothermal and photodynamic therapy of cancer: An updated and comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Carbonized resin with Fe&Co bimetal for peroxymonosulfate activation to degrade atrazine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Zhang L, Bi X, Wang Z, Ertürk AS, Elmaci G, Zhao H, Zhao P, Meng X. Brønsted-acid sites promoted degradation of phthalate esters over MnO 2: Mineralization enhancement and aquatic toxicity assessment. CHEMOSPHERE 2022; 291:132740. [PMID: 34743792 DOI: 10.1016/j.chemosphere.2021.132740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/09/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Advanced oxidation processes (AOPs) are important technologies for aqueous organics removal. Despite organic pollutants can be degraded via AOPs generally, high mineralization of them is hard to achieve. Herein, we synthesized a manganese oxide nanomaterial (H2-OMS-2) with abundant Brønsted-acid sites via ion-exchange of cryptomelane-type MnO2 (OMS-2), and tested its catalytic performance for the degradation of phthalate esters via peroxymonosulfate (PMS) activation. About 99% of dimethyl phthalate (DMP) at a concentration of 20 mg/L could be degraded within 90 min and 82% of it could be mineralized within 180 min over 0.6 g/L of catalyst and 1.8 g/L of PMS. The catalyst could activate PMS to generate SO4-˙ and ·OH as the dominant reactive oxygen species to reach complete degradation of DMP. Especially, the higher TOC removal rate was obtained due to the rich Brønsted-acid sites and surface oxygen vacancies on the catalyst. Kinetics and mechanism study showed that MnII/MnIII might work as the active sites during the catalytic process with a lower reaction energy barrier of 55.61 kJ/mol. Furthermore, the catalyst could be reused for many times through the regeneration of the catalytic ability. The degradation and TOC removal efficiencies were still above 98% and 65% after seven consecutive cycles, respectively. Finally, H2-OMS-2-catalyzed AOPs significantly reduced the organismal developmental toxicity of the DMP wastewater through the investigation of zebrafish model system. The present work, for the first time, provides an idea for promoting the oxidative degradation and mineralization efficiencies of aqueous organic pollutants by surface acid-modification on the catalysts.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuru Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ali Serol Ertürk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adıyaman, Turkey
| | - Gökhan Elmaci
- Department of Chemistry, School of Technical Sciences, Adıyaman University, 02040, Adıyaman, Turkey
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Jin L, You S, Duan X, Yao Y, Yang J, Liu Y. Peroxymonosulfate activation by Fe 3O 4-MnO 2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127111. [PMID: 34526271 DOI: 10.1016/j.jhazmat.2021.127111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic peroxymonosulfate (PMS) activation is a promising advanced oxidation process for the degradation of micropollutants. Herein, we developed an electroactive carbon nanotube (CNT) filter functionalized with Fe3O4-MnO2 hybrid (Fe3O4-MnO2/CNT) to activate PMS towards ultrafast degradation of sulfamethoxazole (SMX). SMX was completely degraded via a single-pass through the nanohybrid filter (τ < 2 s). The ultrafast degradation kinetics were maintained across a wide pH range (from 3.0 to 8.0), in complicated matrices (e.g., tap water, lake water, WWTP effluent and pharmaceutical wastewater), and for the degradation of various persistent micropollutants. Compared with a conventional batch reactor, the flow-through operation provides an 9.2-fold higher SMX degradation kinetics by virtue of the convection-enhanced mass transport (1.47 vs. 0.16 min-1). The efficient redox cycle of Fe2+/Fe3+ and Mn2+/Mn4+ facilitate the PMS activation to generate SO4•- under electric field. Meanwhile, the ketonic groups on the CNT provide active sites for the generation of 1O2. Both experimental and theoretical results revealed the superior activity of nanohybrid filter associated with the synergistic effects among Fe, Mn, CNT and electric field. Therefore, the electrocatalytic filter based PMS activation system provides a green strategy for the remediation of micropollutants in a sustainable manner.
