1
|
Rønn M, Nielsen MO, Nørskov NP. Gas Chromatography-Tandem Mass Spectrometry Method for Analyses of Iodoform and Diiodomethane in Multiple Biological Matrices from Dairy Cattle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:873-879. [PMID: 39694665 PMCID: PMC11728013 DOI: 10.1021/acs.jafc.4c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
A quantitative method was developed and validated to analyze iodoform and its potential metabolite, diiodomethane, in biological fluids from dairy cows, including rumen fluid, duodenal fluid, blood serum, milk, and urine, using liquid-liquid extraction (LLE) and GC-MS/MS. The method showed no matrix effects across different samples, recoveries of spiked samples between 70 and 120%, and relative standard deviations (RSD%) ranging from 0.7 to 14%. Inter- and intravariations in quality control samples were within 3.1-12.3%, with the highest variation noted in iodoform spiking. Normalized internal standard (IS) and matrix factor (MF) calculations confirmed the suitability of diiodomethane-d2 as an internal standard for quantifying both compounds across different matrices. These results validate the method's application for ADME (absorption, distribution, metabolism, and excretion) studies, enabling the investigation of iodoform digestion, metabolism, and excretion in dairy cattle.
Collapse
Affiliation(s)
- Marie Rønn
- Department of Animal and
Veterinary Sciences, Research Centre Foulum, Aarhus University Viborg, Tjele 8830, Denmark
| | - Mette Olaf Nielsen
- Department of Animal and
Veterinary Sciences, Research Centre Foulum, Aarhus University Viborg, Tjele 8830, Denmark
| | - Natalja P. Nørskov
- Department of Animal and
Veterinary Sciences, Research Centre Foulum, Aarhus University Viborg, Tjele 8830, Denmark
| |
Collapse
|
2
|
Bagiyal M, Parsad R, Ahlawat S, Gera R, Chhabra P, Sharma U, Arora R, Sharma R. Review on camel genetic diversity: ecological and economic perspectives. Mamm Genome 2024; 35:621-632. [PMID: 39075281 DOI: 10.1007/s00335-024-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Camels, known as the "Ship of the Desert," play a vital role in the ecosystems and economies of arid and semi-arid regions. They provide meat, milk, transportation, and other essential services, and their resilience to harsh environments makes them invaluable. Despite their similarities, camel breeds exhibit notable differences in size, color, and structure, with over 40 million camels worldwide. This number is projected to increase, underscoring their growing significance. Economically, camels are crucial for food production, tourism, and trade, with camel racing being particularly significant in Arab countries. Their unique physiological traits, such as low disease susceptibility and efficient water conservation, further enhance their value. Camel products, especially meat and milk, offer substantial nutritional and therapeutic benefits, contributing to their high demand. Genetic diversity studies have advanced our understanding of camels' adaptation to extreme environments. Functional genomics and whole-genome sequencing have identified genes responsible for these adaptations, aiding breeding programs and conservation efforts. High-throughput sequencing has revealed genetic markers linked to traits like milk production and disease resistance. The development of SNP chips has revolutionized genetic studies by providing a cost-effective alternative to whole-genome sequencing. These tools facilitate large-scale genotyping, essential for conserving genetic diversity and improving breeding strategies. To prevent the depletion of camel genetic diversity, it is crucial to streamline in situ and ex situ conservation efforts to maintain their ecological and economic value. A comprehensive approach to camel conservation and genetic preservation, involving advanced genomic technologies, reproductive biotechniques, and sustainable management practices, will ensure their continued contribution to human societies.
