1
|
Al-Rashed WS. Assessing public perception and parametric analysis of municipal solid waste management solutions in Tabuk City, Saudi Arabia. Sci Rep 2025; 15:11304. [PMID: 40175483 PMCID: PMC11965500 DOI: 10.1038/s41598-025-94525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Accelerated urbanization, population growth, and industrial revolution have resulted in significant environmental degradation and health issues for residents due to municipal solid waste. The effective management of solid waste is a significant issue, especially in developing economies, where improper waste disposal leads to economic losses and adverse impacts on environmental and public health. This study evaluates existing waste management procedures in Tabuk City in northern Saudi Arabia, finds significant challenges, and suggests possible solutions. For this purpose, this study administered a survey to assess public awareness regarding municipal solid waste recycling and management. Therefore, a two-stage analytic investigation was conducted that included a total of 228 respondents from Tabuk City, Saudi Arabia. Among them, 62.28% were male, and 37.72% were female, with the largest age group represented was 22-35 years, accounting for 42.10% of participants. The questionnaire responses were evaluated using SPSS V27, and relative scores were analyzed using SHapley Additive exPlanations and Partial Dependence Plots. Based on the study results, most respondents are knowledgeable and worried about the adverse environmental effects of solid waste. The Pearson correlation highlighted that lack of awareness with responsible authorities exhibited the highest positive correlations with recycling behavior improvement, with respective correlation values of + 0.55. The results also revealed an absence of recycling systems since the majority of respondents were uninformed of existing practices and expressed a readiness to engage in recycling programs if established. Further, parametric modeling illustrates that most of the participants believe that lack of awareness along with authority responsibility is the most influential factor impacting poor waste management practice. The study concluded by highlighting the necessity for an organized municipal solid waste recycling system, enhanced community education, and more stringent governmental restrictions to mitigate environmental damage and foster sustainable waste management in Tabuk.
Collapse
Affiliation(s)
- Wael S Al-Rashed
- Department of Civil Engineering, Faculty of Engineering, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Alghuson MK, Alghuried A. A survey and partial dependency analysis to assess residential solid waste recycling awareness in Saudi Arabia. Sci Rep 2025; 15:7952. [PMID: 40055509 PMCID: PMC11889273 DOI: 10.1038/s41598-025-92484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Rapid industrialization, rise in population, and urbanization have led to severe environmental degradation and health concerns for inhabitants due to regular household waste (RHW). Implementing sustainable waste management practices, such as regular household waste recycling, is an imminent need in Saudi Arabia and other nations. Yet, the analysis of the awareness regarding RHW recycling and its influencing elements in the Kingdom of Saudi Arabia (KSA) has rarely been conducted. Efficient management of home waste is currently a major concern, particularly in economically developing countries, as inappropriate disposal of waste results in financial losses and detrimental effects on the environment and public health. The objective of this study is to assess the level of awareness among Saudi households on RHW, the environmental issues associated with improper waste disposal, and their readiness to participate in the recycling of RHW. Therefore, we conducted a two-stage analytic investigation that included a total of 909 households from different areas of Saudi Arabia. In addition to the analysis of questionnaire responses, partial dependency (PDP) analysis was also conducted using two supervised machine learning algorithms, Multi-Layer Perceptron (MLP) and Decision Tree (DT), to evaluate how sociodemographic factors influence waste recycling awareness. Based on the study results, most respondents are knowledgeable and worried about the adverse environmental effects of solid waste. Most respondents are motivated to support a large-scale recycling program, provided enough facilities are available. Also, the PDP analysis revealed that sociodemographic factors such as age, gender, salary, and marital status also significantly impact the awareness of waste recycling. Finally, considering the rising amount of waste produced by the Saudi population, the authorities must implement a recycling program to address this harmful waste and promote the development of a sustainable world.
Collapse
Affiliation(s)
- Moahd Khaled Alghuson
- Department of Industrial Engineering, Faculty of Engineering, University of Tabuk, 47512, Tabuk, Saudi Arabia.
| | - Abdullah Alghuried
- Department of Industrial Engineering, Faculty of Engineering, University of Tabuk, 47512, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Thamizharasan A, Aishwarya M, Mohan V, Krishnamoorthi S, Gajalakshmi S. Assessment of microbial flora and pesticidal effect of vermicast generated from Azadirachta indica (neem) for developing a biofertilizer-cum-pesticide as a single package. Microb Pathog 2024; 192:106690. [PMID: 38759935 DOI: 10.1016/j.micpath.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.
