1
|
Fendl B, Berghoff AS, Preusser M, Maier B. Macrophage and monocyte subsets as new therapeutic targets in cancer immunotherapy. ESMO Open 2023; 8:100776. [PMID: 36731326 PMCID: PMC10024158 DOI: 10.1016/j.esmoop.2022.100776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 02/04/2023] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) for the treatment of solid cancers dramatically turned the tables in clinical routine. However, therapy success is still limited with up to 70% of non-responders in patients with ICI treatment. Traditionally, most immunotherapy approaches aim at directly stimulating anti-tumor T cell responses. More recently, tumor-associated macrophages have come into focus due to their predominance in solid tumors. Intensive cross-talk with tumor cells and immune as well as stromal cells within the tumor microenvironment can drive either pro- or anti-tumorigenic macrophage phenotypes. In turn, tumor-associated macrophages strongly shape cytokine and metabolite levels in the tumor microenvironment and thus are central players in anti-tumor immunity. Thus, ambivalent macrophage populations exist which raises therapeutic possibilities to either enhance or diminish their functionality. However, molecular signals controlling tumor-associated macrophage polarization are incompletely understood. Gaining in-depth understanding of monocyte/macrophage properties both in circulation and within distinct tumor microenvironments would (i) allow the development of new therapeutic approaches, and (ii) could additionally aid our understanding of underlying mechanisms limiting current therapy with the option of combinatorial therapies to increase efficacy. In this review, we summarize recent data addressing heterogeneity of tumor-associated macrophage populations and we discuss strategies to target macrophages using known molecular pathways with the potential for straight-forward clinical application.
Collapse
Affiliation(s)
- B Fendl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - A S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - B Maier
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
2
|
Agostini A, Orlacchio A, Carbone C, Guerriero I. Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Front Immunol 2022; 13:876291. [PMID: 35711414 PMCID: PMC9193393 DOI: 10.3389/fimmu.2022.876291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| |
Collapse
|
3
|
Olguín-Contreras LF, Mendler AN, Popowicz G, Hu B, Noessner E. Double Strike Approach for Tumor Attack: Engineering T Cells Using a CD40L:CD28 Chimeric Co-Stimulatory Switch Protein for Enhanced Tumor Targeting in Adoptive Cell Therapy. Front Immunol 2021; 12:750478. [PMID: 34912334 PMCID: PMC8666660 DOI: 10.3389/fimmu.2021.750478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of co-stimulatory pathways in cytotoxic T lymphocytes expressing chimeric antigen receptors (CARs) have proven to boost effector activity, tumor rejection and long-term T cell persistence. When using antigen-specific T cell receptors (TCR) instead of CARs, the lack of co-stimulatory signals hampers robust antitumoral response, hence limiting clinical efficacy. In solid tumors, tumor stroma poses an additional hurdle through hindrance of infiltration and active inhibition. Our project aimed at generating chimeric co-stimulatory switch proteins (CSP) consisting of intracellular co-stimulatory domains (ICD) fused to extracellular protein domains (ECD) for which ligands are expressed in solid tumors. The ECD of CD40L was selected for combination with the ICD from the CD28 protein. With this approach, it was expected to not only provide co-stimulation and strengthen the TCR signaling, but also, through the CD40L ECD, facilitate the activation of tumor-resident antigen-presenting cells (APCs), modulate activation of tumor endothelium and induce TCR-MHC independent apoptotic effect on tumor cells. Since CD28 and CD40L belong to different classes of transmembrane proteins (type I and type II, respectively), creating a chimeric protein presented a structural and functional challenge. We present solutions to this challenge describing different CSP formats that were successfully expressed in human T cells along with an antigen-specific TCR. The level of surface expression of the CSPs depended on their distinct design and the state of T cell activation. In particular, CSPs were upregulated by TCR stimulation and downregulated following interaction with CD40 on target cells. Ligation of the CSP in the context of TCR-stimulation modulated intracellular signaling cascades and led to improved TCR-induced cytokine secretion and cytotoxicity. Moreover, the CD40L ECD exhibited activity as evidenced by effective maturation and activation of B cells and DCs. CD40L:CD28 CSPs are a new type of switch proteins designed to exert dual beneficial antitumor effect by acting directly on the gene-modified T cells and simultaneously on tumor cells and tumor-supporting cells of the TME. The observed effects suggest that they constitute a promising tool to be included in the engineering process of T cells to endow them with complementary features for improved performance in the tumor milieu.
Collapse
Affiliation(s)
| | - Anna N. Mendler
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Grzegorz Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, Munich, Germany
| | - Bin Hu
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
- Immunoanalytics Research Group - Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
4
|
CD40 Pathway and IL-2 Expression Mediate the Differential Outcome of Colorectal Cancer Patients with Different CSF1R c.1085 Genotypes. Int J Mol Sci 2021; 22:ijms222212565. [PMID: 34830445 PMCID: PMC8622906 DOI: 10.3390/ijms222212565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/31/2023] Open
Abstract
Colony-stimulating factor 1 receptor (CSF-1R) acts as the receptor for colony stimulating factor 1, a cytokine that controls the production, differentiation, and function of macrophages. Prior studies showed cancer patients harboring germline CSF1R c.1085A>G genetic variant had better survival. Here, primary tumor samples from a stage III colorectal cancer (CRC) cohort were analyzed by a targeted gene expression assay containing 395 immune-related genes to study the immune mechanism underlying the different outcomes. CRC patients with CSF1R c.1085 genotype A_G had a better disease-free and overall survival than those with CSF1R genotype A_A. Compared to the group of patients without CSF1R variant, higher CD40LG expression, a surface marker of T cells, was found in the tumor tissues of patients with CSF1R c.1085 variant. In parallel with the higher CD40LG gene expression, immunofluorescent staining also showed more CD3+CD40L+ T cell infiltrates in tumors with CSF1R c.1085 genotype A_G. Moreover, higher IL-2 expression, known to be regulated by CD40 pathway, was also observed in tumors with CSF1R c.1085 genotype A_G than genotype A_A. Higher IL-2 expression generated by the interaction of CD40 ligand and CD40 between T cells and macrophages with CSF1R c.1085A>G variant is the potential mechanism explaining the different outcomes.