Collapse
Affiliation(s)
- Meena Bagiyal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ram Parsad
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Ritika Gera
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
3
|
Amina R, Habiba R, Abouddihaj B. Camel urine as a potential source of bioactive molecules showing their efficacy against pathogens: A systematic review. Saudi J Biol Sci 2024; 31:103966. [PMID: 38495380 PMCID: PMC10940778 DOI: 10.1016/j.sjbs.2024.103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Camels are highly suited for severe desert conditions and able to provide most of the natural products like urine, which has been used as alternative medicine to treat diverse infections and disorders. There is, however, a shortage and paucity of scientific reviews highlighting the antifungal, antibacterial and antiviral effects of camel urine. By better understanding its antimicrobial characteristics, our overarching aim is to provide an exhaustive overview of this valuable natural product by synthesizing and summarizing data on the efficacy of this biofluid and also describing the potential substances exhibiting antimicrobial properties. We searched three databases in order to point out relevant articles (Web of Science, Scopus and Google Scholar) until December 2022. Research articles of interest evaluating the antimicrobial effects of camel urine were selected. Overall, camel urine furnished promising antibacterial activities against gram-positive bacteria, namely Staphylococcus aureus (30 mm), Bacillus cereus (22 mm), Bacillus subtilis (25 mm) and Micrococcus luteus (21 mm), as well as gram-negative bacteria, especially Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Salmonella spp., without forgetting its efficiency on Mycobacterium tuberculosis as well. The excretion also showed its potency against H1N1 virus, vesicular stomatitis virus and middle east respiratory syndrome coronavirus. Similarly, the camel urine featured strong antifungal activity against Candida albicans, Aspergillus niger, Aspergillus flavus and dermatophytes with a minimal inhibitory concentration of 0.625 μg/ml against Trichophyton violaceum, 2.5 μg/ml against Microsporum canis and 1.25 μg/ml against Trichophyton rubrum and Trichophyton mentagrophytes. This comprehensive review will be valuable for researchers interested in investigating the potential of camel urine in the development of novel broad-spectrum key molecules targeting a wide range of drug-resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Ressmi Amina
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Raqraq Habiba
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Barguigua Abouddihaj
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| |
Collapse
|
4
|
Pant L, Thapa S, Dahal B, Khadka R, Biradar MS. In Silico and In Vitro Studies of Antibacterial Activity of Cow Urine Distillate (CUD). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:1904763. [PMID: 38225974 PMCID: PMC10789515 DOI: 10.1155/2024/1904763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
Cow urine distillate (CUD) is a traditional Indian medicine used to treat various diseases, including bacterial infections. However, there is limited evidence to support its use as a medicine, and its safety and efficacy have not been thoroughly studied. In this study, we evaluated the antibacterial activity of CUD against five bacterial strains using in vitro and in silico approaches. In vitro experiments showed that CUD has significant antibacterial activity against all tested strains with a zone of inhibition (ZOI) ranging from 13 to 24 mm and minimum inhibitory concentration (MIC) values ranging from 12.5 to 50 µg/ml. The results indicated that the 15% concentration of CUD displayed the highest antibacterial activity against Staphylococcus aureus and Salmonella typhi. To further investigate the antibacterial mechanism of CUD, we performed in silico docking studies of the active compounds of CUD with bacterial proteins involved in protein synthesis. Our results showed that 2-hydroxycinnamic acid (ΔG = -6.9 kcal/mol) and ferulic acid (ΔG = -6.8 kcal/mol) exhibited the best docking scores with the targeted proteins (DNA gyrase, PDBID: 4KFG). The hydrogen bonding interaction with amino acids Val71 and Asp73 was found to be crucial for their antibacterial activity.
Collapse
Affiliation(s)
- LokRaj Pant
- Department of Pharmacy, Sunsari Technical College, Dharan, Nepal
| | - Shankar Thapa
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa, Nepal
- Department of Pharmacy, Madan Bhandari Academy of Health Sciences, Hetauda, Nepal
| | - Bibek Dahal
- Department of Pharmacy, Sunsari Technical College, Dharan, Nepal
| | - Ravindra Khadka
- Department of Pharmacy, Sunsari Technical College, Dharan, Nepal
| | | |
Collapse
|
5
|
Tharwat M, Almundarij TI, Sadan M, Khorshid F, Swelum A. Is camel's urine friend or enemy? Review of its role in human health or diseases. Open Vet J 2023; 13:1228-1238. [PMID: 38027399 PMCID: PMC10658017 DOI: 10.5455/ovj.2023.v13.i10.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023] Open
Abstract
Camels play an important role in the pastoral mode of life by fulfilling basic demands of livelihood. Various pathologies, such as tuberculosis, hemorrhoids, ascites, increased size of the abdomen, gas colic, anemia, and abdominal tumors, were treated with animal urine, including camels, horses, donkeys, sheep, goats, elephants, and buffalo. Thirty different compounds were analyzed in camel urine by gas chromatography and mass spectrometry. For inductively coupled plasma mass spectrometry analysis, 28 important elements were analyzed in the urine of both camel and bovine. It was found that the inorganic elements are almost similar, except sodium, potassium, iron, zinc, and magnesium are higher in levels in camel urine, while chromium is high in bovine urine. Camel urine also contains different nanoparticles, crystals, and nano-rods with varying shapes and sizes, which offer potent selective cytotoxic activity against several lines of cancer cells. It is believed that the camel's urine has a therapeutic effect for a wide range of diseases such as chill, fever, or even tumors; therefore, it has been consumed in the Arabian Peninsula for a long time. Usually, patients take it directly or by mixing a few drops with camel milk. Camel urine is also used for therapeutic purposes, most widely in Asia, Africa, the United States, the United Kingdom, and other European countries. The religious aspect of using camel urine in treatment comes from the fact that there has been convincing evidence that the Prophet Mohammad (PBUH) suggested the use of camel urine to treat his companions who were suffering from abdominal pains at that time. The camel's urine has anti-diabetic, anti-cancer, antibacterial, antiviral, and antifungal properties. It also has hepato-protective and cardiovascular effects.
