1
|
Thorpy MJ, Siegel JM, Dauvilliers Y. REM sleep in narcolepsy. Sleep Med Rev 2024; 77:101976. [PMID: 39186901 DOI: 10.1016/j.smrv.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Narcolepsy is mainly associated with excessive daytime sleepiness, but the characteristic feature is abnormal rapid eye movement (REM) sleep phenomena. REM sleep disturbances can manifest as cataplexy (in narcolepsy type 1), sleep paralysis, sleep-related hallucinations, REM sleep behavior disorder, abnormal dreams, polysomnographic evidence of REM sleep disruption with sleep-onset REM periods, and fragmented REM sleep. Characterization of REM sleep and related symptoms facilitates the differentiation of narcolepsy from other central hypersomnolence disorders and aids in distinguishing between narcolepsy types 1 and 2. A circuit comprising regions within the brainstem, forebrain, and hypothalamus is involved in generating and regulating REM sleep, which is influenced by changes in monoamines, acetylcholine, and neuropeptides. REM sleep is associated with brainstem functions, including autonomic control, and REM sleep disturbances may be associated with increased cardiovascular risk. Medications used to treat narcolepsy (and REM-related symptoms of narcolepsy) include stimulants/wake-promoting agents, pitolisant, oxybates, and antidepressants; hypocretin agonists are a potential new class of therapeutics. The role of REM sleep disturbances in narcolepsy remains an area of active research in pathophysiology, symptom management, and treatment. This review summarizes the current understanding of the role of REM sleep and its dysfunction in narcolepsy.
Collapse
Affiliation(s)
| | - Jerome M Siegel
- Department of Psychiatry and Brain Research Institute, University of California, Los Angeles, CA, USA; Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yves Dauvilliers
- Sleep and Wake Disorders Centre, Department of Neurology, Gui de Chauliac Hospital, University Montpellier, INSERM INM, France
| |
Collapse
|
2
|
Maski KP, Amos LB, Carter JC, Koch EE, Kazmi U, Rosen CL. Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in children: guidance from the American Academy of Sleep Medicine. J Clin Sleep Med 2024; 20:631-641. [PMID: 38149645 PMCID: PMC10985297 DOI: 10.5664/jcsm.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 12/28/2023]
Abstract
The American Academy of Sleep Medicine commissioned a task force of clinical experts in pediatric sleep medicine to review published literature on performing the Multiple Sleep Latency Test (MSLT) and Maintenance of Wakefulness Test for diagnosis and management of central disorders of hypersomnolence among children and adolescents. This paper follows a format similar to that of the paper "Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in adults: guidance from the American Academy of Sleep Medicine" that was published in 2021. Since there is insufficient evidence to specify a recommended protocol for the Maintenance of Wakefulness Test in children and adolescents, this paper focuses only on the MSLT protocol. This protocol paper provides guidance to health care providers who order, sleep specialists who interpret, and technical staff who administer the MSLT to pediatric patients. Similar to the adult protocol paper, this document provides guidance based on pediatric expert consensus and evidence-based data when available. Topics include patient preparation, evaluation of medication and substance use, sleep needs before testing, scheduling considerations, optimal test conditions for youth, and documentation. Specific changes recommended for pediatric MSLT protocols include (1) provision of a minimum of 7 hours of sleep (with a minimum 8-hour recording time) on polysomnography the night before the MSLT, ideally meeting age-based needs; (2) use of clinical judgment to guide the need for sleep-disordered breathing treatments before polysomnography-MSLT testing; and (3) shared patient-health care provider decision-making regarding modifications in the protocol for children and adolescents with neurodevelopmental/neurological disorders, young age, and/or delayed sleep phase. CITATION Maski KP, Amos LB, Carter JC, Koch EE, Kazmi U, Rosen CL. Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in children: guidance from the American Academy of Sleep Medicine. J Clin Sleep Med. 2024;20(4):631-641.