Collapse
Affiliation(s)
- Limin Jin
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, SA, Australia
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Chaohui X, le Z, Wang Z, Zhang Y, Gao W, Wang Y, Sun X. Remove of ammoniacal nitrogen wastewater by ultrasound/Mg/Al 2O 3/O 3. CHEMOSPHERE 2022; 288:132645. [PMID: 34695483 DOI: 10.1016/j.chemosphere.2021.132645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
A large amount of ammoniacal nitrogen wastewater discharged into the water body not only causes eutrophication and black and offensive odor in water, but also increases the difficulty and cost of water treatment, and even produces toxic effects on people and organisms. In this paper, degradation of ammoniacal nitrogen wastewater by the system of ultrasound/Mg/Al2O3/ozone (US/Mg/Al2O3/O3) was carried out. The effects of different influencing factors, such as initial pH of the solution, reaction time, temperature, catalyst addition, ozone flow rate, and ultrasonic intensity, on the degradation of ammoniacal nitrogen wastewater were investigated. The optimum reaction conditions were determined. The combination of ultrasonic technology and ozone oxidation technology can enhance the mass transfer of ozone and generate a large amount of HO. Due to Mg/Al2O3 catalyst has large surface area, the number of reactive sites and reaction molecule transport channels per unit area increases, resulting in the increase of HO on the surface, thus improving the catalytic activity. The introduction of ultrasound promotes the cleavage of N-H bonds on the catalyst surface, thereby promoting the degradation of ammoniacal nitrogen in the water. Results prove that there is not only a synergistic effect between ultrasound and catalytic ozone oxidation, but a strengthening effect of ultrasound on catalytic ozone oxidation. The research carried out in this paper provides a theoretical basis for the degradation of ammoniacal nitrogen in water.
Collapse
Affiliation(s)
- Xue Chaohui
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, 473004, China
| | - Zhang le
- School of Public Health and Management, Shandong First Medical University &Shandong Academy of Medical Sciences, Taian, Shandong Province, 271016, China.
| | - Zhenjun Wang
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Zhang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Wenning Gao
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yujie Wang
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Xianke Sun
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| |
Collapse
|
27
|
Wang S, Chen Z, Yan P, She T, Wang W, Bi L, Kang J, Shen J, Li X, Shen L, Cheng Y. Enhanced degradation of iohexol in water by CuFe 2O 4 activated peroxymonosulfate: Efficiency, mechanism and degradation pathway. CHEMOSPHERE 2022; 289:133198. [PMID: 34890616 DOI: 10.1016/j.chemosphere.2021.133198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
Iohexol as an iodinated X-ray contrast agent is widely used, and it is the potential precursor for toxic iodinated disinfection by-products in the disinfection process. In this study, a series of CuFe2O4 catalysts were prepared by sol-gel method with different molar ratios of total metal cations to citric acid ([Men+]T/CA) and employed as heterogeneous catalysts to activate peroxymonosulfate (PMS) for the removal of iohexol. The catalysts were characterized by various technologies, and the effect of [Men+]T/CA molar ratio on the catalysts' properties was explored. The CuFe2O4 synthesized with [Men+]T/CA molar ratio of 1:1 showed the best catalytic activity to PMS, and 95.0% of 1.0 mg/L iohexol was removed within 15 min by using 50 mg/L CuFe2O4 and 20 mg/L PMS. The quenching experiment and electron spin resonance (ESR) spectra indicated the generation of SO4- and OH in the CuFe2O4/PMS system, and the quantity experiments revealed that the generation concentration of SO4- was ten times higher than that of OH. The generation mechanism of SO4- and ·OH were investigated by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) spectra. The effects of catalyst dosage, PMS and iohexol concentration on the removal of iohexol were studied, and various water matrix factors including solution pH, natural organic matter (NOM) concentration and inorganic ions were also considered. Based on the twelve intermediate products of iohexol detected by UPLC-QTOF/MS, the degradation pathway was proposed. The high catalytic activity and reusability of CuFe2O4 indicated that CuFe2O4 activating PMS is an effective and sustainable way for the treatment of iohexol.