Collapse
Affiliation(s)
- Mohamed Tharwat
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Tariq I. Almundarij
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Madeh Sadan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Faten Khorshid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- PMF Natural Products Company, Al-Suez, Egypt
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Alasmari F, Alasmari MS, Assiri MA, Alswayyed M, Rizwan Ahamad S, Alhumaydhi AI, Arif BI, Aljumayi SR, AlAsmari AF, Ali N, Childers WE, Abou-Gharbia M, Sari Y. Liver Metabolomics and Inflammatory Profiles in Mouse Model of Fentanyl Overdose Treated with Beta-Lactams. Metabolites 2023; 13:965. [PMID: 37623908 PMCID: PMC10456707 DOI: 10.3390/metabo13080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Fentanyl is a highly potent opioid analgesic that is approved medically to treat acute and chronic pain. There is a high potential for overdose-induced organ toxicities, including liver toxicity, and this might be due to the increase of recreational use of opioids. Several preclinical studies have demonstrated the efficacy of beta-lactams in modulating the expression of glutamate transporter-1 (GLT-1) in different body organs, including the liver. The upregulation of GLT-1 by beta-lactams is associated with the attenuation of hyperglutamatergic state, which is a characteristic feature of opioid use disorders. A novel experimental beta-lactam compound with no antimicrobial properties, MC-100093, has been developed to attenuate dysregulation of glutamate transport, in part by normalizing GLT-1 expression. A previous study showed that MC-100093 modulated hepatic GLT-1 expression with subsequent attenuation of alcohol-increased fat droplet content in the liver. In this study, we investigated the effects of fentanyl overdose on liver metabolites, and determined the effects of MC-100093 and ceftriaxone in the liver of a fentanyl overdose mouse model. Liver samples from control, fentanyl overdose, and fentanyl overdose ceftriaxone- or MC-100093-treated mice were analyzed for metabolomics using gas chromatography-mass spectrometry. Heatmap analysis revealed that both MC-100093 and ceftriaxone attenuated the effects of fentanyl overdose on several metabolites, and MC-100093 showed superior effects. Statistical analysis showed that MC-100093 reversed the effects of fentanyl overdose in some metabolites. Moreover, enrichment analysis revealed that the altered metabolites were strongly linked to the glucose-alanine cycle, the Warburg effect, gluconeogenesis, glutamate metabolism, lactose degradation, and ketone body metabolism. The changes in liver metabolites induced by fentanyl overdose were associated with liver inflammation, an effect attenuated with ceftriaxone pre-treatments. Ceftriaxone normalized fentanyl-overdose-induced changes in liver interleukin-6 and cytochrome CYP3A11 (mouse homolog of human CYP3A4) expression. Our data indicate that fentanyl overdose impaired liver metabolites, and MC-100093 restored certain metabolites.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Alhumaydhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar I. Arif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sahar R. Aljumayi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
7
|
Singh Y, Rani J, Kushwaha J, Priyadarsini M, Pandey KP, Sheth PN, Yadav SK, Mahesh MS, Dhoble AS. Scientific characterization methods for better utilization of cattle dung and urine: a concise review. Trop Anim Health Prod 2023; 55:274. [PMID: 37470864 DOI: 10.1007/s11250-023-03691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Cattle are usually raised for food, manure, leather, therapeutic, and draught purposes. Biowastes from cattle, such as dung and urine, harbor a diverse group of crucial compounds, metabolites/chemicals, and microorganisms that may benefit humans for agriculture, nutrition, therapeutics, industrial, and other utility products. Several bioactive compounds have been identified in cattle dung and urine, which possess unique properties and may vary based on agro-climatic zones and feeding practices. Therefore, cattle dung and urine have great significance, and a balanced nutritional diet may be a key to improved quality of these products/by-products. This review primarily focuses on the scientific aspects of biochemical and microbial characterization of cattle biowastes. Various methods including genomics for analyzing cattle dung and gas chromatography-mass spectroscopy for cattle urine have been reviewed. The presented information might open doors for the further characterization of cattle resources for heterogeneous applications in the production of utility items and addressing research gaps. Methods for cattle's dung and urine characterization.
