1
|
Abdoul-Latif FM, El Mhamdi MI, Ainane A, Ali AM, Oumaskour K, Cherroud S, Cacciatore S, Ainane T. Development and Perfection of Marine-Based Insecticide Biofilm for Pea Seed Protection: Experimental and Computational Approaches. Molecules 2025; 30:1621. [PMID: 40286227 PMCID: PMC11990342 DOI: 10.3390/molecules30071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
This work aims to develop an insecticidal biofilm based on Calothrixin A, collagen, and chitosan for the protection of pea seeds. The main objective is to improve the ingredient concentrations maximizing the insecticidal activity of the biofilm and to study the desorption of Calothrixin A according to the diffusion parameters. Eight biofilm formulations were prepared with different concentrations of the components and tested on Sitona lineatus and Bruchus pisorum. The results show that a high concentration of Calothrixin A tended to increase insecticidal activity, although this increase was not always significant, while a higher concentration of collagen and chitosan reduced insecticidal activity, probably by limiting the diffusion of the active ingredient. The prediction models for insecticidal activity showed that the interaction of the factors had no significant impact on the responses, but the model for Sitona lineatus presented better accuracy. The diffusion tests revealed that the CB3C-5 biofilm, with high diffusion parameters, correlated with insecticidal activity. The characterization of the CB3C-5 biofilm showed adequate physical, mechanical, thermal, and structural properties for agricultural seed storage application. Moreover, the computational approach showed that Calothrixin A interacts more efficiently with the OR5-Orco complex than with the small OBP, disrupting the olfactory detection of insects. This mechanism highlights the targeting of the olfactory complex as a potential strategy to control insect pests. This research contributes to the understanding of the role of marine-based biofilms for seed protection and opens perspectives for the development of ecological solutions against insect pests, particularly in the field of sustainable agriculture.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti;
| | - My Ismail El Mhamdi
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco; (M.I.E.M.); (A.A.); (K.O.); (S.C.)
| | - Ayoub Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco; (M.I.E.M.); (A.A.); (K.O.); (S.C.)
| | - Ali Merito Ali
- Medicinal Research Institute, Centre d’Etudes et de Recherche de Djibouti, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City 77101, Djibouti;
| | - Khadija Oumaskour
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco; (M.I.E.M.); (A.A.); (K.O.); (S.C.)
| | - Sanaa Cherroud
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco; (M.I.E.M.); (A.A.); (K.O.); (S.C.)
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
| | - Tarik Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, BP 170, Khenifra 54000, Morocco; (M.I.E.M.); (A.A.); (K.O.); (S.C.)
| |
Collapse
|
2
|
Singh N, Gulhane RD, Singh A, Goel M, Udelal PP, Sangwan V, Sihag MK, Goel G, Panwar H, Puniya AK. Exploring the antimicrobial potential of lactobacilli against early-stage and mature biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Front Chem 2025; 13:1425666. [PMID: 40191159 PMCID: PMC11969340 DOI: 10.3389/fchem.2025.1425666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/31/2025] [Indexed: 04/09/2025] Open
Abstract
Bacterial biofilms are dynamic, complex, and very adaptive, and they can cause health problems in both humans and animals while also posing a serious threat to various industries. This study explores the potential of cell-free preparations of lactobacilli isolated from breast milk (HM; n = 11) and infant fecal (IF; n = 15) samples to impact the growth of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. The anti-biofilm activity of three distinct cell-free preparations, namely, untreated cell-free supernatant (CFS), pH-neutralized CFS (N-CFS), and heat-treated CFS (H-CFS), was examined against both early-stage and mature biofilms. The post-incubation strategy examined the impact on mature biofilms, while the co-incubation treatment assessed the impact of CFS on adhesion and initial colonization. Compared to post-incubation treatment (HM3, 67.12%), the CFSs exhibited greater inhibitory activity during co-incubation (IF9, 85.19%). Based on the findings, untreated CFS exhibited the most promising biofilm inactivation, although its activity was not completely lost upon pH neutralization and heat treatment. Treatment with H-CFSs and N-CFSs moderately reduced the population of S. aureus and P. aeruginosa bacterial cells within the biofilm by 40%-60%. Microscopic observations showed that after CFS treatment, the integrity of the biofilm conformation was disrupted. According to principal component analysis (PCA) (significance level at p < 0.05), the most promising anti-biofilm activity against both test pathogens was found in the CFS of Lacticaseibacillus paracasei HM1.