Collapse
Affiliation(s)
- Shuyu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Tianhao She
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Weiqiang Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lanbo Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| | - Xueyan Li
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Linlu Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yizhen Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
28
|
Min F, Wei Z, Yu Z, Xiao Y, Guo S, Song R, Li J. Construction of a hierarchical ZnIn 2S 4/C 3N 4 heterojunction for the enhanced photocatalytic degradation of tetracycline. Dalton Trans 2022; 51:2323-2330. [PMID: 35043131 DOI: 10.1039/d1dt03716a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Efficient charge separation and sufficiently exposed active sites are both critical limiting factors for solar-driven organic contaminant degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by the in situ growth of ZnIn2S4 nanosheets on micro-tubular C3N4 (denoted as ZIS/TCN). This ZIS/TCN heterojunction photocatalyst can take advantage of the hollow structure with stronger light absorption capacity and more active sites, and its heterostructure can accelerate the separation and transfer of photogenerated charge carriers. The optimized ZIS/TCN-3 exhibits superb photocatalytic efficiency for the degradation of tetracycline (86.1%, 60 min), maintains excellent stability and recyclability, and provides a facile strategy for the synthesis of efficient heterojuction photocatalysts towards wastewater treatment. In addition, the plausible photocatalytic degradation pathway of tetracycline is proposed according to the intermediates identified by LC-mass analysis.
Collapse
Affiliation(s)
- Feng Min
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhengqing Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Zhen Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yuting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Shien Guo
- Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Renjie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jinheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China.
| |
Collapse
|
29
|
Manikandan VS, Harish S, Archana J, Navaneethan M. Fabrication of novel hybrid Z-Scheme WO 3@g-C 3N 4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity. CHEMOSPHERE 2022; 287:132050. [PMID: 34583295 DOI: 10.1016/j.chemosphere.2021.132050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Exploring highly efficient visible-light-driven photocatalyst for the elimination organic pollutants is a great concern for constructing sustainable green energy systems. In the current work, a novel hybrid ternary WO3@g-C3N4@MWCNT nanocomposites have been fabricated for visible-light-driven photocatalyst by self-assembly method. The as-prepared photocatalyst was examined by XRD, Raman, FESEM, HRTEM, XPS EDS, EIS, UV-visible DRS, and PL analysis. The experimental results revealed that the photocatalytic activity of WO3@g-C3N4@MWCNT nanocomposites on the degradation of Tetracycline (TC) is 79.54% at 120 min, which is higher than the binary WO3@g-C3N4 composite and pristine WO3. The improved degradation performance towards TC is recognized for its higher surface area, intense light absorption towards the visible region, and enhanced charge separation efficiency. Consequently, the fabricated catalyst endows a promising application for antibiotic degradation.
Collapse
Affiliation(s)
- V S Manikandan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - S Harish
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India
| | - J Archana
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| | - M Navaneethan
- Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India; Nanotechnology Research Centre, SRM Institute of Science and Technology, Kattankulathur Campus, Tamilnadu, India.
| |
Collapse
|
30
|
Özcan S, Yıldırım D, Çıldıroğlu HÖ, Polat M, Hamaloğlu KÖ, Tosun RB, Kip Ç, Tuncel A. Monodisperse-porous Mn 5O 8 microspheres as an efficient catalyst for fast degradation of organic pollutants via peroxymonosulfate activation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodisperse-porous Mn5O8 microspheres with multiple oxidation states were used as a highly stable, efficient heterogeneous catalyst for the fast degradation of organic pollutants via peroxymonosulfate activation.