Collapse
Affiliation(s)
- Yashpal Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India
| | - Pratik N Sheth
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Sushil Kumar Yadav
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - M S Mahesh
- Livestock Farm Complex, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Rajiv Gandhi South Campus, Mirzapur, 231001, Uttar Pradesh, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, Varanasi, India.
| |
Collapse
|
8
|
de Souza Silva BH, de Andrade RB, da Silva IJS, da Silva AAA, da Fonseca CF, Correia FR, de Carvalho Gueiros EL, Menezes BGC, de Oliveira Filho EF, Dos Santos Monnerat JPI, de Carvalho FFR, Soares PC. Effect of Crude Glycerin in the Feed of Lactating Goats on Concentrations of Essential and Toxic Metals in Serum, Urine, Milk, and Artisanal "Coalho" Cheese. Biol Trace Elem Res 2023; 201:3323-3340. [PMID: 36198929 DOI: 10.1007/s12011-022-03414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
Goat farming is concentrated in semi-arid and tropical regions in Brazil. From 2006 to 2017, the number of goats sold in the country increased by 65.7%. The dairy products from these animals present higher digestibility, high vitamin A and B content, hypoallergenicity, and less lactose compared to dairy products from cows, in addition to having a higher sales value. Since corn and soybean meal generate an expense for feed management, crude glycerin, originating from the manufacture of biodiesel, has been studied as an energy substitute. However, this product contains heavy metals, posing risks to animal and human health. Few data are available on trace elements in biological samples and products derived from goats' milk with the dietary introduction of glycerin. The objective was to quantify aluminum (Al), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), and zinc (Zn) in the serum, urine, milk, and artisanal "coalho" cheese of dairy goats fed different levels of crude glycerin in feed management. In total, 16 Saanen goats were selected, lactating females, that were distributed in four Latin squares and randomly treated with different levels of crude glycerin (0, 5, 10, and 15%). After the end of each experiment cycle, serum, urine, milk, and artisanal "coalho" cheese samples were collected at the four moments. The samples were submitted to digestion assisted by microwave radiation. The multi-element analysis was carried out using inductively coupled plasma optical emission spectrometry (ICP OES). There was no influence of crude glycerin levels replacing corn in serum, milk, urine, and artisanal "coalho" cheese. The serum concentration of the metals Cu, Fe, Zn, and Mn; urine concentrations of Cu, Zn, Mn, Mo, and Cr; and milk and artisanal "coalho" cheese concentrations of Cu, Zn, and Mn remained within the standards found in the literature. The inclusion of 5 to 15% of crude glycerin, derived from cotton oil, in the diets of dairy goats in partial replacement of corn, does not alter the concentration of essential and toxic metals in serum, urine, milk, and artisanal "coalho" cheese and does not, therefore, present a risk factor for intoxication.
Collapse
Affiliation(s)
- Bruna Higino de Souza Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Rodrigo Barbosa de Andrade
- Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Iago José Santos da Silva
- Department of Civil and Environmental Engineering, Federal University of Pernambuco (UFPE), Rua Acadêmico Hélio Ramos, s/n - Cidade Universitária, Recife, Pernambuco, 50740-467, Brazil
| | - Ayna Arramis Apolinário da Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Cristina Farias da Fonseca
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Felipe Rosendo Correia
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Esdras Lima de Carvalho Gueiros
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Bruna Gomes Calaça Menezes
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - João Paulo Ismério Dos Santos Monnerat
- Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Francisco Fernando Ramos de Carvalho
- Department of Animal Science, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil
| | - Pierre Castro Soares
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, Pernambuco, 52171‑900, Brazil.
| |
Collapse
|
9
|
Salazar-Bermeo J, Moreno-Chamba B, Martínez-Madrid MC, Valero M, Rodrigo-García J, Hosseinian F, Martín-Bermudo F, Aguado M, de la Torre R, Martí N, Saura D. Preventing Mislabeling: A Comparative Chromatographic Analysis for Classifying Medical and Industrial Cannabis. Molecules 2023; 28:molecules28083552. [PMID: 37110787 PMCID: PMC10143857 DOI: 10.3390/molecules28083552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Gas chromatography (GC) techniques for analyzing and determining the cannabinoid profile in cannabis (Cannabis sativa L.) are widely used in standard laboratories; however, these methods may mislabel the profile when used under rapid conditions. Our study aimed to highlight this problem and optimize GC column conditions and mass spectrometry (MS) parameters to accurately identify cannabinoids in both standards and forensic samples. The method was validated for linearity, selectivity, and precision. It was observed that when tetrahydrocannabinol (Δ9-THC) and cannabidiolic acid (CBD-A) were examined using rapid GC conditions, the resulting derivatives generated identical retention times. Wider chromatographic conditions were applied. The linear range for each compound ranged from 0.02 μg/mL to 37.50 μg/mL. The R2 values ranged from 0.996 to 0.999. The LOQ values ranged from 0.33 μg/mL to 5.83 μg/mL, and the LOD values ranged from 0.11 μg/mL to 1.92 μg/mL. The precision values ranged from 0.20% to 8.10% RSD. In addition, forensic samples were analyzed using liquid chromatography (HPLC-DAD) in an interlaboratory comparison test, with higher CBD and THC content than GC-MS determination (p < 0.05) in samples. Overall, this study highlights the importance of optimizing GC techniques to avoid mislabeling cannabinoids in cannabis samples.