Collapse
Affiliation(s)
- Niharika Singh
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
- Department of Biotechnology, VSB Engineering College, Karur, Tamil Nadu, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Anamika Singh
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Maitri Goel
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Pudke Payal Udelal
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Gunjan Goel
- Department of Microbiology, School of Interdisciplinary and Applied Science, Central University of Haryana, Mahendergarh, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy and Food Science Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Su LM, Huang RT, Hsiao HI. Biofilm formation comparison of Vibrio parahaemolyticus on stainless steel and polypropylene while minimizing environmental impacts and transfer to grouper fish fillets. Int J Food Microbiol 2025; 426:110913. [PMID: 39293097 DOI: 10.1016/j.ijfoodmicro.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
This study investigated the influence of food contact surface materials on the biofilm formation of Vibrio parahaemolyticus while attempting to minimize the impact of environmental factors. The response surface methodology (RSM), incorporating three controlled environmental factors (temperature, pH, and salinity), was employed to determine the optimal conditions for biofilm formation on stainless steel (SS) and polypropylene (PP) coupons. The RSM results demonstrated that pH was highly influential. After minimizing the impacts of environmental factors, initially V. parahaemolyticus adhered more rapidly on PP than SS. To adhere to SS, V. parahaemolyticus formed extra exopolysaccharide (EPS) and exhibited clustered stacking. Both PP and SS exhibited hydrophilic properties, but SS was more hydrophilic than PP. Finally, this study observed a higher transfer rate of biofilms from PP to fish fillets than from SS to fish fillets. The present findings suggest that the food industry should consider the material of food processing surfaces to prevent V. parahaemolyticus biofilm formation and thus to enhance food safety.
Collapse
Affiliation(s)
- Li-Ming Su
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.)
| | - Rong-Tan Huang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Taiwan (R. O. C.).
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan (R. O. C.).
| |
Collapse
|
4
|
Mu Y, Lv S, Liu J, Tong J, Liu L, Wang J, He T, Wei D. Recent advances in research on biomass-based food packaging film materials. Compr Rev Food Sci Food Saf 2025; 24:e70093. [PMID: 39812511 DOI: 10.1111/1541-4337.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Although traditional petroleum-based packaging materials pose environmental problems, biodegradable packaging materials have attracted extensive attention from research and industry for their environmentally friendly properties. Bio-based films, as an alternative to petroleum-based packaging films, demonstrate their significant advantages in terms of environmental friendliness and resource sustainability. This paper provides an insight into the development of biomass food packaging films such as cellulose, starch, chitosan, and gelatine, including their properties, methods of preparation (e.g., solution casting, extrusion blow molding, layer-by-layer assembly, and electrostatic spinning), and applications in food packaging. Through these preparation methods, the paper analyzes how the properties of the films can be effectively tuned and optimized to meet specific packaging needs. It was found that biomass film materials for food packaging not only possess functional properties such as antimicrobial, preservation, and indication, but also that their continued material innovation and technological improvements offer promising prospects for their use in commercial applications. These advances could help advance the global sustainable development goals, while showing great potential for improving food safety and extending shelf life. Future research will further explore new functions and applications of biomass films, providing additional solutions for environmental protection and sustainability.