Collapse
Affiliation(s)
- Sinem Özcan
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | - Duygu Yıldırım
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | | | - Mustafa Polat
- Department of Physics Engineering, Hacettepe University, Ankara, Turkey
| | | | | | - Çiğdem Kip
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Enginering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
31
|
Kakavandi B, Alavi S, Ghanbari F, Ahmadi M. Bisphenol A degradation by peroxymonosulfate photo-activation coupled with carbon-based cobalt ferrite nanocomposite: Performance, upgrading synergy and mechanistic pathway. CHEMOSPHERE 2022; 287:132024. [PMID: 34509017 DOI: 10.1016/j.chemosphere.2021.132024] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Cobalt ferrite (CoFe2O4, CF) nanoparticles were anchored on the multiwalled carbon nanotube (MWCNT) for synthesis of CF@MWCNT nanocomposite and enhancing the catalytic activity of CF. After well characterization, it was applied as a catalyst towards photo-activation peroxymonosulfate (PMS) for degradation of bisphenol A (BPA). Based on the identified intermediates, a possible degradation pathway was proposed for BPA. CF@MWCNT coupled with PMS and UV (i.e., CF@MWCNT/PMS/UV) exhibited a better performance than homogeneous UV-assisted PMS processes under Fe and Co ions. A significant synergy on the degradation of BPA was observed in the simultaneous application of catalyst, UV light and PMS. Under optimum conditions, the removal efficiencies of 100 and 72.6% were attained respectively for BPA and TOC by CF@MWCNT/PMS/UV within 60 min reaction. These efficiencies were decreased to 88 and 61% after five times use of catalyst, respectively. The leaching of metal ions dissolved from the catalyst was slight during cyclic utilization of catalyst, confirming high stability of CF@MWCNT. In this process, the participation of radical mechanisms was approximately 60%, which SO4•- and HO• species contributed as predominant oxidizing reactive species. It also showed the excellent catalytic performance towards decomposition of persulfate and hydrogen peroxide. Overall, UV-assisted PMS catalyzed by CF@MWCNT exhibited a good catalytic performance and so it can be potentially introduced as a promising method for efficient treatment of water contaminated by BPA.
Collapse
Affiliation(s)
- Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Alavi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
Zhai X, Cheng S, Wang H, Zhang C, Li Y, Dong W. Fast preparation of Fe 3O 4@polydopamine/Au for highly efficient degradation of tetracycline. CHEMOSPHERE 2021; 285:131523. [PMID: 34265702 DOI: 10.1016/j.chemosphere.2021.131523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
This work reported the fast synthesis of magnetic polydopamine Au-Fenton catalyst (Fe3O4@PDA/Au) under UV irradiation at 365 nm. The microstructure of prepared nanocomposites was characterized by various techniques. The effects of several key factors (pH values, H2O2 content and TC concentration) of tetracycline (TC) degradation were evaluated. The results revealed that the TC and total organic carbon (TOC) removal rate reached up to 98.16% and 93.14% within 300 min under optimal conditions (pH 3, H2O2 80 μL, TC concentration 20 mg/L). Besides, HO radicals were generated during the Fenton-like degradation process and the plausible degradation mechanism was discussed. Moreover, Fe3O4@PDA/Au catalyst retained excellent catalytic capacity (TC removal rate 96.94% and TOC removal rate 87.69%) and exhibited fantastic stability after six cycles. Moreover, metal ions leaching was evaluated (0.023 mg/L). Altogether, the novel Fe3O4@PDA/Au Fenton-like catalyst is highly promising for wastewater management.
Collapse
Affiliation(s)
- Xinrang Zhai
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Cheng Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Yan Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
33
|
Sun R, Huang R, Yang J, Wang C. Magnetic copper smelter slag as heterogeneous catalyst for tetracycline degradation: Process variables, kinetics, and characterizations. CHEMOSPHERE 2021; 285:131560. [PMID: 34710966 DOI: 10.1016/j.chemosphere.2021.131560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The treatment of solid wastes and wastewater for sustainable development has been a hot topic. This work proposes a novel process of "waste treating waste" using magnetic copper smelter slag (CSS) as heterogeneous catalyst. The effect of process variables and water matrix was studied on catalytic performance. Under conditions of CSS 10 g/L, H2O2 100 mM, pH 4.4, and temperature 25 °C, tetracycline can be effectively degraded within 30 min. The apparent rate constant is comparable to or higher than previous reports, and the activation energy is 37 kJ/mol. The broad operation pH, slight effect of water matrix, and magnetic property of CSS are favorable for potential application. CSS was characterized by N2 adsorption-desorption isotherm, SEM-EDS, XRD, XPS, ICP and zeta potential. The dominant components of CSS are fayalite and magnetite, and the major metals of Fe and Cu provide active sites for H2O2 activation. Hydroxyl radical generated by H2O2 activation is dominant oxidative specie for tetracycline degradation. The plausible mechanism of tetracycline degradation in the solution and on catalyst surface is proposed.