Collapse
Affiliation(s)
- Kiran P. Maski
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Louella B. Amos
- Pediatric Pulmonology and Sleep Medicine, Children’s Wisconsin, Milwaukee, Wisconsin
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John C. Carter
- Department of Medicine, MetroHealth Medical Center, Cleveland, Ohio
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ellen E. Koch
- American Academy of Sleep Medicine, Darien, Illinois
| | - Uzma Kazmi
- American Academy of Sleep Medicine, Darien, Illinois
| | - Carol L. Rosen
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- American Academy of Sleep Medicine, Darien, Illinois
| |
Collapse
|
3
|
Evangelista E, Leu-Semenescu S, Pizza F, Plazzi G, Dauvilliers Y, Barateau L, Lambert I. Long sleep time and excessive need for sleep: State of the art and perspectives. Neurophysiol Clin 2024; 54:102949. [PMID: 38387329 DOI: 10.1016/j.neucli.2024.102949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying the individual need for sleep are unclear. Sleep duration is indeed influenced by multiple factors, such as genetic background, circadian and homeostatic processes, environmental factors, and sometimes transient disturbances such as infections. In some cases, the need for sleep dramatically and chronically increases, inducing a daily-life disability. This "excessive need for sleep" (ENS) was recently proposed and defined in a European Position Paper as a dimension of the hypersomnolence spectrum, "hypersomnia" being the objectified complaint of ENS. The most severe form of ENS has been described in Idiopathic Hypersomnia, a rare neurological disorder, but this disabling symptom can be also found in other hypersomnolence conditions. Because ENS has been defined recently, it remains a symptom poorly investigated and understood. However, protocols of long-term polysomnography recordings have been reported by expert centers in the last decades and open the way to a better understanding of ENS through a neurophysiological approach. In this narrative review, we will 1) present data related to the physiological and pathological variability of sleep duration and their mechanisms, 2) describe the published long-term polysomnography recording protocols, and 3) describe current neurophysiological tools to study sleep microstructure and discuss perspectives for a better understanding of ENS.
Collapse
Affiliation(s)
- Elisa Evangelista
- Sleep Disorder Unit, Carémeau Hospital, Centre Hospitalo-Universitaire de Nîmes, France; Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France
| | - Smaranda Leu-Semenescu
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Paris, France; Sleep Disorders Clinic, Pitié-Salpêtrière Hospital, APHP-Sorbonne University, Paris, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Yves Dauvilliers
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Lucie Barateau
- Institute for Neurosciences of Montpellier (INM), Univ Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Isabelle Lambert
- APHM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
4
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
5
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Ono T, Takenoshita S, Nishino S. Pharmacologic Management of Excessive Daytime Sleepiness. Sleep Med Clin 2022; 17:485-503. [PMID: 36150809 DOI: 10.1016/j.jsmc.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Excessive daytime sleepiness (EDS) is defined as "irresistible sleepiness in a situation when an individual would be expected to be awake, and alert." EDS has been a big concern not only from a medical but also from a public health point of view. Patients with EDS have the possibility of falling asleep even when they should wake up and concentrate, for example, when they drive, play sports, or walk outside. In this article, clinical characteristics of common hypersomnia and pharmacologic treatments of each hypersomnia are described.
Collapse
Affiliation(s)
- Taisuke Ono
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Geriatric Medicine, Kanazawa Medical University School of Medicine, Ishikawa, Japan.
| | - Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
7
|
Clinical characteristics of a large cohort of patients with narcolepsy candidate for pitolisant: a cross-sectional study from the Italian PASS Wakix® Cohort. Neurol Sci 2022; 43:5563-5574. [PMID: 35750949 PMCID: PMC9385823 DOI: 10.1007/s10072-022-06210-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/11/2022] [Indexed: 12/29/2022]
Abstract
Introduction Narcolepsy is a chronic and rare hypersomnia of central origin characterized by excessive daytime sleepiness and a complex array of symptoms as well as by several medical comorbidities. With growing pharmacological options, polytherapy may increase the possibility of a patient-centered management of narcolepsy symptoms. The aims of our study are to describe a large cohort of Italian patients with narcolepsy who were candidates for pitolisant treatment and to compare patients’ subgroups based on current drug prescription (drug-naïve patients in whom pitolisant was the first-choice treatment, switching to pitolisant from other monotherapy treatments, and adding on in polytherapy). Methods We conducted a cross-sectional survey based on Italian data from the inclusion visits of the Post Authorization Safety Study of pitolisant, a 5-year observational, multicenter, international study. Results One hundred ninety-one patients were enrolled (76.4% with narcolepsy type 1 and 23.6% with narcolepsy type 2). Most patients (63.4%) presented at least one comorbidity, mainly cardiovascular and psychiatric. Pitolisant was prescribed as an add-on treatment in 120/191 patients (62.8%), as switch from other therapies in 42/191 (22.0%), and as a first-line treatment in 29/191 (15.2%). Drug-naive patients presented more severe sleepiness, lower functional status, and a higher incidence of depressive symptoms. Conclusion Our study presents the picture of a large cohort of Italian patients with narcolepsy who were prescribed with pitolisant, suggesting that polytherapy is highly frequent to tailor a patient-centered approach.
