1
|
Long S, Wang Y. Association of TAB2 gene polymorphism with endometrial cancer susceptibility and clinical analysis. Turk J Obstet Gynecol 2025; 22:1-12. [PMID: 40062608 PMCID: PMC11894771 DOI: 10.4274/tjod.galenos.2025.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025] Open
Abstract
Objective Transforming growth factor-β-activated kinase 1 binding protein 2 (TAB2) plays a vital role in inflammatory pathways. It has also been considered a potential target for the enhancement of the the antiestrogen effects. Previous evidence has indicated that TAB2 gene variants are associated with several diseases, whereas their potential correlation with endometrial cancer (EC) is unclear. This study aims to initially explore the association between TAB2 gene polymorphisms (rs237028 /AG, rs521845 T/G, and rs652921 T/C) and EC. Materials and Methods Polymerase chain reaction-restriction fragment length polymorphism was applied to determine the genotype composition and the allele frequencies of TAB2 gene variant polymorphisms in 270 EC patients and 294 healthy controls. Results The G allele of rs521845 was related to the increase of EC risk [p=0.08, odds ratio (OR): 0.72, 95% confidence interval (CI): 0.56-0.91]. Moreover, EC risk was associated with rs521845 in different genetic models (p=0.017, OR: 0.63, 95% CI: 0.44-0.91 in the codominant model; p=0.0051, OR: 0.61, 95% CI: 0.43-0.87 in the dominant model). For rs237028, the percentage of AG genotype in patients with highly differentiated tumours (G1) was significantly higher than that in moderately, poorly differentiated patients (G2/G3) (p=0.031, OR: 0.77, 95% CI: 0.45-1.30). Conclusion Our results showed that the rs521845 polymorphism of TAB2, was associated with EC risk, suggesting that TAB2 may play a crucial role in EC prognosis.
Collapse
Affiliation(s)
- Siyu Long
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
- Sichuan University West China Second University Hospital, Clinic of Andrology/Sichuan Human Sperm Bank, Chengdu, China
| | - Yanyun Wang
- Sichuan University, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Center for Translational Medicine, Laboratory of Molecular Translational Medicine, Sichuan, China
| |
Collapse
|
2
|
Li Q, Tong Y, Guo J, Liang X, Shao H, Yang L, Wang J. Vitamin D Receptor Regulates Oxidative Stress and Apoptosis Via the HIF-1α/HO-1 Pathway in Cardiomyocytes. Cell Biochem Biophys 2025:10.1007/s12013-025-01681-x. [PMID: 39934512 DOI: 10.1007/s12013-025-01681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Acute myocardial infarction (AMI) is a critical cardiovascular disease with high disability and mortality rates, primarily caused by hypoxic injury to myocardial cells. This study investigates the role of the Vitamin D receptor (VDR) in cardiomyocytes under hypoxic conditions. VDR expression was characterized in human and hypoxic cardiomyocytes isolated from mice. To understand the downstream effects of VDR-related pathways, VDR was modulated using shRNA. RXR expression and localization were measured in hypoxic and sh-VDR cardiomyocytes. Oxidative stress and apoptosis levels were assessed and the effect of Vitamin D treatment was evaluated. VDR expression was found to be downregulated in the serum of AMI patients, similar to the hypoxic cardiomyocytes. Knockdown of VDR induced oxidative stress and apoptosis in normoxic cardiomyocytes, which could not be reversed by vitamin D treatment. Knock-down VDR in cardiomyocytes exposed to hypoxic induced apoptosis and reactive oxygen species via the HIF-1α/HO-1 axis. Overexpression VDR alleviated the expression levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Our results indicated that VDR is crucial in reducing myocardial stress and apoptosis during hypoxic injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yu Tong
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiarui Guo
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xi Liang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Haifeng Shao
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lili Yang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jian Wang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
3
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Zhang Q, Wang X, Xu F, Niu J, Zhao J, Wang Q. IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region. Brain Res Bull 2024; 208:110890. [PMID: 38302069 DOI: 10.1016/j.brainresbull.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cognitive impairment is a major complication of cerebral ischemia-reperfusion (CIR) injury and has an important impact on the quality of life of patients. However, the precise mechanisms underlying cognitive impairment after CIR injury remain elusive. In the current study, we investigated the role of interleukin 17 A (IL-17A) on CIR injury-induced cognitive impairment in wild-type and IL-17A knockout mice using RNA sequencing analysis, neurological assessments, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, and western blot analysis. RNA sequencing identified 195 CIR-induced differentially expressed genes (83 upregulated and 112 downregulated), highlighting several enriched biological processes (negative regulation of phosphorylation, transcription regulator complex, and receptor ligand activity) and signaling pathways (mitogen-activated protein kinase [MAPK], tumor necrosis factor, and IL-17 signaling pathways). We also injected adeno-associated virus into the bilateral hippocampal CA1 regions of CIR mice to upregulate or downregulate cyclic AMP response element-binding protein. IL-17A knockout activated the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway and further improved synaptic plasticity, structure, and function in CIR mice. Together, our findings suggest that IL-17A deficiency alleviates CIR injury by activating the ERK/MAPK signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Yanan Li
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Xupeng Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Junfang Niu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050001, China
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China.