Collapse
Affiliation(s)
- A Thamizharasan
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Aishwarya
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - V Mohan
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Krishnamoorthi
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Gajalakshmi
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
4
|
Enebe MC, Erasmus M. Vermicomposting technology - A perspective on vermicompost production technologies, limitations and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118585. [PMID: 37421723 DOI: 10.1016/j.jenvman.2023.118585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The need for environmental sustainability while increasing the quantity, quality, and the rate of waste treatment to generate high-value environmental friendly fertilizer products is highly in demand. Vermicomposting is a good technology for the valorisation of industrial, domestic, municipal and agricultural wastes. Various vermicomposting technologies have been in use from time past to present. These technologies range from windrow, small - scale batch vermicomposting to large - scale continuous flow systems. Each of these processes has its own merits and demerits, necessitating advancement in the technology for efficient treatment of wastes. This work explores the hypothesis that the use of a continuous flow vermireactor system of a composite frame structure performs better than batch, windrow and other continuous systems operated in a single container. Following an in-depth review of the literature on vermicomposting technologies, treatment techniques, and reactor materials used, to explore the hypothesis, it was found that vermireactors operating in continuous flow fashion perform better in waste bioconversion than the batch and windrow techniques. Overall, the study concludes that batch techniques using plastic vermireactors predominate over the other reactor systems. However, the use of frame compartmentalized composite vermireactors performs considerably better in waste valorisation.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa.
| | - Mariana Erasmus
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, 9031, South Africa
| |
Collapse
|
5
|
Giwa AS, Maurice NJ, Luoyan A, Liu X, Yunlong Y, Hong Z. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery. Heliyon 2023; 9:e19765. [PMID: 37809742 PMCID: PMC10559074 DOI: 10.1016/j.heliyon.2023.e19765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Sewage sludge (SS) is an environmental issue due to its high organic content and ability to release hazardous substances. Most of the treatments available are biological, thermal hydrolysis, mechanical (ultrasound, high pressure, and lysis), chemical with oxidation (mainly ozonation), and alkali pre-treatments. Other treatment methods include landfill, wet oxidation, composting, drying, stabilization, incineration, pyrolysis, carbonization, liquefaction, gasification, and torrefaction. Some of these SS disposal methods damage the ecosystem and underutilize the potential resource value of SS. These challenges must be overcome with an innovative technique for the improvement of SS's nutritional value, energy content, and usability. This review proposes plasma pyrolysis and anaerobic digestion (AD) as promising SS treatment technologies. Plasma pyrolysis pre-treats SS to make it digestible by AD bacteria and immobilizes the heavy metals. The addition of Char to the upstream AD process increases the quantity and quality of biogas produced while enhancing the nutrients in the digestate. These two processes are integrated at high temperatures, thus creating concerns about their energy demand. These challenges are offset by the generated energy that can run the treatment plant or be sold to the grid, generating additional cash. Plasma pyrolysis wastes can also be converted into biochar, organic fertilizer, or soil conditioner. These combined technologies' financial sustainability depends on the treatment facility's circumstances and location. Plasma pyrolysis and AD can treat SS sustainably and provide nutrients and resources. This paper explains the co-process treatment route's techno-economic prospects, challenges, and recommendations for the future application of SS valorization and resource recovery.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | | | - Ai Luoyan
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Xinxin Liu
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Yang Yunlong
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Zhao Hong
- Jiangxi Transportation Institute Company Limited, China
| |
Collapse
|
6
|
Thirunavukkarasu A, Sivashankar R, Nithya R, Sathya AB, Priyadharshini V, Kumar BP, Muthuveni M, Krishnamoorthy S. Sustainable organic waste management using vermicomposting: a critical review on the prevailing research gaps and opportunities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:364-381. [PMID: 36744572 DOI: 10.1039/d2em00324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Logistic growth of human population, exponential rate in agronomic industries and feeble waste management practices have resulted in the massive generation of organic wastes. Vermicomposting is one of the eco-biotechnological practices to efficiently transform them into stable and nutrient-rich organic manure with the synergetic actions of earthworms and soil microbiota. Vermicompost, a derivative product has the desirable physicochemical traits such as excellent porosity, buffering actions, aeration and water holding capacity. Also the presences of enzymic and microbial secretions contribute to growth and disease resistance of the crops. Owing to the benefits of soil nutrients restoration and effective organic waste management, vermicomposting has gained much attention among the scientific researchers and organic farmers. The present review is intended to provide comprehensive information on the site selection, screening of earthworms, different modes of operation and their desirable micro-environmental conditions. Also, the review has critically identified the prevailing research gaps viz. limited studies on the substrate formulation or optimization designs, poor control on the operational variables, lack of field-level investigations, technological feasibility of scale-up process, economic viability and cost-benefit analysis. Prospective researches can be made on these hotspots to identify the vermicomposting as a successful and profitable business model in the circular economy.