Collapse
|
8
|
Barateau L, Lopez R, Chenini S, Rassu AL, Mouhli L, Dhalluin C, Jaussent I, Dauvilliers Y. Linking clinical complaints and objective measures of disrupted nighttime sleep in narcolepsy type 1. Sleep 2022; 45:6547241. [PMID: 35275598 DOI: 10.1093/sleep/zsac054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/07/2022] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVES Despite its high frequency in narcolepsy type 1(NT1), disrupted nocturnal sleep (DNS) remains understudied, and its determinants have been poorly assessed. We aimed to determine the clinical, polysomnographic (PSG), and biological variables associated with DNS in a large sample of patients with NT1, and to evaluate the effect of medication on DNS and its severity. METHODS Two hundred and forty-eight consecutive adult patients with NT1 (145 untreated, 103 treated) were included at the National Reference Center for Narcolepsy-France; 51 drug-free patients were reevaluated during treatment. DNS, assessed with the Narcolepsy Severity Scale (NSS), was categorized in four levels (absent, mild, moderate, severe). Clinical characteristics, validated questionnaires, PSG parameters (sleep fragmentation markers: sleep (SB) and wake bouts (WB), transitions), objective sleepiness, and orexin-A levels were assessed. RESULTS In drug-free patients, DNS severity was associated with higher scores on NSS, higher sleepiness, anxiety/depressive symptoms, autonomic dysfunction, worse quality of life (QoL). Patients with moderate/severe DNS (59%) had increased sleep onset REM periods, lower sleep efficiency, longer wake after sleep onset, more N1, SB, WB, sleep instability, transitions. In treated patients, DNS was associated with the same clinical data, and antidepressant use; but only with longer REM sleep latency on PSG. During treatment, sleepiness, NSS scores, depressive symptoms decreased, as well as total sleep time, WB, SB, transitions. DNS improved in 55% of patients, without predictors except more baseline anxiety. CONCLUSION DNS complaint is frequent in NT1, associated with disease severity based on NSS, several PSG parameters, and objective sleepiness in untreated and treated conditions. DNS improves with treatment. We advocate the systematic assessment of this symptom and its inclusion in NT1 management strategy.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Régis Lopez
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Sofiene Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Anna-Laura Rassu
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Lytissia Mouhli
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Cloé Dhalluin
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France
| | - Isabelle Jaussent
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
9
|
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Vitiello MV, Tang X, Sanford LD. Comparative polysomnography parameters between narcolepsy type 1/type 2 and idiopathic hypersomnia: A systematic review and meta-analysis. Sleep Med Rev 2022; 63:101610. [DOI: 10.1016/j.smrv.2022.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
|
10
|
Krahn LE, Arand DL, Avidan AY, Davila DG, DeBassio WA, Ruoff CM, Harrod CG. Recommended protocols for the Multiple Sleep Latency Test and Maintenance of Wakefulness Test in adults: guidance from the American Academy of Sleep Medicine. J Clin Sleep Med 2021; 17:2489-2498. [PMID: 34423768 DOI: 10.5664/jcsm.9620] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This article updates the American Academy of Sleep Medicine protocols for the administration of the Multiple Sleep Latency Test and the Maintenance of Wakefulness Test. The American Academy of Sleep Medicine commissioned a task force of clinical experts in sleep medicine to review published literature on the performance of these tests since the publication of the 2005 American Academy of Sleep Medicine practice parameter paper. Although no evidence-based changes to the protocols were warranted, the task force made several changes based on consensus. These changes included guidance on patient preparation, medication and substance use, sleep before testing, test scheduling, optimum test conditions, and documentation. This article provides guidance to providers who order and administer the Multiple Sleep Latency Test and the Maintenance of Wakefulness Test. CITATION Krahn LE, Arand DL, Avidan AY, et al. Recommended protocols for the Multiple Sleep Latency Test and the Maintenance of Wakefulness Test in adults: guidance from the American Academy of Sleep Medicine. J Clin Sleep Med. 2021;17(12):2489-2498.
Collapse
Affiliation(s)
| | - Donna L Arand
- Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Alon Y Avidan
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California
| | - David G Davila
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | | | | | |
Collapse
|
11
|
Mamelak M. Sleep, Narcolepsy, and Sodium Oxybate. Curr Neuropharmacol 2021; 20:272-291. [PMID: 33827411 PMCID: PMC9413790 DOI: 10.2174/1570159x19666210407151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Sodium oxybate (SO) has been in use for many decades to treat narcolepsy with cataplexy. It functions as a weak GABAB agonist but also as an energy source for the brain as a result of its metabolism to succinate and as a powerful antioxidant because of its capacity to induce the formation of NADPH. Its actions at thalamic GABAB receptors can induce slow-wave activity, while its actions at GABAB receptors on monoaminergic neurons can induce or delay REM sleep. By altering the balance between monoaminergic and cholinergic neuronal activity, SO uniquely can induce and prevent cataplexy. The formation of NADPH may enhance sleep’s restorative process by accelerating the removal of the reactive oxygen species (ROS), which accumulate during wakefulness. SO improves alertness in normal subjects and in patients with narcolepsy. SO may allay severe psychological stress - an inflammatory state triggered by increased levels of ROS and characterized by cholinergic supersensitivity and monoaminergic deficiency. SO may be able to eliminate the inflammatory state and correct the cholinergic/ monoaminergic imbalance.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario. Canada