| |
Collapse
|
5
|
Liu T, Wang W, Li X, Chen Y, Mu F, Wen A, Liu M, Ding Y. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res 2023; 37:5509-5528. [PMID: 37641491 DOI: 10.1002/ptr.7994] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Li B, Wang Y, Yuan X, Liu G, Diao Y, Liu J. 6-Shogaol from Dried Ginger Protects against Intestinal Ischemia/Reperfusion by Inhibiting Cell Apoptosis via the BDNF/TrkB/PI3K/AKT Pathway. Mol Nutr Food Res 2023; 67:e2200773. [PMID: 37118920 DOI: 10.1002/mnfr.202200773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Indexed: 04/30/2023]
Abstract
SCOPE Intestinal ischemia-reperfusion (II/R) injury is a common pathological process with high morbidity and mortality. Effective prevention and treatment therapies for II/R are clinically necessary. 6-Shogaol (6-SG), the main active ingredient in dried ginger, behaviors multiple biological activities, including anti-inflammation, antioxidation, and anti-apoptosis. This study aims to elucidate the protective effects and mechanism of 6-SG against II/R-induced injury. METHODS AND RESULTS Sprague-Dawley rats are pre-treated orally with 6-SG and subjected to II/R injury by clamping superior mesenteric artery for 1 h and reperfusion for 2 h. Caco-2 cells are challenged by hypoxia/reoxygenation to mimic II/R in vitro. 6-SG pre-treatment protects against II/R injury by reducing intestinal morphological damage and intestinal barrier injury via inhibiting cell apoptosis. Network pharmacology and molecular docking analyses reveal that 6-SG has a high affinity with brain-derived neurotrophic factor (BDNF) formed homodimer or heterodimer with NT4 instead of the monomer, and thus the dimer configuration is stabilized, activating BDNF/TrkB/PI3K/AKT signaling pathway and inhibiting II/R-induced cell apoptosis. The outcome is further validated both in vivo and in vitro. CONCLUSION 6-Shogaol protects against II/R injury by inhibiting cell apoptosis through the BDNF/TrkB/PI3K/AKT pathway. This study offers a new understanding of the protection mechanism of 6-SG against II/R-induced injury.
Collapse
Affiliation(s)
- Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, 116044, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xin Yuan
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, 116044, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, 116044, China
| |
Collapse
|
7
|
Blackberry-Loaded AgNPs Attenuate Hepatic Ischemia/Reperfusion Injury via PI3K/Akt/mTOR Pathway. Metabolites 2023; 13:metabo13030419. [PMID: 36984859 PMCID: PMC10051224 DOI: 10.3390/metabo13030419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities. Aims: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms. Methods: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed. Key findings: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors. Significance: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.
Collapse
|
8
|
Lyu N, Li X. Sevoflurane Postconditioning Attenuates Cerebral Ischemia-Reperfusion Injury by Inhibiting SP1/ACSL4-Mediated Ferroptosis. Hum Exp Toxicol 2023; 42:9603271231160477. [PMID: 36842993 DOI: 10.1177/09603271231160477] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Sevoflurane is the most commonly used anesthetic in clinical practice and exerts a protective effect on cerebral ischemia-reperfusion (I/R) injury. This study aims to elucidate the molecular mechanism by which sevoflurane postconditioning protects against cerebral I/R injury. Oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro and the middle cerebral artery occlusion (MCAO) model in vivo were established to simulate cerebral I/R injury. Sevoflurane postconditioning reduced neurological deficits, cerebral infarction, and ferroptosis after I/R injury. Interestingly, sevoflurane significantly inhibited specificity protein 1 (SP1) expression in MACO rats and HT22 cells exposed to OGD/R. SP1 overexpression attenuated the neuroprotective effects of sevoflurane on OGD/R-treated HT22 cells, evidenced by reduced cell viability, increased apoptosis, and cleaved caspase-3 expression. Furthermore, chromatin immunoprecipitation and luciferase experiments verified that SP1 bound directly to the ACSL4 promoter region to increase its expression. In addition, sevoflurane inhibited ferroptosis via SP1/ACSL4 axis. Generally, our study describes an anti-ferroptosis effect of sevoflurane against cerebral I/R injury via downregulating the SP1/ASCL4 axis. These findings suggest a novel sight for cerebral protection against cerebral I/R injury and indicate a potential therapeutic approach for a variety of cerebral diseases.