Collapse
Affiliation(s)
- Ruirui Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rong Huang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiapeng Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
34
|
Sun X, Lyu S. l-cysteine-modified Fe 3 O 4 nanoparticles as a novel heterogeneous catalyst for persulfate activation on BTEX removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:3023-3036. [PMID: 34676621 DOI: 10.1002/wer.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
l-cysteine-modified Fe3 O4 nanoparticles (l-cys@nFe3 O4 ) were synthesized successfully and used as catalyst to activate persulfate (PS) for benzene, toluene, ethylbenzene, and xylenes (BTEX) degradation. The composite was fully characterized, and the l-cys@nFe3 O4 had more protrusions and l-cys was combined on the surface of nFe3 O4 . The removals of BTEX were 78.2%, 85.1%, 85.3%, 81.2%, respectively, in PS/l-cys@nFe3 O4 system, while only 52.7% 57.8%, 60.8%, and 56.3% of BTEX removals reached under the same condition for nFe3 O4 chelated with l-cys in 48 h. Four successive cycles of BTEX degradation were completed in PS/l-cys@nFe3 O4 system. The synergistic mechanisms of BTEX degradation in PS/l-cys@nFe3 O4 system were investigated by electron paramagnetic resonance (EPR), benzoic acid (BA) probe and X-ray photoelectron spectroscopy (XPS) tests. SFe bond in l-cys-Fe complexes promoted the electron transfer between nFe3 O4 core and the solution, iron and iron at the interface, thereby promoting the Fe3+ /Fe2+ cycle and the catalytic capacity of nFe3 O4 . The optimal pH of PS/l-cys@nFe3 O4 system was 3, while HCO3 - and Cl- exhibited negative influences on BTEX degradation. Only 14.2%, 15.5%, 15.9%, and 15.6% BTEX had been removed in the presence of 0.12-M PS and 8.0 g/L l-cys@nFe3 O4 under the actual groundwater condition. However, expanding the dosage of PS and l-cys@nFe3 O4 was an effective strategy to overcome the adverse effect. PRACTITIONER POINTS: L-cys@nFe3 O4 were synthesized successfully and used as catalyst to activate PS for BTEX degradation. Four successive cycles of BTEX degradation were completed in PS/L-cys@nFe3 O4 system. lS-Fe bond in L-cys@nFe3 O4 promoted the electron transfer between PS and nFe3 O4 core.
Collapse
Affiliation(s)
- Xuecheng Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Bi X, Huang Y, Liu X, Yao N, Zhao P, Meng X, Astruc D. Oxidative degradation of aqueous organic contaminants over shape-tunable MnO2 nanomaterials via peroxymonosulfate activation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Hu Y, Chen D, Zhang R, Ding Y, Ren Z, Fu M, Cao X, Zeng G. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126495. [PMID: 34218187 DOI: 10.1016/j.jhazmat.2021.126495] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Waste-derived biochar has been emerged as promising catalysts to activate peroxymonosulfate (PMS) for the degradation of organic contaminants. Herein, passion fruit shell derived biochar (PFSC) was prepared by a one-pot pyrolysis method and used as a metal-free catalyst to activate PMS for the degradation of tetracycline hydrochloride (TC). The batch experiments indicated that the pyrolysis temperature could influence the efficiency of PFSC for the activation of PMS. In the PFSC-900 (prepared at 900 °C)/PMS system, the degradation rate of TC can reach 90.91%. The quenching test and electron paramagnetic resonance spectra revealed that the high catalytic performance of PFSC-900/PMS system was mainly attributed to the non-free radical reaction pathway containing a carbon bridge, and the TC degradation was controlled primarily by singlet oxygen-mediated oxidation. Moreover, the carboxyl group of ketones and the graphite-N atoms on PFSC-900 are the possible active sites of the non-free radical pathway including direct electron transfer or the formation of O2•-/1O2. This study not only shows a new type of biochar as an efficient catalyst for PMS activation but also provides a way of value-added reuse of passion fruit shell.