Collapse
Affiliation(s)
- Julio Salazar-Bermeo
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
- Mitra Sol Technologies S.L. Parque Científico y Empresarial UMH, Edificio Quorum III, Avda. de la Universidad, 03202 Elche, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - Bryan Moreno-Chamba
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
- Mitra Sol Technologies S.L. Parque Científico y Empresarial UMH, Edificio Quorum III, Avda. de la Universidad, 03202 Elche, Spain
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Avenida Fausto Elio s/n, Edificio 8E, Acceso F Planta 0, 46022 Valencia, Spain
| | - María Concepción Martínez-Madrid
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
| | - Manuel Valero
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
| | - Joaquín Rodrigo-García
- Departament of Health Science, Institute of Biomedical Sciences, Autonomous University of Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Mexico
| | - Farah Hosseinian
- Institute of Biochemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Francisco Martín-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-CSIC, 41092 Seville, Spain
| | - Manuel Aguado
- Mitra Sol Technologies S.L. Parque Científico y Empresarial UMH, Edificio Quorum III, Avda. de la Universidad, 03202 Elche, Spain
| | - Rosa de la Torre
- CTAEX, National AgriFood Technological Center "Extremadura", Carretera Villafranco-Balboa, Km 1.2, 06195 Badajoz, Spain
| | - Nuria Martí
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
| | - Domingo Saura
- IDiBE, Institute for R&D in Health Biotechnology of Elche, University Miguel Hernández of Elche, Avda. de la Universidad, 03202 Elche, Spain
| |
Collapse
|
10
|
Hasni S, Khelil A, Mahcene Z, Bireche K, Çebi N, Rahmani Y, Brahimi Z, Ahhmed A. Physical and biochemical characterization of dromedary milk as traditionally consumed by Bedouins. Food Chem 2023; 401:134191. [DOI: 10.1016/j.foodchem.2022.134191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
11
|
Smits M, Joosten H, Faye B, Burger PA. The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals (Basel) 2022; 13:47. [PMID: 36611656 PMCID: PMC9817819 DOI: 10.3390/ani13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The worldwide dromedary milk production has increased sharply since the beginning of this century due to prolonged shelf life, improved food-safety and perceived health benefits. Scientific confirmation of health claims will expand the market of dromedary milk further. As a result, more and more dromedaries will be bred for one purpose only: the highest possible milk production. However, intensive dromedary farming systems have consequences for animal welfare and may lead to genetic changes. Tighter regulations will be implemented to restrict commercialization of raw milk. Protocols controlling welfare of dromedaries and gene databases of milk-dromedaries will prevent negative consequences of intensive farming. In countries where dromedaries have only recently been introduced as production animal, legislators have limited expertise on this species. This is exemplified by an assessment on behalf of the Dutch government, recommending prohibiting keeping this species from 2024 onwards because the dromedary was deemed to be insufficiently domesticated. Implementation of this recommendation in Dutch law would have devastating effects on existing dromedary farms and could also pave the way for adopting similar measures in other European countries. In this paper it is shown that the Dutch assessment lacks scientific rigor. Awareness of breeders and legislators for the increasing knowledge about dromedaries and their products would strengthen the position of dromedaries as one of the most adapted and sustainable animals.
Collapse
Affiliation(s)
- Marcel Smits
- European Camel Research Society, Johanniterlaan 7, 6721 XX Bennekom, The Netherlands
| | - Han Joosten
- Emeritus Professor Microbiology, Chemin de Crocus 1, 1073 Mollie Margot, Switzerland
| | - Bernard Faye
- UMR SELMET, CIRAD-ES, Campus International de Baillarguet, 34398 Montpellier, France
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
12
|
Camel ( Camelus spp.) Urine Bioactivity and Metabolome: A Systematic Review of Knowledge Gaps, Advances, and Directions for Future Research. Int J Mol Sci 2022; 23:ijms232315024. [PMID: 36499353 PMCID: PMC9740287 DOI: 10.3390/ijms232315024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.