Collapse
Affiliation(s)
- Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiaqi Wang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
5
|
Omwenga EO, Awuor SO. The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:1542576. [PMID: 39717533 PMCID: PMC11666319 DOI: 10.1155/cjid/1542576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
Introduction: The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR). Case Presentation: The ability of bacteria to form a superstructure-biofilm-has made resistance cases in the microbial world a big concern to public health and other sectors as it is a crucial virulence factor that causes difficulties in the management of infections, hence enhancing chronic infection occurrence. Biofilm formation dates to about 3.4 billion years when prokaryotes were discovered to be forming them and since then due to evolution and growth in science, they are more understood. Management and Outcome: The unique microenvironments within bacterial biofilms diminish antibiotic effectiveness and help bacteria evade the host immune system. Biofilm production is a widespread capability among diverse bacterial species. Biofilm formation is enhanced by quorum sensing (QS), reduction of nutrients, or harsh environments for the bacteria. Conclusion: The rise of severe, treatment-resistant biofilm infections poses major challenges in medicine and agriculture, yet much about how these biofilms form remains unknown.
Collapse
Affiliation(s)
- Eric Omori Omwenga
- Department of Medical Microbiology & Parasitology, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Silas Onyango Awuor
- Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya
- Department of Medical Microbiology, Jaramogi Oginga Odinga Teaching and Referral Hospital, Kisumu, Kenya
| |
Collapse
|
6
|
Titouche Y, Akkou M, Djaoui Y, Chergui A, Mechoub D, Bentayeb L, Fatihi A, Nia Y, Hennekinne JA. Investigation of Biofilm Formation Ability and Antibiotic Resistance of Staphylococcus aureus Isolates from Food Products. Foodborne Pathog Dis 2024. [PMID: 39589773 DOI: 10.1089/fpd.2024.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
Staphylococcus aureus is one of the major causes of foodborne diseases and its presence in food products may poses a public health challenge. The aims of this study were to assess in vitro the capacity of S. aureus isolates from foods to form biofilm and to determine their antibiotic susceptibility. A total of 80 S. aureus isolates were characterized. The slime production ability was evaluated by congo-red agar (CRA) and the biofilm formation was carried out by microtiter-plate method (MPM). Resistance of isolates to eight antibiotics was determined using disc diffusion method. Sixty-four (80%) of the isolates were slime producers on congo-red agar. However, all isolates were biofilm producers on microtiter-plate method. The highest resistance profiles were ascribed to penicillin G (91.25%) and tetracycline (41.25%). Twelve isolates were methicillin-resistant (MRSA) harboring the mecA gene. All of these MRSA isolates were negative for the genes of the Panton Valentine leukocidine (lukF/S-PV). Typing of the MRSA isolates indicated that they belonged to three spa-types including t024, t450 and t688. The presence of biofilm producers and multidrug resistant isolates (MRSA) in food samples can represent a risk for public health. Therefore, an efficient control and effective measures were needed along the production chain to ensure the food safety.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Achour Chergui
- Department of Biology, Faculty of Natural and Life Sciences. University Akli Mohand Oulhadj. Bouira, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Lamia Bentayeb
- Faculty of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Paris, France
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Paris, France
| | | |
Collapse
|
7
|
Nogueira Leite N, Garcia Sperandio V, da Piedade Edmundo Sitoe E, de Assis Silva MV, Rodrigues de Alencar E, Gonçalves Machado S. Ozone as a promising method for controlling Pseudomonas spp. biofilm in the food industry: a systematic review. BIOFOULING 2024; 40:660-678. [PMID: 39494760 DOI: 10.1080/08927014.2024.2420002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to evaluate the effectiveness of ozonation in controlling Pseudomonas spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling Pseudomonas spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.