Collapse
|
5
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
6
|
Boosting CAR T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol Immunother 2021; 70:2851-2865. [PMID: 33666760 PMCID: PMC8423656 DOI: 10.1007/s00262-021-02895-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Pretreatment of B-cell lymphoma patients with immunostimulatory gene therapy using armed oncolytic viruses may prime tumor lesions for subsequent chimeric antigen receptor (CAR) T-cell therapy, thereby enhancing CAR T-cell functionality and possibly increasing response rates in patients. LOAd703 (delolimogene mupadenorepvec) is an oncolytic adenovirus (serotype 5/35) that encodes for the transgenes CD40L and 4-1BBL, which activate both antigen-presenting cells and T cells. Many adenoviruses failed to demonstrate efficacy in B-cell malignancies, but LOAd703 infect cells via CD46, which enables B cell infection. Herein, we investigated the therapeutic potential of LOAd703 in human B-cell lymphoma models, alone or in combination with CAR T-cell therapy. LOAd703 could infect and replicate in B-cell lymphoma cell lines (BC-3, Karpas422, Daudi, DG-75, U-698) and induced an overall enhanced immunogenic profile with upregulation of co-stimulatory molecules CD80, CD86, CD70, MHC molecules, death receptor Fas and adhesion molecule ICAM-1. Further, CAR T-cell functionality was boosted by stimulation with lymphoma cells infected with LOAd703. This was demonstrated by an augmented release of IFN-γ and granzyme B, increased expression of the degranulation marker CD107a, fewer PD-1 + TIM-3+ CAR T cells in vitro and enhanced lymphoma cell killing both in in vitro and in vivo xenograft models. In addition, LOAd703-infected lymphoma cells upregulated the secretion of several chemokines (CXCL10, CCL17, CCL22, CCL3, CCL4) essential for immune cell homing, leading to enhanced CAR T-cell migration. In conclusion, immunostimulatory LOAd703 therapy is an intriguing approach to induce anti-lymphoma immune responses and to improve CAR T-cell therapy in B-cell lymphoma.
Collapse
|
7
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|
8
|
Workman LM, Zhang L, Fan Y, Zhang W, Habelhah H. TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Mol Cell Biol 2020; 40:e00429-19. [PMID: 32041822 PMCID: PMC7156217 DOI: 10.1128/mcb.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
CD40 plays an important role in immune responses by activating the c-Jun N-terminal protein kinase (JNK) and NF-κB pathways; however, the precise mechanisms governing the spatiotemporal activation of these two signaling pathways are not fully understood. Here, using four different TRAF2-deficient cell lines (A20.2J, CH12.LX, HAP1, and mouse embryonic fibroblasts [MEFs]) reconstituted with wild-type or phosphorylation mutant forms of TRAF2, along with immunoprecipitation, immunoblotting, gene expression, and immunofluorescence analyses, we report that CD40 ligation elicits TANK-binding kinase 1 (TBK1)-mediated phosphorylation of TRAF2 at Ser-11. This phosphorylation interfered with the interaction between TRAF2's RING domain and membrane phospholipids and enabled translocation of the TRAF2 complex from CD40 to the cytoplasm. We also observed that this cytoplasmic translocation is required for full activation of the JNK pathway and the secondary phase of the NF-κB pathway. Moreover, we found that in the absence of Ser-11 phosphorylation, the TRAF2 RING domain interacts with phospholipids, leading to the translocation of the TRAF2 complex to lipid rafts, resulting in its degradation and activation of the noncanonical NF-κB pathway. Thus, our results provide new insights into the CD40 signaling mechanisms whereby Ser-11 phosphorylation controls RING domain-dependent subcellular localization of TRAF2 to modulate the spatiotemporal activation of the JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Lauren M Workman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laiqun Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yumei Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hasem Habelhah
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Ünver N, Yöyen Ermiş D, Weber BZ, Esendağli G. Transcriptional splice variants of CD40 and its prognostic value in breast cancer. ACTA ACUST UNITED AC 2020; 44:73-81. [PMID: 32256143 PMCID: PMC7129065 DOI: 10.3906/biy-1912-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD40 is an important tumor necrosis factor receptor (TNFR) family protein for the development of antitumor response against cancer cells, apart from its role in the regulation of the immune system as a costimulatory molecule. It is broadly expressed on the surface of immune cells and in diverse cancer types, including breast cancer. Here, we analyzed both CD40/CD40 ligand expression in breast cancer cells and tissues using public data sets and overall survival analysis in ungrouped breast cancer patients, as well as in the triple-negative breast cancer subtype. We detected CD40 gene expression along with its 3 different splice variants (variants 1–3), predominantly in the triple-negative subgroup of breast cancer cell lines. The results of the overall survival analysis showed that high CD40 gene expression, particularly in the triple-negative subgroup of breast cancer patients, is associated with better survival. In addition to the transcriptional levels of CD40 splice variants, investigation of protein levels of these variants will allow the categorization of breast cancer cells and reveal their potential as an immunotherapeutic target.
Collapse
Affiliation(s)
- Neşe Ünver
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development,Hacettepe University, Ankara Turkey
| | - Diğdem Yöyen Ermiş
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara Turkey
| | - Bahar Zehra Weber
- Institute of Cancer Research, Medical University of Vienna, Vienna Austria
| | - Güneş Esendağli
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara Turkey
| |
Collapse
|
10
|
Elmetwali T, Salman A, Wei W, Hussain SA, Young LS, Palmer DH. CD40L membrane retention enhances the immunostimulatory effects of CD40 ligation. Sci Rep 2020; 10:342. [PMID: 31941968 PMCID: PMC6962220 DOI: 10.1038/s41598-019-57293-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
In carcinomas, the nature of CD40 ligand shapes the outcome of CD40 ligation. To date, the consequences of membrane-bound CD40L (mCD40L) on its immune-stimulatory function are unknown. Here, we examined the impact of mCD40L versus soluble CD40L (sCD40L) on T24 bladder carcinoma gene expression profiling. Of 410 differentially expressed genes, 286 were upregulated and 124 downregulated by mCD40L versus sCD40L. Gene ontology enrichment analysis revealed immune-stimulatory function as the most significant enriched biological process affected by upregulated transcripts, while those downregulated were critical for cell growth and division. Furthermore, immature dendritic cells (iDC) responded to mCD40L with enhanced maturation and activation over sCD40L evidenced by higher expression levels of CD83, CD86, HLA-DR and CD54, increased secretion of IL12 and IL10 and higher tumour-antigen (TA) uptake capacity. Furthermore, autologus CD3+ T cells responded to TA-loaded mCD40L-activated DC with increased proliferation and cytotoxic response (CD107a and IFN-γ-producing CD3+ CD8+ T cells) to the tumour-loaded autologous PBMCs compared to sCD40L. Thus, these data indicate that mCD40L enhances the immunostimulatory capacity over sCD40L. Furthermore, the ability of mCD40L to also directly induce cell death in CD40-expressing carcinomas, subsequently releasing tumour-specific antigens into the tumour microenvironment highlights the potential for mCD40L as a multi-faceted anti-cancer immunotherapeutic.