| |
Collapse
|
12
|
Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Sanford LD, Tang X. Polysomnographic nighttime features of narcolepsy: A systematic review and meta-analysis. Sleep Med Rev 2021; 58:101488. [PMID: 33934047 DOI: 10.1016/j.smrv.2021.101488] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
Polysomnographic studies have been conducted to explore nighttime sleep features in narcolepsy, but their relationship to narcolepsy is still imperfectly understood. We conducted a systematic review of the literature exploring polysomnographic differences between narcolepsy patients and healthy controls (HCs) in EMBASE, MEDLINE, All EBM databases, CINAHL, and PsycINFO. 108 studies were identified for this review, 105 of which were used for meta-analysis. Meta-analyses revealed significant reductions in sleep latency, sleep efficiency, slow wave sleep percentage, rapid eye movement sleep (REM) latency, cyclic alternating pattern rate, and increases in total sleep time, wake time after sleep onset (WASO), awakening numbers (AWN) per hour, stage shift (SS) per hour, N1 percentage, apnea hypopnea index, and periodic limb movement index in narcolepsy patients compared with HCs. Furthermore, narcolepsy type 1 patients showed more disturbed nighttime sleep compared with narcolepsy type 2 patients. Children and adolescent narcolepsy patients show increased WASO, AWN, and SS compared with adult patients. Macro- and micro-structurally, our study suggests that narcolepsy patients have poor nighttime sleep. Sex, age, body mass index, disease duration, disease type, medication status, and adaptation night are demographic, clinical and methodological factors that contribute to heterogeneity between studies.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haipeng Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Shi
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
McCall CA, Watson NF. Therapeutic Strategies for Mitigating Driving Risk in Patients with Narcolepsy. Ther Clin Risk Manag 2020; 16:1099-1108. [PMID: 33209031 PMCID: PMC7669528 DOI: 10.2147/tcrm.s244714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy is a central nervous system hypersomnia disorder characterized by uncontrollable episodes of daytime sleep, sleep state instability, and cataplexy (sudden loss of muscle tone precipitated by emotion). Individuals with narcolepsy report more frequent sleep-related crashes, near crashes, and drowsy driving than drivers with other sleep disorders. As such, evaluating risk of sleep-related crashes is of great importance for this patient population. There are no established guidelines for ensuring driving safety in patients with narcolepsy; however, many providers currently use a combination of subjective report, report of prior crashes or near-misses, report of previously falling asleep while driving, sleepiness screening tools, and maintenance of wakefulness testing (MWT) to determine risk. Driving simulator tests, though often unavailable to the clinician, provide data to support the use of MWT for evaluation of alertness in drivers with narcolepsy. Treatments such as modafinil may improve driving performance; however, the impact of other treatments such as stimulants and sodium oxybate on driving has not been extensively studied. Behavioral and lifestyle modifications may also reduce risk, including scheduled naps, driving only short distances, and avoiding driving after meals, sedating medications, and alcohol intake. Even with effective treatment, alertness in patients with narcolepsy may never reach that of normal drivers; however, studies have suggested that narcolepsy patients may be able to drive safely with appropriate limitations.
Collapse
Affiliation(s)
- Catherine A McCall
- Department of Pulmonary, Critical Care, and Sleep Medicine, VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington Sleep Medicine Center, Seattle, WA, USA
| | - Nathaniel F Watson
- Department of Neurology, University of Washington Sleep Medicine Center, Seattle, WA, USA
| |
Collapse
|
14
|
Antelmi E, Filardi M, Pizza F, Vandi S, Moresco M, Franceschini C, Tinazzi M, Ferri R, Plazzi G. REM Sleep Behavior Disorder in Children With Type 1 Narcolepsy Treated With Sodium Oxybate. Neurology 2020; 96:e250-e254. [PMID: 33177222 PMCID: PMC7905776 DOI: 10.1212/wnl.0000000000011157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022] Open
Abstract
Objective To study the effect of stable treatment with sodium oxybate (SO) on nocturnal REM sleep behavior disorder (RBD) and REM sleep without atonia (RSWA) that severely affected children with type 1 narcolepsy (NT1). Methods Nineteen children and adolescents with NT1 (9 female, mean age 12.5 ± 2.7 years, mean disease duration 3.4 ± 1.6 years) underwent neurologic investigations and video-polysomnography (v-PSG) at baseline and after 3 months of stable treatment with SO. v-PSG was independently analyzed by 2 sleep experts to rate RBD episodes. RSWA was automatically computed by means of the validated REM sleep atonia index (RAI). Results Compared to baseline, RAI significantly improved (p < 0.05) and complex movements during REM sleep were remarkably reduced after stable treatment with SO. Compared to baseline, children also reported improvement in clinical complaints and showed a different nighttime sleep-stage architecture. Conclusions RBD and RSWA improved after treatment with SO, pointing to a direct role of the drug in modulating motor control during REM sleep. Classification of Evidence This study offers Class IV evidence of the positive effect of SO on modulation of muscle atonia during REM sleep in children with NT1 because of the absence of a control group.