Collapse
|
8
|
Emiliano JVDS, Fusieger A, Camargo AC, Rodrigues FFDC, Nero LA, Perrone ÍT, Carvalho AFD. Staphylococcus aureus in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol. Foodborne Pathog Dis 2024; 21:601-616. [PMID: 39021233 DOI: 10.1089/fpd.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
Collapse
Affiliation(s)
- Jean Victor Dos Santos Emiliano
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Anderson Carlos Camargo
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Fabíola Faria da Cruz Rodrigues
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Serrano S, Ferreira MV, Alves-Barroco C, Morais S, Barreto-Crespo MT, Tenreiro R, Semedo-Lemsaddek T. Beyond Harmful: Exploring Biofilm Formation by Enterococci Isolated from Portuguese Traditional Cheeses. Foods 2024; 13:3067. [PMID: 39410102 PMCID: PMC11476095 DOI: 10.3390/foods13193067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigated the biofilm-forming capabilities of Enterococcus isolates from Portuguese traditional cheeses with protected designation of origin (PDO) status, specifically Azeitão and Nisa. Given the absence of added starter cultures in the cheesemaking process, the characteristics of these cheeses are intrinsically linked to the autochthonous microbiota present in the raw materials and the production environment. Our findings demonstrate that all isolates possess biofilm production abilities, which are crucial for their colonization and persistence within cheese factories, thereby maintaining factory-specific microbial heritage. Through an integrated analysis utilizing principal component analysis (PCA), a direct correlation between biofilm formation and cell viability was established. Notably, these results underscore the adaptive capacity of enterococci to survive environmental fluctuations and their role in the unique characteristics of Portuguese traditional cheeses. Overall, this research enhances our understanding of the microbial dynamics in cheese production and highlights the importance of enterococci in preserving cheese quality and heritage.
Collapse
Affiliation(s)
- Susana Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (S.S.); (S.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | | | - Cinthia Alves-Barroco
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (S.S.); (S.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Susana Morais
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (S.S.); (S.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria Teresa Barreto-Crespo
- iBET, Institute of Experimental Biology and Technology, P.O. Box 12, 2781-901 Oeiras, Portugal;
- ITQB, Institute of Chemical and Biological Technology António Xavier, Nova University of Lisbon, Republic Avenue, 2780-157 Oeiras, Portugal
| | - Rogério Tenreiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Teresa Semedo-Lemsaddek
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (S.S.); (S.M.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
10
|
Lourenço M, Duarte N, Ribeiro IAC. Exploring Biosurfactants as Antimicrobial Approaches. Pharmaceuticals (Basel) 2024; 17:1239. [PMID: 39338401 PMCID: PMC11434949 DOI: 10.3390/ph17091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Antibacterial resistance is one of the most important global threats to human health. Several studies have been performed to overcome this problem and infection-preventive approaches appear as promising solutions. Novel antimicrobial preventive molecules are needed and microbial biosurfactants have been explored in that scope. Considering their structure, these biomolecules can be divided into different classes, glycolipids and lipopeptides being the most studied. Besides their antimicrobial activity, biosurfactants have the advantage of being biocompatible, biodegradable, and non-toxic, which favor their application in several areas, including the health sector. Often, the most difficult infections to fight are associated with biofilm formation, particularly in medical devices. Strategies to overcome micro-organism attachment are thus emergent, and it is possible to take advantage of the antimicrobial/antibiofilm properties of biosurfactants to produce surfaces that are more resistant to the deposition/attachment of bacteria. Approaches such as the covalent bond of biosurfactants to the medical device surface leading to repulsive physical-chemical interactions or contact killing can be selected. Simpler strategies such as the absorption of biosurfactants on surfaces are also possible, eliminating micro-organisms in the vicinity. This review will focus on the physical and chemical characteristics of biosurfactants, their antimicrobial activity, antimicrobial/antibiofilm approaches, and finally on their structure-activity relationship.