Collapse
Affiliation(s)
| | - Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | | | | | - Balakrishnan Prem Kumar
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | - Murugan Muthuveni
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | | |
Collapse
|
7
|
Zhou Y, Ren X, Tsui TH, Barcelo D, Wang Q, Zhang Z, Yongzhen D. Microplastics as an underestimated emerging contaminant in solid organic waste and their biological products: Occurrence, fate and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130596. [PMID: 37055952 DOI: 10.1016/j.jhazmat.2022.130596] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs), as an emerging pollutant, have been widely detected in aquatic, terrestrial, and atmospheric ecosystems. Recently, more researchers indicated that solid organic waste is also a crucial repository of MPs and has become a vital pollution source in ecosystems. Although the occurrence and fate of MPs in solid organic waste and the interaction between MPs and biological treatments have been explored, there still needs to be comprehensive summaries. Hence, this study reviewed the occurrence and characteristics of MPs in solid organic waste and organic fertilizers. Meanwhile, this study summarized the influence of MPs on biological treatments (composting and anaerobic digestion) and their degradation characteristics. MPs are abundant in solid organic waste (0-220 ×103 particles/kg) and organic fertilizer (0-30 ×103 particles/kg), PP and PE are the prominent MPs, and fibers and fragments are the main shapes. MPs can affect the carbon and nitrogen conversion during biological treatments and interfere with microbial communities. The MP's characteristics changed after biological treatments, which should further consider their potential ecological risks. This review points out the existing problems of MPs in organic waste recycling and provides directions for their treatment in the future.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - To-Hung Tsui
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ding Yongzhen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
8
|
A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Biohydrogen production from microalgae is a potential alternative energy source that is now intensively being researched. The complex natures of the biological processes involved have afflicted the accuracy of traditional modelling and optimization, besides being costly. Accordingly, machine learning algorithms have been employed to overcome setbacks, as these approaches have the capability to predict nonlinear interactions and handle multivariate data from microalgal biohydrogen studies. Thus, the review focuses on revealing the recent applications of machine learning techniques in microalgal biohydrogen production. The working principles of random forests, artificial neural networks, support vector machines, and regression algorithms are covered. The applications of these techniques are analyzed and compared for their effectiveness, advantages and disadvantages in the relationship studies, classification of results, and prediction of microalgal hydrogen production. These techniques have shown great performance despite limited data sets that are complex and nonlinear. However, the current techniques are still susceptible to overfitting, which could potentially reduce prediction performance. These could be potentially resolved or mitigated by comparing the methods, should the input data be limited.