Collapse
Affiliation(s)
- Yi Hu
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Dezhi Chen
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Rui Zhang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yuan Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhong Ren
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Maosheng Fu
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiukun Cao
- JinChenBoKe Environmental Development Technology Co. Ltd, Tianjin 300384, China
| | - Guisheng Zeng
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource utilization, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
37
|
Li L, Zhang Q, She Y, Yu Y, Hong J. High-efficiency degradation of bisphenol A by heterogeneous Mn–Fe layered double oxides through peroxymonosulfate activation: Performance and synergetic mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Dong C, Zheng Z, Wang Z, He J, Ye Z, Gong X, Lo IMC. N-doped graphitic C 3N 4 nanosheets decorated with CoP nanoparticles: A highly efficient activator in singlet oxygen dominated visible-light-driven peroxymonosulfate activation for degradation of pharmaceuticals and personal care products. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125891. [PMID: 34492829 DOI: 10.1016/j.jhazmat.2021.125891] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
CoP nanoparticle-loaded N-doped graphitic C3N4 nanosheets (CoP/N-g-C3N4) were fabricated via a facile three-step method to degrade pharmaceuticals and personal care products (PPCPs) via a visible-light-driven (VLD) peroxymonosulfate (PMS) activation system. 2 ppm carbamazepine (CBZ) can be removed completely within 10 min by the VLD-PMS system with a kinetic constant of k = 0.29128 min-1, as 25.8 times compared to that under dark conditions (k = 0.01128 min-1). The experimental and theoretical results showed that the doped graphitic N atoms could modulate the electronic properties of the g-C3N4 nanosheets. Subsequently, the Density Functional Theory (DFT) explained that CoP showed preference to bonding with the nitrogen atoms involved in the newly formed N˭N bond, and the Co‒N bond dramatically enhanced the transfer of photo-generated electrons from the N-g-C3N4 nanosheets. Electron paramagnetic resonance (EPR) tests show that singlet oxygen (1O2) plays a leading role in this case. Moreover, PMS molecules are also tended to be absorbed onto the electron-deficient carbon atoms near the newly formed N˭N bonds for PMS reduction, synergistically enhancing the degradation efficiency for CBZ and benzophenone-3 (BZP). The newly established VLD-PMS activation system was shown to treat the actual sewage in Hong Kong sewage treatment plants (STPs) very well. This work supplements the fundamental theory of radical and non-radical pathways in the sulfate radical (SO4•-)-based advanced oxidation process (SR-AOP) for environmental cleanup purposes.