Collapse
Affiliation(s)
| | - Noélia Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
11
|
Poscente V, Di Gregorio L, Costanzo M, Bernini R, Bevivino A. Flow cytometry: Unravelling the real antimicrobial and antibiofilm efficacy of natural bioactive compounds. J Microbiol Methods 2024; 222:106956. [PMID: 38759758 DOI: 10.1016/j.mimet.2024.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Flow cytometry (FCM) provides unique information on bacterial viability and physiology, allowing a real-time early warning antimicrobial and antibiofilm monitoring system for preventing the spread risk of foodborne disease. The present work used a combined culture-based and FCM approach to assess the in vitro efficacy of essential oils (EOs) from condiment plants commonly used in Mediterranean Europe (i.e., thyme EO, oregano EO, basil EO, and lemon EO) against planktonic and sessile cells of food-pathogenic Listeria monocytogenes 56 LY, and contaminant and alterative species Escherichia coli ATCC 25922 and Pseudomonas fluorescens ATCC 13525. Evaluation of the bacterial response to the increasing concentrations of natural compounds posed FCM as a crucial technique for the quantification of the live/dead, and viable but non-culturable (VBNC) cells when antimicrobial agents exert no real bactericidal action. Furthermore, the FCM results displayed higher numbers of viable bacteria expressed as Active Fluorescent Units (AFUs) with a greater level of repeatability compared with outcomes of the plate-count method. Overall, accurate counting of viable microbial cells is a critically important parameter in food microbiology, and flow cytometry provides an innovative approach with high-throughput potential for applications in the food industry as "flow microbiology".
Collapse
Affiliation(s)
- Valeria Poscente
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy; Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy.
| | - Manuela Costanzo
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123 Rome, Italy
| |
Collapse
|
12
|
Grujović MŽ, Marković KG, Morais S, Semedo-Lemsaddek T. Unveiling the Potential of Lactic Acid Bacteria from Serbian Goat Cheese. Foods 2024; 13:2065. [PMID: 38998570 PMCID: PMC11241559 DOI: 10.3390/foods13132065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to unleash the potential of indigenous lactic acid bacteria (LAB) originating from traditionally made Serbian goat cheese. Following the isolation and identification of the LAB, the safety aspects of the isolates were evaluated through tests for hemolytic activity and antibiotic sensitivity. The selected isolates were then tested for various technological properties, including growth in methylene blue, proteolytic activity, acidification, curd formation ability in both pure and enriched goat milk, diacetyl production, antagonistic potential against other LAB, and biofilm formation ability. The results indicated that Lactococcus spp., Lacticaseibacillus spp., and Lactiplantibacillus spp. did not exhibit α or β hemolysis, while enterococci displayed α hemolysis. A higher number of isolates demonstrated sensitivity to ampicillin, tetracycline, and streptomycin, while sensitivity to gentamicin and vancomycin was strain-dependent. Based on the evaluation of technological properties, Lacticaseibacillus paracasei M-1 and Lactiplantibacillus plantarum C7-7, C7-8, and C14-5 showed promising characteristics. Additionally, Lactococcus lactis subsp. lactis strains C0-14 and C21-8 emerged as promising candidates with notable technological properties. Notably, certain indigenous strains LAB exhibit promising technological properties and safety profiles. These characteristics make them suitable candidates for use as starter or adjunct cultures in goat's milk cheese production, potentially enhancing the quality and safety of the cheese as well as hygiene practices among small-scale dairy producers.
Collapse
Affiliation(s)
- Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34 000 Kragujevac, Serbia
| | - Susana Morais
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
13
|
Zanzan M, Ezzaky Y, Hamadi F, Achemchem F. Enterococcus mundtii A2 biofilm and its anti-adherence potential against pathogenic microorganisms on stainless steel 316L. Braz J Microbiol 2024; 55:1131-1138. [PMID: 38319530 PMCID: PMC11153378 DOI: 10.1007/s42770-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.