Collapse
Affiliation(s)
- Taha Elmetwali
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| | - Asmaa Salman
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- National Research Centre, 12662, Dokki, Giza, Egypt
| | - Wenbin Wei
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Syed A Hussain
- Sheffield Academic Unit of Oncology Department of Oncology and Metabolism Medical School, University of Sheffield, Sheffield, S10 2 RX, UK
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel H Palmer
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington, Wirral, CH63 4JY, UK
| |
Collapse
|
11
|
Tapia-Llanos R, Muñoz-Valle JF, Román-Fernández IV, Marín-Rosales M, Salazar-Camarena DC, Cruz A, Orozco-Barocio G, Guareña-Casillas JA, Oregon-Romero E, Palafox-Sánchez CA. Association of soluble CD40 levels with -1 C > T CD40 polymorphism and chronic kidney disease in systemic lupus erythematosus. Mol Genet Genomic Med 2019; 7:e1014. [PMID: 31642196 PMCID: PMC6900383 DOI: 10.1002/mgg3.1014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background CD40 is a transmembrane protein mainly expressed on the antigen‐presenting cells surface. CD40 plays a crucial role in immunoglobulin class switching and antibodies production. Genetic polymorphisms in the CD40 gene have been associated with increased risk of systemic lupus erythematosus (SLE) in several populations. This study aimed to evaluate the association of CD40 polymorphisms (−1 C > T, rs1883832 and 6,048 G > T, rs4810485) with SLE susceptibility, as well as with mRNA expression and soluble CD40 (sCD40) levels. Methods The study included 293 patients with SLE and 294 control subjects (CS). Genotyping was performed by PCR‐RFLP method. CD40 mRNA expression was determined by quantitative real‐time PCR, and ELISA quantified sCD40 levels. Results The CD40 polymorphisms −1 C > T and 6,048 G > T were associated with SLE susceptibility. There was no difference between CD40 mRNA expression and CD40 polymorphisms. The sCD40 levels were lower in SLE patients with TT haplotype, whereas higher sCD40 levels were associated with damage and impaired renal function according to SLICC and KDIGO. The sCD40 levels were negatively correlated with eGFR. Conclusion The CD40 gene polymorphisms increase the risk of SLE in the western Mexican population. The sCD40 levels are associated with −1 C > T polymorphism and chronic kidney disease.
Collapse
Affiliation(s)
- Raziel Tapia-Llanos
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.,Doctorado en Biología Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ilce V Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Miguel Marín-Rosales
- Departamento de Reumatología, Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Mexico
| | - Diana C Salazar-Camarena
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Gerardo Orozco-Barocio
- Departamento de Reumatología, Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Mexico
| | - Jorge A Guareña-Casillas
- Especialidad de Hemodinamia y Cardiología Intervencionista, Hospital Civil de Guadalajara Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Mexico
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Claudia A Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
12
|
Levin N, Weinstein-Marom H, Pato A, Itzhaki O, Besser MJ, Eisenberg G, Peretz T, Lotem M, Gross G. Potent Activation of Human T Cells by mRNA Encoding Constitutively Active CD40. THE JOURNAL OF IMMUNOLOGY 2018; 201:2959-2968. [PMID: 30305327 DOI: 10.4049/jimmunol.1701725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
New strategies for augmenting the actual performance of therapeutic T cells in vivo are needed for improving clinical outcome of adoptive cell therapy. Cumulative findings suggest that CD40 plays an intrinsic role in T cell costimulation. Recently, we demonstrated the ability of truncated, auto-oligomerizing CD40 derivatives to induce strong activation of APCs in a ligand-independent manner. We reasoned that constitutively active CD40 (caCD40) can similarly exert enhancing effects on human antitumor T cells. To test this assumption, we transfected human T cells with in vitro-transcribed caCD40 mRNA. In polyclonal T cells, caCD40 triggered IFN-γ secretion and upregulated CD25 and 4-1BB. In antimelanoma tumor-infiltrating lymphocytes (TILs), caCD40 induced massive production of IFN-γ, exerting a pronounced synergistic effect when coexpressed with constitutively active TLR4 devoid of its extracellular ligand binding. In unselected "young" TILs, caCD40 reproducibly increased surface expression of CD25, OX40, 4-1BB, CD127, and CD28. Three days post-mRNA electroporation of CD8 TILs, caCD40 elevated IFN-γ and TNF-α production and cytolytic activity in the presence of autologous but not HLA-I-mismatched melanoma. Enhanced killing of autologous melanoma by young TILs was observed 4 d posttransfection. These findings suggest that caCD40 can function as a potent T cell adjuvant and provide essential guidelines for similar manipulation of other key members of the TNFR family.
Collapse
Affiliation(s)
- Noam Levin
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Aviad Pato
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.,Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel.,Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; and
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel; .,Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| |
Collapse
|
13
|
Adamska A, Domenichini A, Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 2017; 18:E1338. [PMID: 28640192 PMCID: PMC5535831 DOI: 10.3390/ijms18071338] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
14
|
Eriksson E, Milenova I, Wenthe J, Ståhle M, Leja-Jarblad J, Ullenhag G, Dimberg A, Moreno R, Alemany R, Loskog A. Shaping the Tumor Stroma and Sparking Immune Activation by CD40 and 4-1BB Signaling Induced by an Armed Oncolytic Virus. Clin Cancer Res 2017; 23:5846-5857. [PMID: 28536305 DOI: 10.1158/1078-0432.ccr-17-0285] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Pancreatic cancer is a severe indication with short expected survival despite surgery and/or combination chemotherapeutics. Checkpoint blockade antibodies are approved for several cancer indications, but pancreatic cancer has remained refractory. However, there are clinical data suggesting that stimulation of the CD40 pathway may be of interest for these patients. Oncolytic viruses armed with immunostimulatory genes represent an interesting approach. Herein, we present LOAd703, a designed adenovirus armed with trimerized CD40L and 4-1BBL that activates the CD40 and 4-1BB pathways, respectively. As many cells in the tumor stroma, including stellate cells and the infiltrating immune cells, express CD40 and some 4-1BB, we hypothesize that LOAd703 activates immunity and simultaneously modulates the biology of the tumor stroma.Experimental Design: Tumor, stellate, endothelial, and immune cells were infected by LOAd703 and investigated by flow cytometry, proteomics, and functional analyses.Results: LOAd703-infected pancreatic cell lines were killed by oncolysis, and the virus was more effective than standard-of-care gemcitabine. In in vivo xenograft models, LOAd703 efficiently reduced established tumors and could be combined with gemcitabine for additional effect. Infected stellate and tumor cells reduced factors that promote tumor growth (Spp-1, Gal-3, HGF, TGFβ and collagen type I), while chemokines were increased. Molecules involved in lymphocyte migration were upregulated on infected endothelial cells. Dendritic cells were robustly stimulated by LOAd703 to produce costimulators, cytokines and chemokines, and such DCs potently expanded both antigen-specific T cells and NK cells.Conclusions: LOAd703 is a potent immune activator that modulates the stroma to support antitumor responses. Clin Cancer Res; 23(19); 5846-57. ©2017 AACR.