Collapse
|
13
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
14
|
Serum Metabolomic Analysis of Male Patients with Cannabis or Amphetamine Use Disorder. Metabolites 2022; 12:metabo12020179. [PMID: 35208253 PMCID: PMC8879674 DOI: 10.3390/metabo12020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Studies have demonstrated that chronic consumption of abused drugs induces alterations in several proteins that regulate metabolism. For instance, methamphetamine exposure reduces glucose levels. Fatty and amino acid levels were altered in groups exposed to abused drugs. Therefore, in our study, we investigated the serum metabolomic profile of patients diagnosed with cannabis and/or amphetamine use disorders. Blood was obtained from subjects (control, amphetamine, and cannabis). Detection of serum metabolites was performed using gas chromatography. The ratio peak areas for metabolites were analyzed across the three groups. Both cannabis and amphetamine groups showed higher d-erythrotetrafuranose, octadecanoic acid, hexadecenoic acid, trans-9-octadecanoic acid, lactic acid and methyl thio hydantoin metabolites compared with the control group. Moreover, cannabis patients were found to possess higher glycine, 9,12 octadecanoic acid malonic acid, phosphoric acid and prostaglandin F1a than controls. Our analysis showed that the identified metabolic profile of cannabis or amphetamine use disorder patients was different than control group. Our data indicated that chronic exposure to cannabis or amphetamine dysregulated metabolites in the serum. Future studies are warranted to explore the effects of these abused drugs on the metabolic proteins.
Collapse
|
15
|
Salamt N, Idrus RBH, Kashim MIAM, Mokhtar MH. Anticancer, antiplatelet, gastroprotective and hepatoprotective effects of camel urine: A scoping review. Saudi Pharm J 2021; 29:740-750. [PMID: 34400869 PMCID: PMC8347850 DOI: 10.1016/j.jsps.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/29/2021] [Indexed: 01/18/2023] Open
Abstract
Camel urine has traditionally been used to treat multiple human diseases and possesses the most beneficial effects amongst the urine of other animals. However, scientific review evaluating the anticancer, antiplatelet, gastroprotective and hepatoprotective effects of camel urine is still scarce. Thus, this scoping review aimed to provide scientific evidence on the therapeutic potentials of camel urine. Three databases were searched to identify relevant articles (Web of Science, PubMed and Scopus) up to September 2020. Original articles published in English that investigated the effects of camel urine in various diseases were included. The literature search identified six potential articles that met all the inclusion criteria. Three articles showed that camel urine possesses cytotoxic activities against different types of cancer cells. Two studies revealed camel urine's protective effects against liver toxicity and gastric ulcers, whilst another study showed the role of camel urine as an antiplatelet agent. All studies demonstrated significant positive effects with different effective dosages. Thus, camel urine shows promising therapeutic potential in treating human diseases, especially cancer. However, the standardised dosage and potential side effects should be determined before camel urine could be offered as an alternative treatment.
Collapse
Affiliation(s)
- Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ruszymah Binti Haji Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
16
|
Nautiyal V, Dubey RC. FT-IR and GC-MS analyses of potential bioactive compounds of cow urine and its antibacterial activity. Saudi J Biol Sci 2021; 28:2432-2437. [PMID: 33935568 PMCID: PMC8071964 DOI: 10.1016/j.sjbs.2021.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022] Open
Abstract
The main emphasis of this study was to identify the bioactive compounds responsible for antibacterial activity of Badri cow urine isolated by thin layer chromatography. The most effective bioactive fraction was analysed by FT-IR and GC-MS analyses. Among the four major fractions (EW1, EW2, CA1 and CA2) obtained by TLC profiling, EW1 was found most active against bacterial strains viz., Listeria monocytogenes (MTCC657), Staphylococcus aureus (MTCC7443), Pseudomonas aeruginosa (MTCC424), Klebsiella pneumoniae (MTCC432) and Salmonella typhi (MTCC733). However, Escherichia coli (MTCC118), was found resistant to all the fractions. In FT-IR spectroscopy, functional groups like alcohol, amide, alkene, alkyl halide, polysulfide and phosphate ions were identified. The GC-MS analysis of EW1 fraction exhibited the presence of 12 compounds, of which 1-heneicosanol was found as the major compound. These compounds might be responsible synergistically or individually for antibacterial activity of cow urine. Nine elements namely sodium (Na), calcium (Ca), chromium (Cr), iron (Fe), magnesium (Mg), aluminium (Al), potassium (K) and zinc (Zn), Gold (Au) were measured by ICP-MS analysis.