Collapse
Affiliation(s)
- Ning Lyu
- Department of Anesthesiology, 56659Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Xiaoyun Li
- Department of Anesthesiology, 144991The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Zhao Z, Li Y, Chi F, Ma L, Li Y, Hou Z, Wang Q. Sevoflurane postconditioning ameliorates cerebral ischemia-reperfusion injury in rats via TLR4/MyD88/TRAF6 signaling pathway. Aging (Albany NY) 2022; 14:10153-10170. [PMID: 36585924 PMCID: PMC9831726 DOI: 10.18632/aging.204461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
To determine whether sevoflurane postconditioning protects against cerebral ischemia reperfusion (I/R) injury and its potential mechanism, we employed bioinformatic analysis, neurological assessments, and western blot analysis, as well as triphenyl tetrazolium chloride, hematoxylin and eosin, Nissl, and immunofluorescence staining. We identified 103 differentially expressed genes induced by cerebral I/R, including 75 upregulated genes and 28 downregulated genes enriched for certain biological processes (involving regulation of inflammatory responses, cellular responses to interleukin 1, and chemokine activity) and signaling pathways (such as transcriptional misregulation in cancer, interleukin-17 signaling, rheumatoid arthritis, MAPK signaling, and Toll-like receptor signaling). As a typical path in Toll-like receptor signaling pathway, in the current study, we investigated the protective effect of sevoflurane postconditioning in cerebral I/R rats and further explore the role of TLR4/MyD88/TRAF6 signaling pathway in it. The results showed cerebral I/R-induced neurological deficits were comparatively less severe following sevoflurane postconditioning. In addition, TLR4/MyD88/TRAF6 signaling pathway-related proteins and neuropathic damage were ameliorated in aged rats following sevoflurane postconditioning, while the TLR4 agonist lipopolysaccharide aggravated these changes. Together, these findings suggest that sevoflurane postconditioning ameliorates cerebral I/R injury by a mechanism involving inhibition of the TLR4/MyD88/TRAF6 signaling pathway to suppress neuroinflammatory responses.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
- Department of Anesthesiology, Hebei Provincial Chest Hospital, Shijiazhuang 050047, Hebei, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Provincial Chest Hospital, Shijiazhuang 050047, Hebei, China
| | - Fei Chi
- Department of Oncology, Hebei Provincial Chest Hospital, Shijiazhuang 050047, Hebei, China
| | - Li Ma
- Surgical Department of Clinical Medicine, Shijiazhuang People’s Medical College, Shijiazhuang 050091, Hebei, China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
10
|
Ouyang F, Li B, Wang Y, Xu L, Li D, Li F, Sun-Waterhouse D. Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis. Metabolites 2022; 12:metabo12111028. [PMID: 36355111 PMCID: PMC9692742 DOI: 10.3390/metabo12111028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Palmitic acid (PA) can lead to intestinal epithelial barrier dysfunction. In this study, the protective effects and working mechanisms of 6-shogaol against PA-induced intestinal barrier dysfunction were investigated in human intestinal epithelial Caco-2 cells. Transepithelial electrical resistance (TEER), paracellular flux, qRT-PCR, immunofluorescence, and Western blot experiments showed that the 24-h treatment with 400 μM PA damaged intestinal barrier integrity, as evidenced by a reduction of 48% in the TEER value, a 4.1-fold increase in the flux of fluorescein isothiocyanate-dextran 4000 (FD-4), and decreases in the mRNA and protein expression of tight junction (TJ)-associated proteins (claudin-1, occludin, and ZO-1), compared with the control. The PA treatment significantly (p < 0.05) increased the levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha (TNF-α)) in Caco-2 cells due to the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylated nuclear factor kappa-B (NF-κB) proteins, and downregulation of miR-216a-5p (which directly targeted TLR4). Co-treatment with PA and 6-shogaol (2.5 μM) significantly (p < 0.05) attenuated PA-induced changes through regulation of TJs via the miR-216a-5p/TLR4/NF-κB signaling pathway. This study provides insights into the functions and working mechanisms of 6-shogaol as a promising food-derived agent against PA-induced intestinal epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Fangxin Ouyang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Bo Li
- Department of Nursing, Jinan Vocational College of Nursing, 3636 Gangxi Road, Jinan 250102, China
| | - Yuli Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Longhua Xu
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
- Correspondence: (F.L.); (D.S.-W.); Tel.: +86-0538-8246029 (F.L.)
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Correspondence: (F.L.); (D.S.-W.); Tel.: +86-0538-8246029 (F.L.)
| |
Collapse
|