Collapse
Affiliation(s)
- Emma Eriksson
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Ioanna Milenova
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Jessica Wenthe
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Magnus Ståhle
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Justyna Leja-Jarblad
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- Immuneed AB, Uppsala, Sweden
| | - Gustav Ullenhag
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Raphael Moreno
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Alemany
- IDIBELL-Institute Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology (IGP), Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
- Lokon Pharma AB, Uppsala, Sweden
| |
Collapse
|
15
|
Vogel CFA, Haarmann-Stemmann T. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer. CURRENT OPINION IN TOXICOLOGY 2017; 2:109-119. [PMID: 28971163 DOI: 10.1016/j.cotox.2017.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Krishnappa P, Kong HM, Mohamad IB, Voon K, Somanath SD. CD40 polymorphism in cervical carcinoma in a subset of Malaysian population. J Obstet Gynaecol Res 2017; 43:923-928. [PMID: 28181356 DOI: 10.1111/jog.13277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to determine the allelic frequency of single nucleotide polymorphisms (SNPs) in the human CD40 gene in cervical cancer. METHODS A total of 200 cases were selected from the records of the Department of Pathology, Hospital Tuanku Jaafar, Seremban, Malaysia. The samples were collected in three separate groups: cervicitis (n = 61), cervical intraepithelial neoplasia (n = 69), and cervical carcinoma (n = 70). The patients' demographic data and the respective paraffin-embedded tissue samples from Hospital Tuanku Jaafar, Seremban were obtained upon consent. The sample tissues were submitted for DNA extraction using G-spin Total DNA Extraction Kit. DNA obtained was then submitted for nested PCR before restriction enzyme digestion. RESULTS SNP rs1883832 showed higher prevalence of T alleles in the cervical carcinoma group compared to the control groups and in rs3765459, a higher prevalence of G alleles in the cervical carcinoma group was noted. The results of rs1800686 and rs4810485 were insignificant. CONCLUSION The data from our study indicates a potential association between the rs1883832 and rs3765459 CD40 gene polymorphism and susceptibility to cervical cancer.
Collapse
Affiliation(s)
| | - Hong Mun Kong
- Department of Pathology, International Medical University, Kuala Lumpur, Malaysia
| | | | - Kenny Voon
- Department of Pathology, International Medical University, Kuala Lumpur, Malaysia
| | | |
Collapse
|
17
|
Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment. Gene Ther 2016; 24:92-103. [PMID: 27906162 PMCID: PMC5441514 DOI: 10.1038/gt.2016.80] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022]
Abstract
CD40 is an interesting target in cancer immunotherapy due to its ability to stimulate T-helper 1 immunity via maturation of dendritic cells and to drive M2 to M1 macrophage differentiation. Pancreatic cancer has a high M2 content that has shown responsive to anti-CD40 agonist therapy and CD40 may thus be a suitable target for immune activation in these patients. In this study, a novel oncolytic adenovirus armed with a trimerized membrane-bound extracellular CD40L (TMZ-CD40L) was evaluated as a treatment of pancreatic cancer. Further, the CD40L mechanisms of action were elucidated in cancer models. The results demonstrated that the virus transferring TMZ-CD40L had oncolytic capacity in pancreatic cancer cells and could control tumor progression. TMZ-CD40L was a potent stimulator of human myeloid cells and T-cell responses. Further, CD40L-mediated stimulation increased tumor-infiltrating T cells in vivo, which may be due to a direct activation of endothelial cells to upregulate receptors for lymphocyte attachment and transmigration. In conclusion, CD40L-mediated gene therapy is an interesting concept for the treatment of tumors with high levels of M2 macrophages, such as pancreatic cancer, and an oncolytic virus as carrier of CD40L may further boost tumor killing and immune activation.
Collapse
|
18
|
Zhu S, Wan L, Yang H, Cheng J, Lu X. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris. Protein Expr Purif 2015; 119:19-26. [PMID: 26586612 DOI: 10.1016/j.pep.2015.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model.
Collapse
Affiliation(s)
- Shengyun Zhu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-κB Activation and Lymphoma Survival. Mol Cell Biol 2015. [PMID: 26195820 DOI: 10.1128/mcb.00692-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival.
Collapse
|
20
|
Bankert KC, Oxley KL, Smith SM, Graham JP, de Boer M, Thewissen M, Simons PJ, Bishop GA. Induction of an Altered CD40 Signaling Complex by an Antagonistic Human Monoclonal Antibody to CD40. THE JOURNAL OF IMMUNOLOGY 2015; 194:4319-27. [DOI: 10.4049/jimmunol.1402903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
|
21
|
Christiansson L, Söderlund S, Mangsbo S, Hjorth-Hansen H, Höglund M, Markevärn B, Richter J, Stenke L, Mustjoki S, Loskog A, Olsson-Strömberg U. The tyrosine kinase inhibitors imatinib and dasatinib reduce myeloid suppressor cells and release effector lymphocyte responses. Mol Cancer Ther 2015; 14:1181-91. [PMID: 25761894 DOI: 10.1158/1535-7163.mct-14-0849] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
Immune escape mechanisms promote tumor progression and are hurdles of cancer immunotherapy. Removing immunosuppressive cells before treatment can enhance efficacy. Tyrosine kinase inhibitors (TKI) may be of interest to combine with immunotherapy, as it has been shown that the inhibitor sunitinib reduces myeloid suppressor cells in patients with renal cell carcinoma and dasatinib promotes expansion of natural killer-like lymphocytes in chronic myeloid leukemia (CML). In this study, the capacity of dasatinib and imatinib to reduce myeloid suppressor cells and to induce immunomodulation in vivo was investigated ex vivo. Samples from CML patients treated with imatinib (n = 18) or dasatinib (n = 14) within a Nordic clinical trial (clinicalTrials.gov identifier: NCT00852566) were investigated for the presence of CD11b(+)CD14(-)CD33(+) myeloid cells and inhibitory molecules (arginase I, myeloperoxidase, IL10) as well as the presence of natural killer cells, T cells (naïve/memory), and stimulatory cytokines (IL12, IFNγ, MIG, IP10). Both imatinib and dasatinib decreased the presence of CD11b(+)CD14(-)CD33(+) myeloid cells as well as the inhibitory molecules and the remaining myeloid suppressor cells had an increased CD40 expression. Monocytes also increased CD40 after therapy. Moreover, increased levels of CD40, IL12, natural killer cells, and experienced T cells were noted after TKI initiation. The presence of experienced T cells was correlated to a higher IFNγ and MIG plasma concentration. Taken together, the results demonstrate that both imatinib and dasatinib tilted the immunosuppressive CML tumor milieu towards promoting immune stimulation. Hence, imatinib and dasatinib may be of interest to combine with cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Christiansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Stina Söderlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Sara Mangsbo
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St. Olav's Hospital, Trondheim, Norway. Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Martin Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Berit Markevärn
- Department of Hematology, Norrland University Hospital, Umeå, Sweden
| | - Johan Richter
- Department of Hematology and Coagulation, Skåne University Hospital, Lund, Sweden
| | - Leif Stenke
- Department of Hematology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Medicine, Division of Hematology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden. Section of Hematology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
22
|
Dewitte A, Tanga A, Villeneuve J, Lepreux S, Ouattara A, Desmoulière A, Combe C, Ripoche J. New frontiers for platelet CD154. Exp Hematol Oncol 2015; 4:6. [PMID: 25763299 PMCID: PMC4355125 DOI: 10.1186/s40164-015-0001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
The role of platelets extends beyond hemostasis. The pivotal role of platelets in inflammation has shed new light on the natural history of conditions associated with acute or chronic inflammation. Beyond the preservation of vascular integrity, platelets are essential to tissue homeostasis and platelet-derived products are already used in the clinics. Unanticipated was the role of platelets in the adaptative immune response, allowing a renewed conceptual approach of auto-immune diseases. Platelets are also important players in cancer growth and dissemination. Platelets fulfill most of their functions through the expression of still incompletely characterized membrane-bound or soluble mediators. Among them, CD154 holds a peculiar position, as platelets represent a major source of CD154 and as CD154 contributes to most of these new platelet attributes. Here, we provide an overview of some of the new frontiers that the study of platelet CD154 is opening, in inflammation, tissue homeostasis, immune response, hematopoiesis and cancer.