Collapse
|
9
|
Rana S, Alharbi KAM, Fatima N, Ali M, Shakeel A, Mehmood R, Gorji M, Abdelmohsen SA. Interaction of nanoparticles with micro organisms under Lorentz force in a polymer liquid with zero mass flux. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Alsamhary K. Vermi-cyanobacterial remediation of cadmium-contaminated soil with rice husk biochar: An eco-friendly approach. CHEMOSPHERE 2023; 311:136931. [PMID: 36273604 DOI: 10.1016/j.chemosphere.2022.136931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Present study is aimed to evaluate the influence of earthworm (Eisenia fetida), Cyanobacteria (Cylindrospermum stagnale), and rice husk biochar (BC) on cadmium (Cd) detoxification in artificially contaminated soil. The Cd content was kept at 10 mg/kg in factorial design I, coupled with 2% and 0% BC. E. fetida and C. stagnale un-inoculated and inoculated experiments were maintained respectively as negative and positive controls. In factorial design II, E. fetida and C. stagnale were inoculated, along with BC (0% and 2%, denoted as B), without BC (WB), along with four different Cd concentrations (Cd-0, Cd-5, Cd-10, and Cd-20 mg/kg). Results suggest a substantial amount of Cd removal in BC-assisted treatments when compared to negative control-1. Cd (mg/g) in E. fetida tissue ranged from 0.019 (WB2) to 0.0985 (B4). C. stagnale of WB4 (0.036) bioaccumulated the most Cd (mg/g), while B2 showed the least (0.018). The maximum quantity of metallothionein (5.34 μM/mg) was detected in E. fetida of B4 (factorial design - II) and the minimum was claimed in WB1 (0.48 μM/mg) at the end. Earthworm metallothionein protein is a key component in Cd removal from soil by playing an important role in detoxification process. Microbial communities and humic substances were observed in BC-assisted treatments, which aided in Cd-contaminated soil remediation. The present findings suggest that BC (2%) + earthworms + algae could be a suitable remediation strategy for Cd contaminated soil. BC + earthworm + algal-based investigation on heavy metal remediation will be a valuable platform for detoxifying harmful metals in soils.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
11
|
Reaction Kinetics in the Vermicomposting Process of Peach Waste. Life (Basel) 2022; 12:life12091290. [PMID: 36143327 PMCID: PMC9505704 DOI: 10.3390/life12091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Peach is a fruit cultivated in temperate regions and its use generates waste composed of seeds and skin. Inadequate disposal of this waste generates an environmental impact; therefore, an alternative is to apply a vermicomposting degradation process. In this research, these four laboratory-scale reactors were used: RC (no earthworms), R1, R2, and R3 (50 earthworms each) to get mixtures in the following proportions of peach waste and load material (vegetable waste and eggshell): RC (50%-50%), R1 (50%-50%), R2 (60%-40%), and R3 (40%-60%). In addition, during this process, physicochemical parameters were analyzed (temperature, pH, humidity, total organic carbon (TOC), total nitrogen (TN), and carbon/nitrogen ratio (C/N)). For each mixture, the reaction order and rate constants were determined using mathematical models. After analysis of the reaction kinetics, the results showed that zero- and first-order reactions were best suited for the degradation of this waste in the vermicomposting process. The highest rates of degradation in the mixtures were for RC and R1, which means faster completion of the process, and consequently, smaller dimensions of the facilities necessary for vermicomposting. Thus, this research provides important information for the design of reactors that use similar substrates.
Collapse
|
12
|
Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, Perveen K. Current solid waste management strategies and energy recovery in developing countries - State of art review. CHEMOSPHERE 2022; 291:133088. [PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia; School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau, Pinang, Malaysia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Luis Jesús Villarreal-Gómez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico; Facultad de Ciencias de La Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Faris M Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah H Alsabhan
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
13
|
Santhana Kumar V, Das Sarkar S, Das BK, Sarkar DJ, Gogoi P, Maurye P, Mitra T, Talukder AK, Ganguly S, Nag SK, Munilkumar S, Samanta S. Sustainable biodiesel production from microalgae Graesiella emersonii through valorization of garden wastes-based vermicompost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150995. [PMID: 34666095 DOI: 10.1016/j.scitotenv.2021.150995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Biodiesel production from microalgae has gained significant interest recently due to the growing energy demand and non-renewable nature of petroleum. However, high cost of production and environmental health related issues like excess use of inorganic fertilizers, eutrophication are the major constraints in commercial-scale biodiesel production. Besides this, solid wastes (garden-based) management is also a global concern. In the present study, to overcome these limitations vermicompost extract was tested as nutrient source to enhance growth performance and lipid production from a freshwater microalga (Graesiella emersonii MN877773). Garden wastes were first converted into vermicompost manure and its extract (aerobic and anaerobically digested) was prepared. The efficacy of the extract was then tested in combination with BG11 medium. The mixotrophic cultivation of microalgae in anaerobically digested vermicompost extract at 50:50 combination with BG11 medium enhanced the cell biomass (0.64 g d. wt. L-1) and lipid productivity (3.18 mg L-1 day-1) of microalgae by two times. Moreover, the combination also improved the saturated (methyl palmitate) and monounsaturated fatty acids (oleic acid) content in the test algae. The quality of biodiesel also complies with all the properties of biodiesel standard provided by India, the USA, and Europe except the cold filter plugging property. The combination was also found to improve the cell biomass (0.041 g L-1) as compared to BG11 medium in mass-scale cultivation. Hence, the study proved that G. emersonii grown in media supplemented with garden waste-based vermicompost extract had significant potential for mass-scale biodiesel and bioproduct production.