Collapse
Affiliation(s)
- Mariem Zanzan
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Youssef Ezzaky
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Vegetal Protection, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Fouad Achemchem
- Bioprocess and Environment Team, LASIME Research Laboratory, Agadir Superior School of Technology, Ibn Zohr University, 33/S, 80150, Agadir, BP, Morocco.
| |
Collapse
|
14
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
15
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
16
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Zvonarev AN, Trilisenko LV, Farofonova VV, Kulakovskaya EV, Abashina TN, Dmitriev VV, Kulakovskaya T. The Extracellular Vesicles Containing Inorganic Polyphosphate of Candida Yeast upon Growth on Hexadecane. J Xenobiot 2023; 13:529-543. [PMID: 37873811 PMCID: PMC10594515 DOI: 10.3390/jox13040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
The cell wall of Candida yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes-canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in Candida maltosa canals. The aim of the work was a comparative study of the features of cell walls and extracellular structures in yeast C. maltosa, C. albicans and C. tropicalis with special attention to inorganic polyphosphates as possible part of these structures when grown on the widely used xenobiotic hexadecane (diesel fuel). Fluorescence microscopy with DAPI has shown an unusual localization of polyP on the cell surface and in the exovesicles in the three yeast species, when growing on hexadecane. Electron-scanning microscopy showed that the exovesicles were associated with the cell wall and also presented in the external environment probably as biofilm components. Treatment of hexadecane-grown cells with purified Ppx1 polyphosphatase led to the release of phosphate into the incubation medium and the disappearance of polyP in vesicles and cell wall observed using microscopic methods. The results indicate the important role of polyP in the formation of extracellular structures in the Candida yeast when consuming hexadecane and are important for the design of xenobiotic destructors based on yeast or mixed cultures.
Collapse
Affiliation(s)
- Anton N. Zvonarev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| | - Ludmila V. Trilisenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| | - Vasilina V. Farofonova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ekaterina V. Kulakovskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| | - Tatiana N. Abashina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| | - Vladimir V. Dmitriev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| | - Tatiana Kulakovskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Skryabin Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (A.N.Z.); (L.V.T.); (E.V.K.); (V.V.D.); (T.K.)
| |
Collapse
|
18
|
Chen SY, Yang RS, Ci BQ, Xin WG, Zhang QL, Lin LB, Wang F. A novel bacteriocin against multiple foodborne pathogens from Lacticaseibacillus rhamnosus isolated from juice ferments: ATF perfusion-based preparation of viable cells, characterization, antibacterial and antibiofilm activity. Curr Res Food Sci 2023; 6:100484. [PMID: 37033741 PMCID: PMC10074539 DOI: 10.1016/j.crfs.2023.100484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023] Open
Abstract
Foodborne pathogens and their biofilms pose a risk to human health through food chain. However, the bacteriocin resources combating this threat are still limited. Here, Lacticaseibacillus rhamnosus, one of the most used probiotics in food industry, was prepared on a large scale using alternating tangential flow (ATF) perfusion-based technology. Compared to the conventional fed-batch approach, ATF perfusion remarkably increased the viable cells of L. rhamnosus CLK 101 to 11.93 ± 0.14 log CFU/mL. Based on obtained viable cells, we purified and characterized a novel bacteriocin CLK_01 with a broad spectrum of activity against both Gram-positive and Gram-negative foodborne pathogens. LC-MS/MS analysis revealed that CLK_01 has a molecular mass of 701.49 Da and a hydrophobic amino acid composition of I-K-K-V-T-I. As a novel bacteriocin, CLK_01 showed high thermal stability and acid-base tolerance over 25-121 °C and pH 2-10. It significantly reduced cell viability of bacterial pathogens (p < 0.001), and strongly inhibited their biofilm formation. Scanning electron microscopy demonstrated deformation of pathogenic cells caused by CLK_01, leading to cytoplasmic content leakage and bacterial death. Summarily, we employed ATF perfusion to obtain viable L. rhamnosus, and presented that bacteriocin CLK_01 could serve as a promising biopreservative for controlling foodborne pathogenic bacteria and their biofilms.
Collapse
Affiliation(s)
- Shi-Yu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Rui-Si Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bai-Quan Ci
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
- Corresponding author. Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, 650500, China
- Corresponding author. Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China.
| |
Collapse
|