Collapse
Affiliation(s)
- Antoine Dewitte
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | - Annabelle Tanga
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain ; Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3200 USA
| | | | - Alexandre Ouattara
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, F-33600 Pessac, France
| | | | - Christian Combe
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France ; Service de Néphrologie Transplantation Dialyse, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Jean Ripoche
- INSERM U1026, and Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
23
|
Xu W, Xu Y, Wei Y, Tan Y, Zhao H, Zhao W, Wu J. Self-complementary adeno-associated virus 5-mediated gene transduction of a novel CD40L mutant confers direct antitumor effects in lung carcinoma. Mol Med Rep 2014; 11:482-8. [PMID: 25352298 DOI: 10.3892/mmr.2014.2765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
CD40 ligand (CD40L) gene therapy offers a potentially useful option for lung cancer due to its multiple antitumor activities. However, membrane-bound CD40L may be proteolytically cleaved to form soluble CD40L (sCD40L), which results in adverse effects. In a previous study by our group, it was demonstrated that recombinant self-complementary adeno-associated virus 5 (scAAV5) efficiently delivered genes to lung cancer cells. In the present study, an scAAV5 expressing a non-cleavable human CD40L mutant (scAAV5-CD40L-M) was generated and its direct antitumor effects in lung cancer were evaluated. Transduction with scAAV5-CD40L-M resulted in effective expression of CD40L on the cell surface with low levels of cleaved sCD40L, which significantly reduced the percentage of viable cells and promoted caspase-3-dependent apoptosis of CD40-positive lung carcinoma A549 cells, compared with scAAV5-CD40L transduction (P<0.05). Furthermore, treatment with scAAV5-CD40L-M exerted a significant antitumor effect against CD40-positive A549 xenografts by inducing apoptosis (P<0.05) with few side effects. Gene therapy using an scAAV5 vector expressing non-cleavable human CD40L mutant may therefore have direct antitumor effects against CD40-positive lung cancers. These tumoricidal effects of scAAV5-CD40L-M treatment make it a promising therapeutic technique for the treatment of lung cancer.
Collapse
Affiliation(s)
- Wei Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanyuan Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunyan Wei
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yaoxi Tan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongye Zhao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weihong Zhao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jianqing Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
24
|
Korniluk A, Kemona H, Dymicka-Piekarska V. Multifunctional CD40L: pro- and anti-neoplastic activity. Tumour Biol 2014; 35:9447-57. [PMID: 25117071 PMCID: PMC4213374 DOI: 10.1007/s13277-014-2407-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/27/2014] [Indexed: 12/16/2022] Open
Abstract
The CD40 ligand is a type I transmembrane protein that belongs to a tumor necrosis factor (TNF) superfamily. It is present not only on the surface of activated CD4+ T cells, B cells, blood platelets, monocytes, and natural killer (NK) cells but also on cancer cells. The receptor for ligand is constitutively expressed on cells, TNF family protein: CD40. The role of the CD40/CD40L pathway in the induction of body immunity, in inflammation, or in hemostasis has been well documented, whereas its involvement in neoplastic disease is still under investigation. CD40L ligand may potentiate apoptosis of tumor cells by activation of nuclear factor-κB (NF-κB), AP-1, CD95, or caspase-depended pathways and stimulate host immunity to defend against cancer. Although CD40L has a major contribution to anti-cancer activity, many reports point at its ambivalent nature. CD40L enhance release of strongly pro-angiogenic factor, vascular endothelial growth factor (VEGF), and activator of coagulation, TF, the level of which is correlated with tumor metastasis. CD40L involvement in the inhibition of tumor progression has led to the emergence of not only therapy using recombinant forms of the ligand and vaccines in the treatment of cancer but also therapy consisting of inhibiting platelets-main source of CD40L. This article is a review of studies on the ambivalent role of CD40L in neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra Korniluk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland,
| | | | | |
Collapse
|
25
|
Liljenfeldt L, Gkirtzimanaki K, Vyrla D, Svensson E, Loskog ASI, Eliopoulos AG. Enhanced therapeutic anti-tumor immunity induced by co-administration of 5-fluorouracil and adenovirus expressing CD40 ligand. Cancer Immunol Immunother 2014; 63:273-82. [PMID: 24357147 PMCID: PMC11028569 DOI: 10.1007/s00262-013-1507-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022]
Abstract
Bystander immune activation by chemotherapy has recently gained extensive interest and provided support for the clinical use of chemotherapeutic agents in combination with immune enhancers. The CD40 ligand (CD40L; CD154) is a potent regulator of the anti-tumor immune response and recombinant adenovirus (RAd)-mediated CD40L gene therapy has been effective in various cancer models and in man. In this study we have assessed the combined effect of local RAd-CD40L and 5-fluorouracil (5-FU) administration on a syngeneic MB49 mouse bladder tumor model. Whereas MB49 cells implanted into immunocompetent mice responded poorly to RAd-CD40L or 5-FU alone, administration of both agents dramatically decreased tumor growth, increased survival of the mice and induced systemic MB49-specific immunity. This combination treatment was ineffective in athymic nude mice, highlighting an important role for T cell mediated anti-tumor immunity for full efficacy. 5-FU up-regulated the expression of Fas and immunogenic cell death markers in MB49 cells and cytotoxic T lymphocytes from mice receiving RAd-CD40L immunotherapy efficiently lysed 5-FU treated MB49 cells in a Fas ligand-dependent manner. Furthermore, local RAd-CD40L and 5-FU administration induced a shift of myeloid-derived suppressor cell phenotype into a less suppressive population. Collectively, these data suggest that RAd-CD40L gene therapy is a promising adjuvant treatment to 5-FU for the management of bladder cancer.