Collapse
Affiliation(s)
- Elena Antelmi
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Marco Filardi
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Fabio Pizza
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Stefano Vandi
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Monica Moresco
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Christian Franceschini
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Michele Tinazzi
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Raffaele Ferri
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy
| | - Giuseppe Plazzi
- From the Neurology Unit (E.A., M.T.), Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona; Department of Biomedical and Neuromotor Sciences (E.A., M.F., F.P., M.M., G.P.), University of Bologna; IRCCS (F.P., S.V., G.P.), Istituto delle Scienze Neurologiche di Bologna; Department of Medicine and Surgery (C.F.), University of Parma; and Sleep Research Centre (R.F.), Department of Neurology IC, Oasi Research institute-IRCCS, Troina, Italy.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The complex nature of narcolepsy symptoms, along with the use of stimulants and anticataplectic medications, poses diagnostic difficulties in terms of underlying neuropsychiatric comorbidities. This study reviews recent evidence for the association between narcolepsy and neuropsychiatric disorders. We also critically analyze studies that have addressed the neuropsychiatric correlates of patients with narcolepsy, with a discussion of the possible pathophysiological mechanisms linking narcolepsy and neuropsychiatric disorders. RECENT FINDINGS Neuropsychiatric manifestations are common among patients with narcolepsy as narcolepsy and some neuropsychiatric disorders share common clinical features. This may create challenges in making the correct diagnosis, and hence result in a delay in starting appropriate treatment. Comorbid neuropsychiatric manifestations in patients with narcolepsy include depression, anxiety, psychosis, rapid eye movement (REM) sleep behavior disorder, and cognitive impairment. Although hypocretin deficiency has been proposed as a pathophysiological mechanism underlying both narcolepsy and neuropsychiatric disorders, further research is necessary to identify the exact mechanisms. Narcolepsy patients often manifest comorbid neuropsychiatric symptoms, which makes the diagnosis difficult. Therefore, it is essential to address neuropsychiatric symptoms in the clinical care of patients with narcolepsy.
Collapse
|
16
|
Abstract
Excessive daytime sleepiness (EDS) is related to medical and social problems, including mental disorders, physical diseases, poor quality of life, and so forth. According to the International Classification of Sleep Disorders, Third Edition, diseases that result from EDS are narcolepsy type 1, narcolepsy type 2, idiopathic hypersomnia, hypersomnia due to a medical disorder, and others. EDS is usually treated using amphetamine-like central nervous system stimulants or modafinil and its R-enantiomer, armodafinil, wake-promoting compounds unrelated to amphetamines; a variety of new drugs are under development. The side effects of some stimulants are potent and careful selection and management are required.
Collapse
Affiliation(s)
- Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
17
|
REM sleep behavior disorder in narcolepsy: A secondary form or an intrinsic feature? Sleep Med Rev 2019; 50:101254. [PMID: 31931470 DOI: 10.1016/j.smrv.2019.101254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023]
Abstract
Disrupted nighttime sleep is one of the pentad of symptoms defining Narcolepsy. REM sleep behavior disorder (RBD) largely contributes to night sleep disruption and narcolepsy is the most common cause of secondary RBD. However, RBD linked to narcolepsy (N-RBD) has been insufficiently characterized, leaving unsolved a number of issues. Indeed, it is still debated whether N-RBD is an intrinsic feature of narcolepsy, as indubitable for cataplexy, and therefore strictly linked to the cerebrospinal fluid hypocretin-1 (CSF hcrt-1) deficiency, or an associated feature, with a still unclear pathophysiology. The current review aims at rendering a comprehensive state-of-the-art of N-RBD, highlighting the open and unsettled topics. RBD reportedly affects 30-60% of patients with Narcolepsy type 1 (NT1), but it may be seen also in Narcolepsy type 2 (NT2). When compared to idiopathic/isolated RBD (iRBD), N-RBD has been reported to be characterized by less energetic and quieter episode, which however occur with the same probability in the first and the second part of the night and sometime even subcontinuously. N-RBD patients are generally younger than those with iRBD. N-RBD has been putatively linked to wake-sleep instability due to CSF hcrt-1 deficiency, but this latter by itself cannot explain completely the phenomenon as N-RBD has not been universally linked to low CSF hcrt-1 levels and it may be observed also in NT2. Therefore, other factors may probably play a role and further studies are needed to clarify this issue. In addition, therapeutic options have been poorly investigated.