Collapse
Affiliation(s)
- V Santhana Kumar
- Aquatic Environment Biotechnology and Nanotechnology, Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Soma Das Sarkar
- Fishery Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India.
| | - Dhruba Jyoti Sarkar
- Aquatic Environment Biotechnology and Nanotechnology, Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Pranab Gogoi
- Kolkata Centre of ICAR-Central Inland Fisheries Research Institute, CGO Complex, 2nd floor, C-Wing, DF Block, Salt Lake, Kolkata, Pin 700 064, West Bengal, India
| | - Praveen Maurye
- Aquatic Environment Biotechnology and Nanotechnology, Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Tandrima Mitra
- KIIT, School of Biotechnology, Campus-XI, Patia, Bhubaneswar, Pin 751024, Odisha, India
| | - Anjon Kumar Talukder
- Aquatic Environment Biotechnology and Nanotechnology, Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Satabdi Ganguly
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Subir Kumar Nag
- Fishery Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| | - Sukham Munilkumar
- ICAR-Central Institute of Fisheries Education, 32, GN Block, Sector V, Bidhannagar, Kolkata, Pin 700091, West Bengal, India
| | - Srikanta Samanta
- Riverine and Estuarine Fisheries Division, Barrackpore, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, Pin 700120, West Bengal, India
| |
Collapse
|
14
|
Paul S, Goswami L, Pegu R, Kumar Chatterjee S, Sundar Bhattacharya S. Epigenetic regulations enhance adaptability and valorization efficiency in Eisenia fetida and Eudrilus eugeniae during vermicomposting of textile sludge: Insights on repair mechanisms of metal-induced genetic damage and oxidative stress. BIORESOURCE TECHNOLOGY 2022; 345:126493. [PMID: 34883193 DOI: 10.1016/j.biortech.2021.126493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Genotoxicity-based assessments of vermitechnology for textile-sludge valorization have rarely been attempted. Therefore, waste sanitization and epigenetic stress-regulation efficiency of Eisenia fetida and Eudrilus eugeniae were evaluated in silk (DSPS) and cotton (CPWS) processing sludge-based vermibeds. Vermicomposting resulted in greater C, N, and P recovery than composting. Earthworm population reduced by 6-50% in DSPS/CPWS, while it significantly increased in cow dung (CD) mixed DSPS/CPWS. The Cr, Cd, Pb, and Zn accumulation efficiency of earthworms was higher in DSPS-based feedstocks than CPWS. However, metal-rich sludge elevated oxidative stress, causing greater inhibition of cell viability and DNA damage in Eudrilus than in Eisenia. Although histo-architecture of chloragogenous tissues was perturbed, earthworms combatted metal-induced lipid peroxidation via the activation of catalase, superoxide-dismutase, and reduced-glutathione. Correlation statistics revealed that genetic integrity in earthworms was restored through DNA-methyltransferase activity, especially in DSPS/CPWS + CD vermibeds. Overall, Eisenia was a healthier choice than Eudrilus for sustainable valorization of textile-sludge.