Collapse
Affiliation(s)
- Lina Liljenfeldt
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katerina Gkirtzimanaki
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Heraklion Campus, PO Box 2208, 71003 Heraklion, Crete, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Dimitra Vyrla
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Heraklion Campus, PO Box 2208, 71003 Heraklion, Crete, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Emma Svensson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica SI Loskog
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Heraklion Campus, PO Box 2208, 71003 Heraklion, Crete, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
- Laboratory of Translational Medicine and Experimental Therapeutics, University of Crete Medical School, Heraklion, Greece
| |
Collapse
|
26
|
CD40L gene therapy tilts the myeloid cell profile and promotes infiltration of activated T lymphocytes. Cancer Gene Ther 2014; 21:95-102. [PMID: 24481488 DOI: 10.1038/cgt.2014.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
Abstract
CD40 ligand (CD40L) is a potent stimulator of tumor immunity via its activation of dendritic cells, which in turn initiate T-cell activation. However, T cells are inhibited by suppressive myeloid cells, which constitute an important part of immune evasion. We hypothesized that CD40L may revert the function of suppressive myeloid cells to generate a T-cell stimulatory environment, and this was investigated in the murine bladder cancer model MB49/C57BL/6. Upon intratumoral adenoviral CD40L (AdCD40L) gene therapy, the infiltration of CD11b(+)Gr-1(+) cells was significantly reduced, whereas activated T cells were increased. In vitro, CD40L-expressing MB49 cells tilted the myeloid subpopulations in favor of granulocytic CD11b(+)Gr-1(high) myeloid cells instead of monocytic CD11b(+)Gr-1(int/low) myeloid cells. Further, the level of macrophages in splenocyte co-cultures with MB49 cells was evaluated. In cultures with MB49 cells expressing CD40L, the overall level of macrophages was reduced and the remaining cells were differentiated into M1-like cells. Hence, these data support that CD40L tilts myeloid immune cell populations in favor of anti-tumor immunity (M1) instead of immunosuppression (CD11b(+)Gr-1(int/low) and M2), and this was accompanied by an increased level of activated T cells in the tumor tissue.
Collapse
|
27
|
Ishak DHA, Ooi KK, Ang KP, Akim AM, Cheah YK, Nordin N, Halim SNBA, Seng HL, Tiekink ER. A bismuth diethyldithiocarbamate compound promotes apoptosis in HepG2 carcinoma, cell cycle arrest and inhibits cell invasion through modulation of the NF-κB activation pathway. J Inorg Biochem 2014; 130:38-51. [DOI: 10.1016/j.jinorgbio.2013.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023]
|
28
|
Miliara S, Gkouskou KK, Sharp TV, Eliopoulos AG. SUMOylation is required for optimal TRAF3 signaling capacity. PLoS One 2013; 8:e80470. [PMID: 24260396 PMCID: PMC3832365 DOI: 10.1371/journal.pone.0080470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022] Open
Abstract
TNF receptor-associated factors (TRAFs) are multifunctional adaptor proteins involved in temporal and spatial coordination of signals necessary for normal immune function. Here, we report that TRAF3, a TRAF family member with a key role in Toll-like and TNF family receptor signaling and suppressor of lymphomagenesis, is post-translationally modified by the small ubiquitin-related modifier (SUMO). Through yeast two-hybrid and co-immunoprecipitation assays we have identified Ubc9, the SUMO conjugating enzyme, as a novel TRAF3-interacting protein. We show that Ubc9-dependent SUMOylation of TRAF3 modulates optimal association with the CD40 receptor, thereby influencing TRAF3 degradation and non-canonical NF-κB activation upon CD40 triggering. Collectively, our findings describe a novel post-translational modification of a TRAF family member and reveal a link between SUMOylation and TRAF-mediated signal transduction.
Collapse
Affiliation(s)
- Sophia Miliara
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Kalliopi K. Gkouskou
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Tyson V. Sharp
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory, University of Crete School of Medicine, Heraklion, Greece
- Laboratory of Cancer Biology, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|
29
|
Liu Y, Wu HW, Sheard MA, Sposto R, Somanchi SS, Cooper LJN, Lee DA, Seeger RC. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin Cancer Res 2013; 19:2132-43. [PMID: 23378384 DOI: 10.1158/1078-0432.ccr-12-1243] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). EXPERIMENTAL DESIGN Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. RESULTS Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. CONCLUSION Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.
Collapse
Affiliation(s)
- Yin Liu
- Division of Hematology/Oncology and Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
CD40-mediated cancer therapy has been under development since it became clear that CD40 plays a profound role in the stimulation of adaptive immune responses. Further, CD40 signaling on tumor cells may lead to growth arrest or even apoptosis that improves therapy outcome. The therapeutic window is appealing since the immune system is selective and normal cells do not apoptose upon CD40 signaling. AdCD40L is an adenoviral-based immunostimulatory gene therapy under evaluation for its efficacy to treat cancer. Because of its nature, the adenoviral backbone will stimulate TLRs while CD40L potentiates the shifts toward Th1 type of immunity. AdCD40L has shown efficacy in various murine models, and safety studies have been performed on dog patients and in human clinical trials. AdCD40L has been used for both ex vivo gene modification of tumor cell vaccines as well as for direct intratumoral injections. Lately, an oncolytic vector has been used to further increase the eradication of solid tumors that as a consequence further boosts the release of tumor antigens and creates danger signaling in the tumor micro milieu. This review discusses the currently unfolding mechanisms of action of AdCD40L gene therapy and its possibilities to reach clinical care.
Collapse
Affiliation(s)
- Gustav Ullenhag
- Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
31
|
Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J Immunother 2012; 35:276-82. [PMID: 22421945 DOI: 10.1097/cji.0b013e31824e7f43] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD40, a member of the tumor necrosis factor receptor superfamily, is broadly expressed on antigen-presenting cells and other cells, including fibroblasts and endothelial cells. Binding of CD40 and its natural ligand CD40L (CD154) triggers cytokine secretion, and increased expression of costimulatory molecules is required for T-cell activation and proliferation. However, to our knowledge, the use of agonistic antibodies to CD40 to boost adoptively transferred T cells in vivo has not been investigated. The purpose of this study was to determine whether anti-CD40 monoclonal antibody (mAb) in combination with interleukin (IL)-2 could improve the efficacy of in vitro-activated T cells to enhance antitumor activity. Mice bearing B16 melanoma tumors expressing the gp100 tumor antigen were treated with cultured, activated T cells transgenic for a T-cell receptor specifically recognizing gp100, with or without anti-CD40 mAb. In this model, the combination of anti-CD40 mAb with IL-2 led to expansion of adoptively transferred T cells and induced a more robust antitumor response. Furthermore, the expression of CD40 on bone marrow-derived cells and the presence of CD80/CD86 in the host were required for the expansion of adoptively transferred T cells. The use of neutralizing mAb to IL-12 provided direct evidence that enhanced IL-12 secretion induced by anti-CD40 mAb was crucial for the expansion of adoptively transferred T cells. Collectively, these findings provide a rationale to evaluate the potential application of anti-CD40 mAb in adoptive T-cell therapy for cancer.