Collapse
|
18
|
Abstract
Drowsy driving is common and causes 21% of fatal crashes. Individuals at risk include young men, shift workers, older adults, and people with chronic short sleep duration, untreated obstructive sleep apnea (OSA), and narcolepsy. Untreated OSA is a particular concern in commercial drivers, who are at higher risk for the disorder. Treatment for sleep problems such as sleep extension for chronic short sleep, positive airway pressure (PAP) for OSA, pharmacologic treatments, and drowsy driving countermeasures may reduce the risk of crashes. Implementing screening measures to identify common sleep problems contributing to drowsy driving continues to be of high importance.
Collapse
Affiliation(s)
- Catherine A McCall
- Department of Pulmonary, Critical Care, and Sleep Medicine, VA Puget Sound Health Care System, 1660 South Columbian Way, Seattle, WA 98108, USA; Department of Psychiatry, University of Washington Sleep Medicine Center, Seattle, WA, USA.
| | - Nathaniel F Watson
- Department of Neurology, University of Washington Sleep Medicine Center, 908 Jefferson Street, Seattle, WA 98104, USA
| |
Collapse
|
19
|
Thomasy HE, Opp MR. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2019; 36:802-814. [PMID: 30136622 PMCID: PMC6387567 DOI: 10.1089/neu.2018.5810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide. Post-TBI sleep and wake disturbances are extremely common and difficult for patients to manage. Sleep and wake disturbances contribute to poor functional and emotional outcomes from TBI, yet effective therapies remain elusive. A more comprehensive understanding of mechanisms underlying post-TBI sleep and wake disturbance will facilitate development of effective pharmacotherapies. Previous research in human patients and animal models indicates that altered hypocretinergic function may be a major contributor to sleep-wake disturbance after TBI. In this study, we further elucidate the role of hypocretin by determining the impact of TBI on sleep-wake behavior of hypocretin knockout (HCRT KO) mice. Adult male C57BL/6J and HCRT KO mice were implanted with electroencephalography recording electrodes, and pre-injury baseline recordings were obtained. Mice were then subjected to either moderate TBI or sham surgery. Additional recordings were obtained and sleep-wake behavior determined at 3, 7, 15, and 30 days after TBI or sham procedures. At baseline, HCRT KO mice had a significantly different sleep-wake phenotype than control C57BL/6J mice. Post-TBI sleep-wake behavior was altered in a genotype-dependent manner: sleep of HCRT KO mice was not altered by TBI, whereas C57BL/6J mice had more non-rapid eye movement sleep, less wakefulness, and more short wake bouts and fewer long wake bouts. Numbers of hypocretin-positive cells were reduced in C57BL/6J mice by TBI. Collectively, these data indicate that the hypocretinergic system is involved in the alterations in sleep-wake behavior that develop after TBI in this model, and suggest potential therapeutic interventions.
Collapse
Affiliation(s)
- Hannah E. Thomasy
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Mark R. Opp
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Antelmi E, Plazzi G, Pizza F, Vandi S, Aricò D, Ferri R. Impact of acute administration of sodium oxybate on heart rate variability in children with type 1 narcolepsy. Sleep Med 2018; 47:1-6. [PMID: 29880141 DOI: 10.1016/j.sleep.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Currently, cardiovascular measurements in children affected with type 1 narcolepsy (NT1) have never been investigated, and neither have their modulation by the administration of sodium oxybate (SO). METHODS Twelve drug-naïve NT1 children (four males, eight females) with a mean age of 11 ± 3.16 years underwent a nocturnal polysomnography, at baseline and during the first night of SO administration. Data were contrasted with those recorded in 23 age-matched healthy controls. Heart rate variability (HRV) analysis was performed by analyzing the electrocardiogram signal for automatic detection of R waves with a computer program calculating a series of standard time-domain measures and obtaining spectral parameters, by means of a Fast-Fourier Transform. RESULTS In sleep stages N2 and N3, NT1 children showed increased power in the low-frequency (LF) and very-LF (VLF) ranges, when compared to controls. In addition, HRV (as measured by time domain parameters) during all sleep stages tended to be slightly higher in patients when compared to controls. Treatment with SO did not change significantly any parameter, but an overall trend to mildly decreased HRV that reached a significant value only during R sleep. CONCLUSIONS HRV during all sleep stages tended to be slightly higher in young patients when compared to controls, confirming the presence of a slight sympathovagal system imbalance even in NT1 children. SO tends to decrease these values especially during REM sleep and in that regard, further studies supporting these preliminary findings and considering the long-term effects of SO on heart rate parameters are warranted.
Collapse
Affiliation(s)
- Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy.
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Debora Aricò
- Sleep Research Centre, Department of Neurology I.C., Oasi Institute IRCCS, Troina, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Institute IRCCS, Troina, Italy
| |
Collapse
|
21
|
Abstract
Excessive daytime sleepiness (EDS) is related to medical and social problems, including mental disorders, physical diseases, poor quality of life, and so forth. According to the International Classification of Sleep Disorders, Third Edition, diseases that result from EDS are narcolepsy type 1, narcolepsy type 2, idiopathic hypersomnia, hypersomnia due to a medical disorder, and others. EDS is usually treated using amphetamine-like central nervous system stimulants or modafinil and its R-enantiomer, armodafinil, wake-promoting compounds unrelated to amphetamines; a variety of new drugs are under development. The side effects of some stimulants are potent and careful selection and management are required.