Collapse
Affiliation(s)
- Vipin Nautiyal
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar - 249404, Uttarakhand, India
| | - R C Dubey
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar - 249404, Uttarakhand, India
| |
Collapse
|
17
|
Anwar S, Ansari SA, Alamri A, Alamri A, Alqarni A, Alghamdi S, Wagih ME, Ahmad A, Rengasamy KR. Clastogenic, anti-clastogenic profile and safety assessment of Camel urine towards the development of new drug target. Food Chem Toxicol 2021; 151:112131. [PMID: 33737110 DOI: 10.1016/j.fct.2021.112131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022]
Abstract
Camel Urine (CU) is composed of components that have antitumor properties and other therapeutic benefits. Regardless of short-term preliminary CU genotoxicity is reported, comprehensive genotoxic studies are limited. In this study, sensitive in vitro and in vivo genotoxic bioassays such as mitotic index (MI), chromosomal aberrations (CA), micronucleated polychromatic erythrocytes (MPE), and analysis of primary spermatocytes were employed. The adventitious roots of Allium cepa L. and mice (Mus musculus), as an experimental mammalian system, were employed to assess the MI and CA of CU induced by sodium nitrate and cyclophosphamide respectively. In contrast, other clastogenic assays were studied in mice (Mus musculus). Twenty-eight days of four repeated doses (2.5, 5, 25, and 50 mL/kg BW) of CU were tested and compared with three doses (10, 25, and 50 mg/kg BW) cyclophosphamide as a positive control and deionized water as the negative control. The results proved that cytological examination of CU was cytotoxic since a decrease in mitotic activity (16.8-1.1) was observed, since the significant reduction in cell proliferation in A. cepa L. and also in mice bone marrow cells. On the other hand, CU did not induce a clastogenic effect since no significant stickiness, fragment, multinucleoli were observed compared to the control group. Additionally, the data showed that CU decreased the CA when mice had received cyclophosphamide (25 mg BW) followed by CU doses. CU was found to be cytotoxic but no clastogenic effect. Furthermore, it possesses anticlastogenic properties. The observed results suggest that CU in whole or the metabolites present in CU could be a potent drug target. Further research is warranted to study the complete metabolites profiling and to study the molecular mechanisms.
Collapse
Affiliation(s)
- Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, 81451, Saudi Arabia.
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulwahab Alamri
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, 81451, Saudi Arabia
| | - Abdulhakeem Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aali Alqarni
- Pharmacology and Toxicology Unit, Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Albaha University, Albaha, 65431, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Albaha University, Albaha, 65431, Saudi Arabia
| | - Mohamed E Wagih
- Canadian Academy of Sciences, Toronto, Ontario, M5S1Z6, Canada
| | - Akbar Ahmad
- Genetic and Invitro Toxicology, Charles River Laboratories, Greater Chicago Area, IL, USA
| | - Kannan Rr Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Private Bag X1106, Polokwane, Sovenga, 0727, South Africa.
| |
Collapse
|
18
|
Salou S, Larivière D, Cirtiu CM, Fleury N. Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Anal Bioanal Chem 2020; 413:171-181. [PMID: 33123763 DOI: 10.1007/s00216-020-02989-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The increasing use of titanium dioxide nanoparticles in daily use consumer products such as cosmetics, personal care products, food additives, and even medicine has led to growing concerns regarding human safety. It would be ideal to track exposure to this emerging nanopollutant, for example through bioassays, however, so far nanoparticle assessment in biological matrices such as urine remains challenging. The lack of data is mainly due to the limitations of the current metrology, but also to the low expected concentration in human samples. In this study, a quantification method for titanium dioxide nanoparticles in urine has been developed and validated following the ISO/CEI 17025:2017 guidelines. The detection limit for titanium dioxide nanoparticle mass concentration by single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was 0.05 ng mL-1. The particle size limit was determined using three different approaches, with the highest calculated limit value approaching 50 nm. Repeatability and reproducibility of 14% and 18% respectively were achieved for particle mass concentration, and 6% for both parameters for particle size determination. Method trueness and recovery were 98% and 84%, respectively.
Collapse
Affiliation(s)
- Samantha Salou
- Chemistry Department, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada.,Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada
| | - Dominic Larivière
- Chemistry Department, Université Laval, 1045 Ave de la Médecine, Quebec, QC, G1V 0A6, Canada.
| | - Ciprian-Mihai Cirtiu
- Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada.