Collapse
|
32
|
Vaitaitis GM, Wagner DH. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One 2012; 7:e38708. [PMID: 22685601 PMCID: PMC3369903 DOI: 10.1371/journal.pone.0038708] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/14/2012] [Indexed: 12/23/2022] Open
Abstract
While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4loCD40+ effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4loCD40+ T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Department of Medicine and Webb-Waring Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - David H. Wagner
- Department of Medicine and Webb-Waring Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
NSCLC and the alternative pathway of NF-κB: uncovering an unknown relation. Virchows Arch 2012; 460:515-23. [PMID: 22562129 DOI: 10.1007/s00428-012-1230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/23/2012] [Indexed: 02/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although our knowledge on the pathobiology of the disease has increased in the last decades, the prognosis of lung cancer patients has hardly changed. Many signaling pathways are implicated in lung carcinogenesis, but the role of the alternative pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lung cancer pathogenesis and progression has not been investigated. The aim of our study was to investigate the role of this pathway in non-small cell lung cancer (NSCLC) patients. NF-κB2 and RelB protein expression was retrospectively assessed by immunohistochemistry in tissue samples from 109 NSCLC patients. RelB and NF-κB2 protein levels differed between tumors and adjacent nonneoplastic lung parenchyma. Cytoplasmic immunoreactivity of NF-κB2 and RelB was correlated with tumor stage (p = 0.03 and p = 0.016, respectively). In addition, cytoplasmic NF-κB2 levels were related to tumor grade (p = 0.046). Expression of RelB in the cytoplasm was tumor histologic type-specific, with squamous cell carcinomas having the highest protein levels. Nuclear expression of RelB and NF-κB2 differed between tumor and nonneoplastic tissues, possibly indicating activation of the alternative pathway of NF-κB in cancer cells. Moreover, lymph node metastasis was related to nuclear NF-κB2 expression in tumor cells. The deregulation of the alternative NF-κB pathway in NSCLC could play a role in the development and progression of the disease.
Collapse
|
34
|
Moschonas A, Ioannou M, Eliopoulos AG. CD40 stimulates a "feed-forward" NF-κB-driven molecular pathway that regulates IFN-β expression in carcinoma cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5521-7. [PMID: 22547704 DOI: 10.4049/jimmunol.1200133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IFN-β and the CD40L (CD154) share important roles in the antiviral and antitumor immune responses. In this study, we show that CD40 receptor occupancy results in IFN-β upregulation through an unconventional "feed-forward" mechanism, which is orchestrated by canonical NF-κB and involves the sequential de novo synthesis of IFN regulatory factor (IRF)1 and Viperin (RSAD2), an IRF1 target. RelA (p65) NF-κB, IRF1, and Viperin-dependent IRF7 binding to the IFN-β promoter largely controls its activity. However, full activation of IFN-β also requires the parallel engagement of noncanonical NF-κB2 signaling leading to p52 recruitment to the IFN-β promoter. These data define a novel link between CD40 signaling and IFN-β expression and provide a telling example of how signal propagation can be exploited to ensure efficient regulation of gene expression.
Collapse
Affiliation(s)
- Aristides Moschonas
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, 71003 Heraklion, Crete, Greece
| | | | | |
Collapse
|
35
|
Bishop GA. The Power of Monoclonal Antibodies as Agents of Discovery: CD40 Revealed as a B Lymphocyte Costimulator. THE JOURNAL OF IMMUNOLOGY 2012; 188:4127-9. [DOI: 10.4049/jimmunol.1200775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Shuang C, Dalin L, Weiguang Y, Zhenkun F, Fengyan X, Da P, Li D. Association of CD40 gene polymorphisms with sporadic breast cancer in Chinese Han women of Northeast China. PLoS One 2011; 6:e23762. [PMID: 21912605 PMCID: PMC3166053 DOI: 10.1371/journal.pone.0023762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/25/2011] [Indexed: 11/20/2022] Open
Abstract
Background Breast cancer is a polygenetic disorder with a complex inheritance pattern. Single nucleotide polymorphisms (SNPs), the most common genetic variations, influence not only phenotypic traits, but also interindividual predisposition to disease, treatment outcomes with drugs and disease prognosis. The co-stimulatory molecule CD40 plays a prominent role in immune regulation and homeostasis. Accumulating evidence suggests that CD40 contributes to the pathogenesis of cancer. Here, we set out to test the association between polymorphisms in the CD40 gene and breast carcinogenesis and tumor pathology. Methodology and Principal Findings Four SNPs (rs1800686, rs1883832, rs4810485 and rs3765459) were genotyped by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method in a case-control study including 591 breast cancer patients and 600 age-matched healthy controls. Differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed by the Chi-square test for trends. Our preliminary data showed a statistically significant association between the four CD40 gene SNPs and sporadic breast cancer risk (additive P = 0.0223, 0.0012, 0.0013 and 0.0279, respectively). A strong association was also found using the dominant, recessive and homozygote comparison genetic models. In the clinical features analysis, significant associations were observed between CD40 SNPs and lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2), estrogen receptor (ER), progesterone receptor (PR) and tumor protein 53 (P53) statuses. In addition, our haplotype analysis indicated that the haplotype Crs1883832Grs4810485, which was located within the only linkage disequilibrium (LD) block identified, was a protective haplotype for breast cancer, whereas Trs1883832Trs4810485 increased the risk in the studied population, even after correcting the P value for multiple testing (P = 0.0337 and 0.0430, respectively). Conclusions and Significance Our findings primarily show that CD40 gene polymorphisms contribute to sporadic breast cancer risk and have a significant association with clinicopathological features among Chinese Han women from the Heilongjiang Province.
Collapse
Affiliation(s)
- Chen Shuang
- Department of Immunology, Harbin Medical University, Harbin, China
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Li Dalin
- Department of Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Weiguang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Fu Zhenkun
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Xu Fengyan
- Department of Immunology, Harbin Medical University, Harbin, China
| | - Pang Da
- Department of Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- * E-mail: (PD); (DL)
| | - Dianjun Li
- Department of Immunology, Harbin Medical University, Harbin, China
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
- * E-mail: (PD); (DL)
| |
Collapse
|
37
|
Park JY, Helm J, Coppola D, Kim D, Malafa M, Kim SJ. MicroRNAs in pancreatic ductal adenocarcinoma. World J Gastroenterol 2011; 17:817-27. [PMID: 21412491 PMCID: PMC3051132 DOI: 10.3748/wjg.v17.i7.817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Ductal adenocarcinoma of the pancreas is a lethal cancer for which the only chance of long-term survival belongs to the patient with localized disease in whom a potentially curative resection can be done. Therefore, biomarkers for early detection and new therapeutic strategies are urgently needed. miRNAs are a recently discovered class of small endogenous non-coding RNAs of about 22 nucleotides that have gained attention for their role in downregulation of mRNA expression at the post-transcriptional level. miRNAs regulate proteins involved in critical cellular processes such as differentiation, proliferation, and apoptosis. Evidence suggests that deregulated miRNA expression is involved in carcinogenesis at many sites, including the pancreas. Aberrant expression of miRNAs may upregulate the expression of oncogenes or downregulate the expression of tumor suppressor genes, as well as play a role in other mechanisms of carcinogenesis. The purpose of this review is to summarize our knowledge of deregulated miRNA expression in pancreatic cancer and discuss the implication for potential translation of this knowledge into clinical practice.