Collapse
|
22
|
Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin Neurophysiol 2017; 128:875-881. [DOI: 10.1016/j.clinph.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/30/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023]
|
23
|
Tittarelli R, Pichini S, Pedersen DS, Pacifici R, Moresco M, Pizza F, Busardò FP, Plazzi G. Ultra-high-performance liquid chromatography tandem mass spectrometry determination of GHB, GHB-glucuronide in plasma and cerebrospinal fluid of narcoleptic patients under sodium oxybate treatment. Forensic Sci Int 2017; 274:70-74. [DOI: 10.1016/j.forsciint.2017.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 12/13/2022]
|
24
|
Mayer G, Rodenbeck A, Kesper K. Sodium oxybate treatment in narcolepsy and its effect on muscle tone. Sleep Med 2017; 35:1-6. [PMID: 28619175 DOI: 10.1016/j.sleep.2017.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022]
Abstract
AIMS To estimate the effect of the compound sodium oxybate (SO) on chin muscle tone in sleep, a re-analysis of the results of the international multicenter study SXB-15 was performed, applying a validated semi-automatic analysis of muscle tone. This analysis distinguishes short (<0.5 s) and long (>0.5 s) muscle activity indices per hour (SMI, LMI) in 116 patients with narcolepsy-cataplexy. While stable stimulant medication was permitted, tricyclics and SSRIs were withdrawn. Polysomnographies were performed at baseline (V5), four weeks after titration of SO to 4.5 g, 6 g, or 9 g or placebo (V6) and after another four weeks on stable SO dose (V7). RESULTS SMI and LMI decreased significantly during light sleep. LMI remained stable in all SO groups during slow wave sleep (SWS), but decreased significantly during REM sleep. SMI decreased non-significantly, but consistently during SWS and REM in the 9 g group only. A subgroup analysis of patients who stayed on stimulants showed that they had higher SMIs and LMIs in all groups. Patients who had been treated with anticataplectic medication prior to study inclusion had lower LMIs in the 9 g group during REM sleep in all visits. CONCLUSION SO has a differential effect on muscle tone that is dose and sleep stage dependent. Low dosages increase short muscle activity, possibly enabling the occurrence of parasomnias. High doses are especially efficacious in REM sleep, suggesting that SO could be used to treat REM sleep behavior disorder. Comedication with stimulants and prior medication with anticataplectic medication exerts an influence on muscle tone.
Collapse
Affiliation(s)
- Geert Mayer
- Hephata Klinik, Schimmelpfengstr. 6, 34613 Schwalmstadt, Germany; Philipps Universität Marburg, Baldinger Str., 35043 Marburg, Germany.
| | - Andrea Rodenbeck
- Evangelisches Krankenhaus Göttingen-Weende gGmbH, Department of Pneumology & Sleep Medicine, Pappelweg 5, 37120 Bovenden, Germany; Studienzentrum Wilhelmshöhe, Wilhelmshöher Allee 259, 34131 Kassel, Germany.
| | - Karl Kesper
- Schlafmedizinisches Zentrum der Philipps Universität Marburg, Baldinger Str., 35043, Marburg, Germany.
| | | |
Collapse
|
25
|
White CM. Pharmacologic, Pharmacokinetic, and Clinical Assessment of Illicitly Used γ-Hydroxybutyrate. J Clin Pharmacol 2016; 57:33-39. [PMID: 27198055 DOI: 10.1002/jcph.767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/11/2022]
Abstract
γ-Hydroxybutyrate (GHB) is a common drug of abuse and poses important health risks to users in the form of respiratory, cardiovascular, mental, or traumatic adverse events. GHB has non-dose-proportional effects and pharmacologic effects such as sedation and retrograde amnesia, which can incapacitate people targeted for assault. It has Krebs cycle metabolism, rapid clearance, relative hydrophilicity, and unique drug interactions. Promptly seeking medical attention during intentional or inadvertent overdose is critical to survival, as is prompt supportive care once medical personnel are alerted. People drugged before assault also need to promptly notify authorities because the period to detect the drug in the urine or blood is brief and the ultimate metabolites are carbon dioxide and water. After acute treatment has passed, withdrawal could be severe in chronic abusers that could harm the patient directly or drive them back into reuse.