Collapse
Affiliation(s)
- Chencheng Dong
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Juhua He
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhichao Ye
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
39
|
Yang L, Zhang B, Li Z, Wang C, Jiao L, Wang B, Wang Y, Ma H, Ma X. Novel axial substituted subphthalocyanine sensitized titanium dioxide H
12
SubPcB‐OPh
2
OH/TiO
2
photocatalyst: Synthesis, density functional theory calculation, and photocatalytic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Yang
- School of Chemical Engineering Northwest University Xi'an China
| | - Bingbing Zhang
- School of Chemical Engineering Northwest University Xi'an China
| | - Zhuo Li
- School of Chemical Engineering Northwest University Xi'an China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion Northwest University Xi'an China
| | - Chen Wang
- School of Chemical Engineering Northwest University Xi'an China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion Northwest University Xi'an China
| | - Linyu Jiao
- School of Chemical Engineering Northwest University Xi'an China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion Northwest University Xi'an China
| | - Bing Wang
- School of Chemical Engineering Northwest University Xi'an China
| | - Yafei Wang
- School of Chemical Engineering Northwest University Xi'an China
| | - Haixia Ma
- School of Chemical Engineering Northwest University Xi'an China
| | - Xiaoxun Ma
- School of Chemical Engineering Northwest University Xi'an China
- Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion Northwest University Xi'an China
- International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi'an China
| |
Collapse
|
40
|
Yuan P, Wang Z, Ahmad MS, Kong W, Ma J, Wang Z, Shen B, Ji Z. Enhanced oxidative removal of NO by UV/in situ Fenton: Factors, kinetics and simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146202. [PMID: 34030361 DOI: 10.1016/j.scitotenv.2021.146202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A series of experiments on the oxidative removal of NO from flue gas using a novel in situ Fenton (IF) system was performed in the presence of ultraviolet light (UV). The comparison tests revealed that the in situ Fenton system facilitated by UV (UV/IF) has a better oxidation ability of NO than that of the IF system due to the photochemical effect on the generation of oxidative species like (OH). Both of the aforementioned oxidation efficiencies were higher than that of the conventional Fenton system (CF) depending on the premix of Fe2+ and H2O2 solutions, which attribute to the improvement of (OH) yield and valid utilization with continuous addition of fresh reagents and UV radiation. In follow-up experiments, the effects of UV power, gas flow rate, reagent temperature, Fe2+/H2O2 molar ratio, initial pH, initial concentration of NO and SO2 and volume fraction O2 and CO2 on the oxidative removal of NO by UV/IF method were investigated respectively. Moreover, the results of kinetic analysis indicated that NO oxidation was confirmed to have a pseudo-first-order kinetics pattern. The rate constants decreased slightly with increasing liquid temperature, and then the apparent activation energy of NO oxidation reactions in the UV/IF system was calculated as -5.62 kJ/mol by the Arrhenius equation. Furthermore, the reaction mechanism and application prospects concerning NO oxidative removal by using the UV/IF system was speculated in brief. Finally, the computational fluid dynamics (CFD) simulations revealed that the improvement of axial and radial gas hold-up would enhance the gas-liquid contact and accelerate the oxidation reactions on the interface. In addition to reasonable control of process parameters, the optimization of reactor interior structure needs to be carried out via CFD simulation and experimental validation in future research, both are favourable to promote the NO oxidation efficiency and large-scale development of this technology.
Collapse
Affiliation(s)
- Peng Yuan
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China; School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhi Wang
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muhammad Sajjad Ahmad
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenwen Kong
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhuozhi Wang
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhiyong Ji
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
41
|
Yu C, Zhang Z, Dong Z, Xiong Y, Wang Y, Liu Y, Cao X, Dong W, Liu M, Liu Y. Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U(VI) under visible light. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Ag@ Fe-TiO2 catalysts for catalytic oxidation of formaldehyde indoor: a further improvement of Fe-TiO2. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Xiang H, Ren G, Zhong Y, Xu D, Zhang Z, Wang X, Yang X. Fe 3O 4@C Nanoparticles Synthesized by In Situ Solid-Phase Method for Removal of Methylene Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:330. [PMID: 33513986 PMCID: PMC7912336 DOI: 10.3390/nano11020330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022]
Abstract
Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.
Collapse
Affiliation(s)
- Hengli Xiang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Genkuan Ren
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
- College of Chemistry and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Dehua Xu
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Zhiye Zhang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| | - Xiushan Yang
- School of Chemical Engineering, Sichuan University, Ministry of Education Research Center for Comprehensive Utilization and Clean Processing Engineering of Phosphorus Resources, Chengdu 610065, China; (H.X.); (G.R.); (Y.Z.); (D.X.); (Z.Z.)
| |
Collapse
|