Collapse
Affiliation(s)
- Sarmistha Paul
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Linee Goswami
- Department of Botany, Visva-Bharati Santiniketan, West Bengal 731235, India
| | - Ratul Pegu
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Subhendu Kumar Chatterjee
- Department of Biological Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal 741246, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India.
| |
Collapse
|
15
|
Ameen F, Al-Homaidan AA. Improving the efficiency of vermicomposting of polluted organic food wastes by adding biochar and mangrove fungi. CHEMOSPHERE 2022; 286:131945. [PMID: 34426272 DOI: 10.1016/j.chemosphere.2021.131945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Vermicomposting of food waste amended with biochar and cow dung was studied during a 90-day composting period. The improvement of the vermicomposting process by adding three mangrove fungal species as additional amendments were studied. The use of mangrove fungi Acrophialophora jodhpurensis as a bio-catalytic actor during vermicomposting proved to be beneficial in terms of final compost quality (available N, P and K) and the shortening of the composting period. All three fungal species, however, reached the neutral pH at the end of the composting period and appeared to be beneficial. Heavy metal (Cd, Ni, Pb, Zn, Cu and Cr) concentrations decreased throughout the composting process. Food waste can be treated using vermicomposting with biochar, cow dung and the mangrove fungi A. jodhpurensis. The final vermicomposting product is suitable for agricultural use.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ali A Al-Homaidan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Goh PS, Othman MHD, Matsuura T. Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation. MEMBRANES 2021; 11:782. [PMID: 34677548 PMCID: PMC8541373 DOI: 10.3390/membranes11100782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
In parallel to the rapid growth in economic and social activities, there has been an undesirable increase in environmental degradation due to the massively produced and disposed waste. The need to manage waste in a more innovative manner has become an urgent matter. In response to the call for circular economy, some solid wastes can offer plenty of opportunities to be reutilized as raw materials for the fabrication of functional, high-value products. In the context of solid waste-derived polymeric membrane development, this strategy can pave a way to reduce the consumption of conventional feedstock for the production of synthetic polymers and simultaneously to dampen the negative environmental impacts resulting from the improper management of these solid wastes. The review aims to offer a platform for overviewing the potentials of reutilizing solid waste in liquid separation membrane fabrication by covering the important aspects, including waste pretreatment and raw material extraction, membrane fabrication and characterizations, as well as the separation performance evaluation of the resultant membranes. Three major types of waste-derived polymeric raw materials, namely keratin, cellulose, and plastics, are discussed based on the waste origins, limitations in the waste processing, and their conversion into polymeric membranes. With the promising material properties and viability of processing facilities, recycling and reutilization of waste resources for membrane fabrication are deemed to be a promising strategy that can bring about huge benefits in multiple ways, especially to make a step closer to sustainable and green membrane production.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
17
|
Aycan Dümenci N, Cagcag Yolcu O, Aydin Temel F, Turan NG. Identifying the maturity of co-compost of olive mill waste and natural mineral materials: Modelling via ANN and multi-objective optimization. BIORESOURCE TECHNOLOGY 2021; 338:125516. [PMID: 34271499 DOI: 10.1016/j.biortech.2021.125516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 05/26/2023]
Abstract
In this study, olive mill waste (OMW) and natural mineral amendments were co-composted to evaluate the compost maturity efficiency. The results were modelled by Feed-Forward Neural Networks (FF-NN) and Elman-Recurrent Neural Networks (ER-NN) and compared Response Surface Methodology (RSM). According to RSM produced a prediction error of more than 10% while Neural Networks (NNs) models were <2%. From, multi-objective optimization, the most suitable materials were expanded vermiculite and pumice with overall desirabilities of 0.60 and 0.56, respectively. The optimum amendment ratios were achieved with 14.3% of expanded vermiculite and 16.0% of pumice for OMW composting. Multivariate Analysis of Variance (MANOVA) results indicated that the materials had a strong effect on composting in parallel with the optimization results. NNs were predictors with superior properties to model the composting processes, can be used as modeling tools in many areas that are difficult and costly to perform new experiments.
Collapse
Affiliation(s)
- Nurdan Aycan Dümenci
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| | - Ozge Cagcag Yolcu
- Department of Statistics, Faculty of Sciences and Arts, Marmara University, İstanbul 34722, Turkey
| | - Fulya Aydin Temel
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, Giresun, Turkey.
| | - Nurdan Gamze Turan
- Department of Environmental Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey
| |
Collapse
|