Collapse
Affiliation(s)
- C Michael White
- University of Connecticut School of Pharmacy and Hartford Hospital Department of Pharmacy, Storrs, CT, USA
| |
Collapse
|
26
|
Moghadam KK, Pizza F, Primavera A, Ferri R, Plazzi G. Sodium oxybate for idiopathic REM sleep behavior disorder: a report on two patients. Sleep Med 2016; 32:16-21. [PMID: 28366329 DOI: 10.1016/j.sleep.2016.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND REM-sleep behavior disorder (RBD) therapy is based on small to medium-sized case series, as no large controlled clinical trials have been performed. The most used and widely recognized effective drugs are clonazepam and melatonin, with anecdotal reports on the potential benefit of other drug classes. METHODS We report on two patients suffering from idiopathic RBD presenting with almost nightly complex and violent episodes, refractory to conventional drugs. Both patients, after informed consent, were treated off-label with sodium oxybate in add-on therapy. We followed up the patients in order to assess treatment efficacy by means of clinical interview, visual analog scales (VAS) for frequency and severity, Clinical Global Impression (CGI) improvement scale and efficacy index, video-polysomnography and at-home actigraphy. RESULTS Sodium oxybate intake was well tolerated and effective in reducing the number and intensity of RBD episodes; patients reported no new traumatic episodes. Results were confirmed by bed-partner reports, VAS, CGI improvement scale and efficacy index, and at-home actigraphic monitoring, the latter showing a trend of improvement in nocturnal sleep quality and reduction in motor activity, compared to the baseline. Nevertheless, video-polysomnography did not show a clear beneficial effect on sleep-related electromyographic parameters. CONCLUSIONS Our cases suggest that sodium oxybate can be an effective add-on option for the treatment of idiopathic RBD refractory to conventional therapies. The lack of improvement of polysomnographic parameters suggests caution in considering only polysomnographic data as endpoints in the assessment of the efficacy of therapies for RBD, and that long-term home-based assessment seems a promising tool.
Collapse
Affiliation(s)
- Keivan Kaveh Moghadam
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, ASL di Bologna, Bologna, Italy
| | - Alberto Primavera
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, ASL di Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Bosch OG, Seifritz E. The behavioural profile of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol in humans. Brain Res Bull 2016; 126:47-60. [PMID: 26855327 DOI: 10.1016/j.brainresbull.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/24/2023]
Abstract
Gamma-hydroxybutyrate (GHB) is a putative neurotransmitter, a drug of abuse, and a medical treatment for narcolepsy and other neuropsychiatric disorders. Its precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are endogenously converted to GHB and thereby exert their psychobehavioural effects. In humans, GHB has a wide spectrum of properties ranging from stimulation and euphoria in lower doses, to sedation, deep sleep, and coma after ingestion of high doses. However, behavioural studies in healthy volunteers remain scarce and are usually limited to psychomotor performance testing. Most available data arise from either qualitative studies with illicit users or clinical trials examining therapeutic properties of GHB (then usually termed sodium oxybate). Here, we present an overview of the behavioural effects of GHB, GBL, and 1,4-BD in these three populations. GHB and its precursors strongly influence behaviours related to core human autonomic functions such as control of food intake, sexual behaviour, and sleep-wake regulation. These effects are instrumentalised by illicit users and clinically utilised in neuropsychiatric disorders such as narcolepsy, fibromyalgia, and binge-eating syndrome. Considering the industry withdrawal from psychopharmacology development, repurposing of drugs according to their behavioural and clinical profiles has gained increasing relevance. As such, GHB seems to be an attractive candidate as an experimental therapeutic in depression.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
28
|
Maruyama T, Matsumura M, Sakai N, Nishino S. The pathogenesis of narcolepsy, current treatments and prospective therapeutic targets. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Abstract
The sleep disorder narcolepsy is caused by the loss of orexinergic neurones in the lateral hypothalamus. A troublesome symptom of narcolepsy is cataplexy, the sudden loss of muscle tone in response to strong emotions. It can be alleviated by antidepressants and sodium oxybate (γ-hydroxybutyric acid (GHB)). It is likely that the noradrenergic nucleus locus coeruleus (LC) is involved since it is essential for the maintenance of muscle tone, and ceases to fire during cataplectic attacks. Furthermore, alpha-2 adrenoceptors proliferate in the LC in cataplexy, probably due to 'heterologous denervation supersensitivity' resulting from the loss/weakening of the orexinergic input to the LC. This would lead to the sensitization of the autoinhibition mechanism of LC neurones mediated by inhibitory alpha-2 adrenoceptors ('autoreceptors'). Thus the excitatory input from the amygdala to the LC, activated by an emotional stimulus, would lead to the 'switching off' of LC activity via the supersensitive auto-inhibition mechanism. GHB is an agonist at both γ-aminobutyric acid (GABA) GABA (B) and GHB receptors that may be a subtype of an extrasynaptic GABA(A) receptor. GHB may prevent a cataplectic attack by dampening the tone of LC neurones via the stimulation of inhibitory extrasynaptic GABA receptors in the LC, and thus increasing the threshold for autoinhibition.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, University of Nottingham, Nottingham, UK
| |
Collapse
|