| | - Normand Fleury
- Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, 945 Avenue Wolfe, Québec, QC, G1V 5B3, Canada
| |
Collapse
|
19
|
Othman S, Elsaed W, Gabr S, Al-Fassam H, Gabr N, Eldesouqui M, Alwaele M, Al-Harbi H, Abo-Elenee R, Allam A, Mahmoud A. Camel Urine Prevents Cisplatin-induced Nephrotoxicity in Rats by Attenuating Oxidative Stress and Apoptosis. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.257.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Ahamad SR, Yaqoob SH, Khan A, Shakeel F. Metabolite profile and elemental determination of camel follicular fluid by GC-MS and ICP-MS. Trop Anim Health Prod 2019; 51:2447-2454. [PMID: 31197724 DOI: 10.1007/s11250-019-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Abstract
The objective of present study was to determine metabolite profile and inorganic elements of camel follicular fluids (FF) using "gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma mass spectrometry (ICP-MS)," respectively. Various metabolites were detected in camel FF by the proposed GC-MS technique. The major compounds detected were lactic acid (62.37%), linolenic acid (5.95%), myo-inositol (3.37%), hexadecanoic acid (3.19%), N-ethyl-N-vinylacetamide (3.15%), acetamide (2.89%), tetradecanoic acid (2.64%), and D-xylofuranose (2.25%). The proposed ICP-MS technique was validated in terms of linearity, precision, accuracy, and sensitivity. All quality control validation parameters were found to be satisfactory for the analysis of elements in camel FF. The proposed ICP-MS technique showed the presence of sixteen different elements (out of eighteen standards) in camel FF. Some elements such as Na, K, Ca, and Mg were obtained in higher amounts in camel FF. Overall, the results of this study indicated that the proposed GC-MS and ICP-MS techniques can be successfully applied for metabolite profile and element determination of biological fluids such as FF.
Collapse
Affiliation(s)
- Syed Rizwan Ahamad
- Central Laboratory, Research Center, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Syed Hilal Yaqoob
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Central Laboratory, Research Center, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
21
|
Mahmoud HS, Elsaed WM, Gabr SA. Camel Urotherapy and Hepatoprotective Effects Against Carbon Tetrachloride-induced Liver Toxicity. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.696.705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Zhou X, Sun J, Tian Y, Wu X, Dai C, Li B. Spectral classification of lettuce cadmium stress based on information fusion and VISSA‐GOA‐SVM algorithm. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin Zhou
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Yan Tian
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Xiaohong Wu
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Chunxia Dai
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Bin Li
- Beijing Research Center for Information Technology in Agriculture Beijing China
| |
Collapse
|
23
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Continuous Studies on Using Camel’s Urine as Nontoxic Corrosion Inhibitor–Corrosion Inhibition of Al–Cu Alloy in Alkaline Solutions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-018-3489-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Wang X, Wu Y, Wu C, Wu Q, Niu Q. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma. Biol Trace Elem Res 2018; 182:381-386. [PMID: 28702873 DOI: 10.1007/s12011-017-1090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022]
Abstract
The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.
Collapse
Affiliation(s)
- Xinsheng Wang
- Chemical Engineering and Pharmacy School, Henan University of Science and Technology, 471023, Luoyang, People's Republic of China.
| | - Yanfang Wu
- Pharmaceutical School, Xinxiang Medical University, 451003, Xinxiang, People's Republic of China
| | - Chengying Wu
- Pharmaceutical School, Nanjing University of Chinese Medicine, 210023, Nanjing, People's Republic of China
| | - Qinan Wu
- Pharmaceutical School, Nanjing University of Chinese Medicine, 210023, Nanjing, People's Republic of China.
| | - Qingshan Niu
- Chemical Engineering and Pharmacy School, Henan University of Science and Technology, 471023, Luoyang, People's Republic of China
| |
Collapse
|
26
|
Chen L, Shen M, Ma A, Han W. Investigation of Trace Element Content in the Seeds, Pulp, and Peel of Mashui Oranges Using Microwave Digestion and ICP-MS Analysis. Biol Trace Elem Res 2018. [PMID: 28620727 DOI: 10.1007/s12011-017-1055-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fresh Mashui orange samples were pretreated with microwave digestion using an HNO3-H2O2 system. The levels of Mg, K, Ca, Fe, Mn, Cu, Zn, As, Cd, and Pb in the seeds, pulp, and peel were then determined using inductively coupled plasma mass spectrometry (ICP-MS) combined with collision cell technology (CCT) and kinetic energy discrimination (KED). The standard curve coefficient of determinations of the ten tested elements were between 0.9995 and 0.9999. The instrument detection limit was between 0.112 ng/L and 3.05 ng/mL. The method detection limit was between 0.0281 and 763 ng/g. The average recovery rate was between 85.0 and 117%. The current results showed that Mashui oranges are rich in three elements, namely Mg, K, and Ca. The concentrations of K and Ca were significantly higher than that of Mg in the peel. The content of K was the highest in the seeds. Fe, Mn, Cu, and Zn had the second highest concentrations, and Fe was the highest in the seeds, while Cu was the lowest in the peel. As, Cd, and Pb (hazardous elements) had the lowest concentrations of all the tested elements.
Collapse
Affiliation(s)
- Lingyun Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Mei Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Public Health Laboratory Centre of Southern Medical University School, North no. 1838, Guangzhou Avenue, Guangzhou, Guangdong Province, China.
| | - Ande Ma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Weili Han
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|