Collapse
|
38
|
Knox PG, Davies CC, Ioannou M, Eliopoulos AG. The death domain kinase RIP1 links the immunoregulatory CD40 receptor to apoptotic signaling in carcinomas. ACTA ACUST UNITED AC 2011; 192:391-9. [PMID: 21282461 PMCID: PMC3101101 DOI: 10.1083/jcb.201003087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RIP1 is a component of a TRAF2 complex, required for caspase-8 activation and tumor cell killing in response to ligand binding of CD40. CD40, a tumor necrosis factor (TNF) receptor family member, is widely recognized for its prominent role in the antitumor immune response. The immunostimulatory effects of CD40 ligation on malignant cells can be switched to apoptosis upon disruption of survival signals transduced by the binding of the adaptor protein TRAF6 to CD40. Apoptosis induction requires a TRAF2-interacting CD40 motif but is initiated within a cytosolic death-inducing signaling complex after mobilization of receptor-bound TRAF2 to the cytoplasm. We demonstrate that receptor-interacting protein 1 (RIP1) is an integral component of this complex and is required for CD40 ligand-induced caspase-8 activation and tumor cell killing. Degradation of the RIP1 K63 ubiquitin ligases cIAP1/2 amplifies the CD40-mediated cytotoxic effect, whereas inhibition of CYLD, a RIP1 K63 deubiquitinating enzyme, reduces it. This two-step mechanism of apoptosis induction expands our appreciation of commonalities in apoptosis regulatory pathways across the TNF receptor superfamily and provides a telling example of how TNF family receptors usurp alternative programs to fulfill distinct cellular functions.
Collapse
Affiliation(s)
- Pauline G Knox
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, 71003 Heraklion, Greece
| | | | | | | |
Collapse
|
39
|
Tuning of CD40–CD154 Interactions in Human B-Lymphocyte Activation: A Broad Array of In Vitro Models for a Complex In Vivo Situation. Arch Immunol Ther Exp (Warsz) 2011; 59:25-40. [DOI: 10.1007/s00005-010-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/19/2010] [Indexed: 12/13/2022]
|
40
|
Graham JP, Arcipowski KM, Bishop GA. Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev 2010; 237:226-48. [PMID: 20727039 DOI: 10.1111/j.1600-065x.2010.00932.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CD40 plays a vital role in humoral immunity, via its potent and multifaceted function as an activating receptor of various immune cells, most notably B lymphocytes. The Epstein-Barr virus-encoded transforming protein latent membrane protein 1 (LMP1) serves as a functional mimic of CD40 signals to B cells but lacks key regulatory controls that restrain CD40 signaling. This allows LMP1 to activate B cells in an abnormal manner that can contribute to the pathogenesis of human B-cell lymphoma and autoimmune disease. This review focuses upon a comparative analysis of CD40 versus LMP1 functions and mechanisms of action in B lymphocytes, discussing how this comparison can provide valuable information on both how CD40 signaling is normally regulated and how LMP1 disrupts the normal CD40 pathways, which can provide information of value to therapeutic design.
Collapse
Affiliation(s)
- John P Graham
- Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
41
|
刘 珊, 陈 波, 李 燕, 赵 卫, 吴 剑. [Effect of sCD40L combined with vinorelbine on lung adenocarcinoma cell A549]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:686-90. [PMID: 20673484 PMCID: PMC6000372 DOI: 10.3779/j.issn.1009-3419.2010.07.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/18/2010] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND OBJECTIVE The results of published data on the effect of CD40 signal related to cancer cell sensitivity to chemotherapy are inconclusive. The aim of this study is to investigate the effect of soluble CD40 ligand (sCD40L) combined with vinorelbine on lung adenocarcinoma cell line A549. METHODS Lung adenocarcinoma A549 cells were chosen as target cells and CD40 signal was stimulated by sCD40L. MTT assay and flow cytometry were used to determine the changes of cell proliferation, cell cycle and apoptosis of A549 cells treated by vinorelbine after CD40 was stimulated. The activity of Caspase-3 was measured using Caspase-3 cellular activity assay kit plus. RESULTS After CD40 stimulation, an increase of inhibition on CD40 positive cell line A549 proliferation was confirmed when vinorelbine was added (P < 0.05). However, no significant changes were shown in apoptosis and cell cycle (P > 0.05). On the other hand, the activity of Caspase-3 was substantially decreased (P < 0.05). CONCLUSIONS Stimulation of CD40 can increase lung adenocarcinoma cell line A549 sensitivity to vinorelbine, which may be through a non-apoptosis, Caspase independent mechanism, and not associated with the inhibition of cell cycle.
Collapse
Affiliation(s)
- 珊 刘
- />210029 南京,南京医科大学第一附属医院老年呼吸科Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - 波 陈
- />210029 南京,南京医科大学第一附属医院老年呼吸科Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - 燕 李
- />210029 南京,南京医科大学第一附属医院老年呼吸科Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - 卫红 赵
- />210029 南京,南京医科大学第一附属医院老年呼吸科Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - 剑卿 吴
- />210029 南京,南京医科大学第一附属医院老年呼吸科Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
42
|
Malmström PU, Loskog ASI, Lindqvist CA, Mangsbo SM, Fransson M, Wanders A, Gårdmark T, Tötterman TH. AdCD40L immunogene therapy for bladder carcinoma--the first phase I/IIa trial. Clin Cancer Res 2010; 16:3279-87. [PMID: 20448220 DOI: 10.1158/1078-0432.ccr-10-0385] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy with Bacillus Calmette-Guerin (BCG) instillation is recommended for high-risk, non-muscle invasive bladder cancer. Bacillus Calmette-Guerin is not effective in advanced tumors, and better alternatives are warranted. Immunostimulating gene therapy with adenoviral vectors expressing CD40 ligand (AdCD40L) has shown efficacy in tumor models. CD40 ligand stimulates systemic immunity and may be effective in local and invasive human disease. EXPERIMENTAL DESIGN Patients with invasive bladder cancer scheduled for cystectomy or patients with T(a) tumors were enrolled in a phase I/IIa trial. Patients were treated with three cycles of intrabladder Clorpactin WCS-90 prewash, followed by AdCD40L instillation 1 week apart. Safety, gene transfer, immune effects, and antitumor responses were monitored. RESULTS All eight recruited patients were treated as scheduled, and therapy was well tolerated. The main adverse effect was transient local pain during prewash. Postoperatively, urinary tract infections and one case of late septicemia with elevated potassium were reported. No adverse events were ascribed to vector therapy. Gene transfer was detected in biopsies, and bladders were heavily infiltrated with T cells. The effector marker IFN-gamma increased in biopsies, whereas levels of circulating T regulatory cells were reduced. Histologic evaluation indicated that AdCD40L therapy reduced the load of malignant cells. CONCLUSIONS To our knowledge, this is the first report on immunogene therapy in bladder cancer and the first using AdCD40L in vivo. Local AdCD40L gene therapy was safe, boosted immune activation, and should be further evaluated as a single or an adjuvant therapy for urothelial malignancies.
Collapse
|